# Owner(s): ["module: unknown"] import platform from functools import partial from unittest import skipIf as skipif import torch from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, OpDTypes, ops, ) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal.common_utils import ( IS_MACOS, run_tests, skipIfTorchInductor, TestCase, TestGradients, unMarkDynamoStrictTest, ) # TODO: mitigate flaky issue on macOS https://github.com/pytorch/pytorch/issues/66033 # AFAIK, c10::ThreadPool looks correct in the way it uses condition_variable wait. The # issue seems to point to macOS itself https://github.com/graphia-app/graphia/issues/33 if IS_MACOS: torch.set_num_threads(1) # gradcheck requires double precision _gradcheck_ops = partial( ops, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, torch.cdouble] ) @unMarkDynamoStrictTest class TestFwdGradients(TestGradients): # Test that forward-over-reverse gradgrad is computed correctly @_gradcheck_ops(op_db) def test_fn_fwgrad_bwgrad(self, device, dtype, op): self._skip_helper(op, device, dtype) if op.supports_fwgrad_bwgrad: self._check_helper(device, dtype, op, op.get_op(), "fwgrad_bwgrad") else: err_msg = r"Trying to use forward AD with .* that does not support it" hint_msg = ( "Running forward-over-backward gradgrad for an OP that has does not support it did not " "raise any error. If your op supports forward AD, you should set supports_fwgrad_bwgrad=True." ) with self.assertRaisesRegex(NotImplementedError, err_msg, msg=hint_msg): self._check_helper(device, dtype, op, op.get_op(), "fwgrad_bwgrad") def _forward_grad_helper(self, device, dtype, op, variant, is_inplace): # TODO: clean up how attributes are passed to gradcheck from OpInfos def call_grad_test_helper(): check_batched_forward_grad = ( op.check_batched_forward_grad and not is_inplace ) or (op.check_inplace_batched_forward_grad and is_inplace) self._grad_test_helper( device, dtype, op, variant, check_forward_ad=True, check_backward_ad=False, check_batched_grad=False, check_batched_forward_grad=check_batched_forward_grad, ) if op.supports_forward_ad: call_grad_test_helper() else: err_msg = r"Trying to use forward AD with .* that does not support it" hint_msg = ( "Running forward AD for an OP that has does not support it did not " "raise any error. If your op supports forward AD, you should set supports_forward_ad=True" ) with self.assertRaisesRegex(NotImplementedError, err_msg, msg=hint_msg): call_grad_test_helper() @_gradcheck_ops(op_db) @skipif( platform.machine() == "s390x", reason="Different precision of openblas functions: https://github.com/OpenMathLib/OpenBLAS/issues/4194", ) def test_forward_mode_AD(self, device, dtype, op): self._skip_helper(op, device, dtype) self._forward_grad_helper(device, dtype, op, op.get_op(), is_inplace=False) @_gradcheck_ops(op_db) @skipIfTorchInductor("to be fixed") def test_inplace_forward_mode_AD(self, device, dtype, op): self._skip_helper(op, device, dtype) if not op.inplace_variant or not op.supports_inplace_autograd: self.skipTest("Skipped! Operation does not support inplace autograd.") self._forward_grad_helper( device, dtype, op, self._get_safe_inplace(op.get_inplace()), is_inplace=True ) instantiate_device_type_tests(TestFwdGradients, globals()) if __name__ == "__main__": TestCase._default_dtype_check_enabled = True run_tests()