# Owner(s): ["module: intel"] import collections import sys import tempfile import unittest import torch import torch.xpu._gpu_trace as gpu_trace from torch.testing._internal.autocast_test_lists import AutocastTestLists from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, onlyXPU, OpDTypes, ops, ) from torch.testing._internal.common_methods_invocations import ops_and_refs from torch.testing._internal.common_utils import ( NoTest, run_tests, suppress_warnings, TEST_WITH_UBSAN, TEST_XPU, TestCase, ) if not TEST_XPU: print("XPU not available, skipping tests", file=sys.stderr) TestCase = NoTest # noqa: F811 TEST_MULTIXPU = torch.xpu.device_count() > 1 cpu_device = torch.device("cpu") xpu_device = torch.device("xpu") any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one _xpu_computation_op_list = [ "fill", "zeros", "zeros_like", "clone", "view_as_real", "view_as_complex", "view", "resize_", "resize_as_", "add", "sub", "mul", "div", "abs", ] _xpu_tensor_factory_op_list = [ "as_strided", "empty", "empty_strided", ] _xpu_not_test_dtype_op_list = [ "resize_", # Skipped by CPU "resize_as_", # Skipped by CPU "abs", # Not aligned dtype ] _xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list _xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list] _xpu_computation_ops = [ op for op in ops_and_refs if op.name in _xpu_computation_op_list ] class TestXpu(TestCase): def test_device_behavior(self): current_device = torch.xpu.current_device() torch.xpu.set_device(current_device) self.assertEqual(current_device, torch.xpu.current_device()) @unittest.skipIf(not TEST_MULTIXPU, "only one GPU detected") def test_multi_device_behavior(self): current_device = torch.xpu.current_device() target_device = (current_device + 1) % torch.xpu.device_count() with torch.xpu.device(target_device): self.assertEqual(target_device, torch.xpu.current_device()) self.assertEqual(current_device, torch.xpu.current_device()) with torch.xpu._DeviceGuard(target_device): self.assertEqual(target_device, torch.xpu.current_device()) self.assertEqual(current_device, torch.xpu.current_device()) def test_get_device_properties(self): current_device = torch.xpu.current_device() device_properties = torch.xpu.get_device_properties(current_device) self.assertEqual(device_properties, torch.xpu.get_device_properties(None)) self.assertEqual(device_properties, torch.xpu.get_device_properties()) device_name = torch.xpu.get_device_name(current_device) self.assertEqual(device_name, torch.xpu.get_device_name(None)) self.assertEqual(device_name, torch.xpu.get_device_name()) device_capability = torch.xpu.get_device_capability(current_device) self.assertTrue(device_capability["max_work_group_size"] > 0) self.assertTrue(device_capability["max_num_sub_groups"] > 0) self.assertEqual( device_properties.driver_version, device_capability["driver_version"] ) self.assertEqual(device_properties.has_fp16, device_capability["has_fp16"]) self.assertEqual(device_properties.has_fp64, device_capability["has_fp64"]) self.assertEqual( device_properties.has_atomic64, device_capability["has_atomic64"] ) def test_wrong_xpu_fork(self): stderr = TestCase.runWithPytorchAPIUsageStderr( """\ import torch from torch.multiprocessing import Process def run(rank): torch.xpu.set_device(rank) if __name__ == "__main__": size = 2 processes = [] for rank in range(size): # it would work fine without the line below torch.xpu.set_device(0) p = Process(target=run, args=(rank,)) p.start() processes.append(p) for p in processes: p.join() """ ) self.assertRegex(stderr, "Cannot re-initialize XPU in forked subprocess.") def test_streams(self): s0 = torch.xpu.Stream() torch.xpu.set_stream(s0) s1 = torch.xpu.current_stream() self.assertEqual(s0, s1) s2 = torch.xpu.Stream() self.assertFalse(s0 == s2) torch.xpu.set_stream(s2) with torch.xpu.stream(s0): self.assertEqual(s0, torch.xpu.current_stream()) self.assertEqual(s2, torch.xpu.current_stream()) def test_stream_priority(self): low, high = torch.xpu.Stream.priority_range() s0 = torch.xpu.Stream(device=0, priority=low) self.assertEqual(low, s0.priority) self.assertEqual(torch.device("xpu:0"), s0.device) s1 = torch.xpu.Stream(device=0, priority=high) self.assertEqual(high, s1.priority) self.assertEqual(torch.device("xpu:0"), s1.device) def test_stream_event_repr(self): s = torch.xpu.current_stream() self.assertTrue("torch.xpu.Stream" in str(s)) e = torch.xpu.Event() self.assertTrue("torch.xpu.Event(uninitialized)" in str(e)) s.record_event(e) self.assertTrue("torch.xpu.Event" in str(e)) def test_events(self): stream = torch.xpu.current_stream() event = torch.xpu.Event() self.assertTrue(event.query()) stream.record_event(event) event.synchronize() self.assertTrue(event.query()) def test_generic_stream_event(self): stream = torch.Stream("xpu") self.assertEqual(stream.device_index, torch.xpu.current_device()) xpu_stream = torch.xpu.Stream( stream_id=stream.stream_id, device_index=stream.device_index, device_type=stream.device_type, ) self.assertEqual(stream.stream_id, xpu_stream.stream_id) self.assertNotEqual(stream.stream_id, torch.xpu.current_stream().stream_id) event1 = torch.Event("xpu") event2 = torch.Event("xpu") self.assertEqual(event1.event_id, 0) a = torch.randn(1000) b = torch.randn(1000) with torch.xpu.stream(xpu_stream): a_xpu = a.to("xpu", non_blocking=True) b_xpu = b.to("xpu", non_blocking=True) self.assertEqual(stream.stream_id, torch.xpu.current_stream().stream_id) event1.record(stream) event1.synchronize() self.assertTrue(event1.query()) c_xpu = a_xpu + b_xpu event2.record() event2.synchronize() self.assertTrue(event2.query()) self.assertNotEqual(event1.event_id, event2.event_id) self.assertEqual(c_xpu.cpu(), a + b) with self.assertRaisesRegex( NotImplementedError, "elapsedTime is not supported by XPU backend." ): event1.elapsed_time(event2) def test_generator(self): torch.manual_seed(2024) g_state0 = torch.xpu.get_rng_state() torch.manual_seed(1234) g_state1 = torch.xpu.get_rng_state() self.assertNotEqual(g_state0, g_state1) torch.xpu.manual_seed(2024) g_state2 = torch.xpu.get_rng_state() self.assertEqual(g_state0, g_state2) torch.xpu.set_rng_state(g_state1) self.assertEqual(g_state1, torch.xpu.get_rng_state()) torch.manual_seed(1234) torch.xpu.set_rng_state(g_state0) self.assertEqual(2024, torch.xpu.initial_seed()) @onlyXPU @suppress_warnings @ops(_xpu_computation_ops, dtypes=any_common_cpu_xpu_one) def test_compare_cpu(self, device, dtype, op): def to_cpu(arg): if isinstance(arg, torch.Tensor): return arg.to(device="cpu") return arg samples = op.reference_inputs(device, dtype) for sample in samples: cpu_sample = sample.transform(to_cpu) xpu_results = op(sample.input, *sample.args, **sample.kwargs) cpu_results = op(cpu_sample.input, *cpu_sample.args, **cpu_sample.kwargs) xpu_results = sample.output_process_fn_grad(xpu_results) cpu_results = cpu_sample.output_process_fn_grad(cpu_results) # Lower tolerance because we are running this as a `@slowTest` # Don't want the periodic tests to fail frequently self.assertEqual(xpu_results, cpu_results, atol=1e-4, rtol=1e-4) @onlyXPU @ops(_xpu_computation_ops, allowed_dtypes=(torch.bool,)) @unittest.skipIf(TEST_WITH_UBSAN, "Test uses undefined behavior") def test_non_standard_bool_values(self, device, dtype, op): # Test boolean values other than 0x00 and 0x01 (gh-54789) def convert_boolean_tensors(x): if not isinstance(x, torch.Tensor) or x.dtype != torch.bool: return x # Map False -> 0 and True -> Random value in [2, 255] true_vals = torch.randint( 2, 255, x.shape, dtype=torch.uint8, device=x.device ) false_vals = torch.zeros((), dtype=torch.uint8, device=x.device) x_int = torch.where(x, true_vals, false_vals) ret = x_int.view(torch.bool) self.assertEqual(ret, x) return ret for sample in op.sample_inputs(device, dtype): expect = op(sample.input, *sample.args, **sample.kwargs) transformed = sample.transform(convert_boolean_tensors) actual = op(transformed.input, *transformed.args, **transformed.kwargs) self.assertEqual(expect, actual) def test_serialization_array_with_storage(self): x = torch.randn(5, 5).xpu() y = torch.zeros(2, 5, dtype=torch.int, device="xpu") q = [x, y, x, y.storage()] with tempfile.NamedTemporaryFile() as f: torch.save(q, f) f.seek(0) q_copy = torch.load(f) self.assertEqual(q_copy, q, atol=0, rtol=0) q_copy[0].fill_(5) self.assertEqual(q_copy[0], q_copy[2], atol=0, rtol=0) self.assertEqual(q_copy[0].dtype, torch.float) self.assertEqual(q_copy[1].dtype, torch.int) self.assertEqual(q_copy[2].dtype, torch.float) self.assertTrue(isinstance(q_copy[3], torch.storage.TypedStorage)) self.assertTrue(isinstance(q_copy[3]._untyped_storage, torch.UntypedStorage)) q_copy[1].fill_(10) y.fill_(10) self.assertEqual(q_copy[3], y.storage()) def test_serialization_array_with_empty(self): x = [ torch.randn(4, 4).xpu(), torch.tensor([], dtype=torch.float, device=torch.device("xpu")), ] with tempfile.NamedTemporaryFile() as f: torch.save(x, f) f.seek(0) x_copy = torch.load(f) for original, copy in zip(x, x_copy): self.assertEqual(copy, original) self.assertIs(type(copy), type(original)) self.assertEqual(copy.get_device(), original.get_device()) instantiate_device_type_tests(TestXpu, globals(), only_for="xpu") class TestXpuAutocast(TestCase): # These operators are not implemented on XPU backend and we can NOT fall back # them to CPU. So we have to skip them at this moment. # TODO: remove these operators from skip list when they are implemented on XPU backend. skip_list = ["gru_cell"] def setUp(self): super().setUp() self.autocast_lists = AutocastTestLists(torch.device("xpu")) def tearDown(self): del self.autocast_lists super().tearDown() def _run_autocast_outofplace( self, op, args, run_as_type, out_type=None, module=torch, add_kwargs=None ): # helper to cast args def cast(val, to_type): if isinstance(val, torch.Tensor): return val.to(to_type) if val.is_floating_point() else val elif isinstance(val, collections.abc.Iterable): return type(val)(cast(v, to_type) for v in val) else: return val if add_kwargs is None: add_kwargs = {} fast_dtype = torch.bfloat16 if run_as_type == torch.bfloat16 else torch.float16 self.assertFalse(torch.is_autocast_enabled("xpu")) with torch.amp.autocast("xpu", dtype=fast_dtype): self.assertTrue(torch.is_autocast_enabled("xpu")) out_type = out_type if out_type is not None else run_as_type output = output_method = None # Try module.* variant, if requested: if module is not None and hasattr(module, op): output = getattr(module, op)(*args, **add_kwargs) if isinstance(output, torch.Tensor): self.assertTrue( out_type == output.dtype, f"autocast for torch.{op} produced {output.dtype}, should produce {out_type}", ) # Try Tensor.* variant: if hasattr(torch.Tensor, op): output_method = getattr(args[0], op)(*args[1:], **add_kwargs) if isinstance(output_method, torch.Tensor): self.assertTrue( out_type == output_method.dtype, f"autocast for torch.{op} produced {output_method.dtype}, should produce torch.{out_type}", ) self.assertTrue( (output is not None) or (output_method is not None), f"{op} not found as an attribute on either Tensor or the requested module {module}", ) # Accounts for ops that return Tensors, iterables, and other non-Tensors. # For example, lstm_cell returns a tuple and equal returns bool. def compare(first, second): if isinstance(first, torch.Tensor): return torch.equal(first, second) elif isinstance(first, collections.abc.Iterable): return all(compare(f, s) for f, s in zip(first, second)) else: return first == second # If both torch.* and Tensor.* variants were found, check outputs are identical if (output is not None) and (output_method is not None): self.assertTrue(type(output) == type(output_method)) comparison = compare(output, output_method) self.assertTrue( comparison, f"torch.{op} result did not match Tensor.{op} result" ) # Compare numerics to Python-side "autocasting" that (we expect) does the same thing # as the C++-side autocasting, and should be bitwise accurate. output_to_compare = output if output is not None else output_method with torch.amp.autocast("xpu", enabled=False): self.assertFalse(torch.is_autocast_enabled("xpu")) if module is not None and hasattr(module, op): control = getattr(module, op)( *cast(args, run_as_type), **add_kwargs ) else: control = getattr(args[0].to(run_as_type), op)( *cast(args[1:], run_as_type), **add_kwargs ) self.assertTrue(type(output_to_compare) == type(control)) comparison = compare(output_to_compare, control) self.assertTrue(comparison, f"torch.{op} result did not match control") self.assertTrue(torch.is_autocast_enabled("xpu")) self.assertFalse(torch.is_autocast_enabled("xpu")) def test_autocast_torch_fp16(self): for op_with_args in self.autocast_lists.torch_fp16: skip_test = False op, args = op_with_args[0], op_with_args[1] if op in self.skip_list: skip_test = True # skip unimplemented op if len(op_with_args) == 3: skip_test = True # skip cudnn op if not skip_test: self._run_autocast_outofplace(op, args, torch.float16) def test_autocast_torch_bf16(self): for op_with_args in self.autocast_lists.torch_fp16: skip_test = False op, args = op_with_args[0], op_with_args[1] if op in self.skip_list: skip_test = True # skip unimplemented op if len(op_with_args) == 3: skip_test = True # skip cudnn op if not skip_test: self._run_autocast_outofplace(op, args, torch.bfloat16) def test_autocast_torch_need_autocast_promote(self): for op, args in self.autocast_lists.torch_need_autocast_promote: self._run_autocast_outofplace(op, args, torch.float32) def test_autocast_torch_expect_builtin_promote(self): for op, args, out_type in self.autocast_lists.torch_expect_builtin_promote: self._run_autocast_outofplace(op, args, torch.float32, out_type=out_type) def test_xpu_autocast_dtype(self): dtype = torch.get_autocast_dtype("xpu") self.assertEqual(dtype, torch.float16) mat0_fp32 = torch.randn((10, 10), dtype=torch.float32, device="xpu") mat1_fp32 = torch.randn((10, 10), dtype=torch.float32, device="xpu") with torch.amp.autocast("xpu"): result = torch.mm(mat0_fp32, mat1_fp32) self.assertEqual(result.dtype, torch.float16) class TestXpuTrace(TestCase): def setUp(self): torch._C._activate_gpu_trace() self.mock = unittest.mock.MagicMock() def test_event_creation_callback(self): gpu_trace.register_callback_for_event_creation(self.mock) event = torch.xpu.Event() event.record() self.mock.assert_called_once_with(event._as_parameter_.value) def test_event_deletion_callback(self): gpu_trace.register_callback_for_event_deletion(self.mock) event = torch.xpu.Event() event.record() event_id = event._as_parameter_.value del event self.mock.assert_called_once_with(event_id) def test_event_record_callback(self): gpu_trace.register_callback_for_event_record(self.mock) event = torch.xpu.Event() event.record() self.mock.assert_called_once_with( event._as_parameter_.value, torch.xpu.current_stream().sycl_queue ) def test_event_wait_callback(self): gpu_trace.register_callback_for_event_wait(self.mock) event = torch.xpu.Event() event.record() event.wait() self.mock.assert_called_once_with( event._as_parameter_.value, torch.xpu.current_stream().sycl_queue ) def test_device_synchronization_callback(self): gpu_trace.register_callback_for_device_synchronization(self.mock) torch.xpu.synchronize() self.mock.assert_called() def test_stream_synchronization_callback(self): gpu_trace.register_callback_for_stream_synchronization(self.mock) stream = torch.xpu.Stream() stream.synchronize() self.mock.assert_called_once_with(stream.sycl_queue) def test_event_synchronization_callback(self): gpu_trace.register_callback_for_event_synchronization(self.mock) event = torch.xpu.Event() event.record() event.synchronize() self.mock.assert_called_once_with(event._as_parameter_.value) if __name__ == "__main__": run_tests()