// Generated from vec_mask.rs.tera template. Edit the template, not the generated file. #[cfg(not(target_arch = "spirv"))] use core::fmt; use core::ops::*; /// A 2-dimensional `bool` vector mask. #[derive(Clone, Copy, PartialEq, Eq, Hash)] #[repr(C, align(1))] pub struct BVec2 { pub x: bool, pub y: bool, } const MASK: [u32; 2] = [0, 0xff_ff_ff_ff]; impl BVec2 { /// All false. pub const FALSE: Self = Self::splat(false); /// All true. pub const TRUE: Self = Self::splat(true); /// Creates a new vector mask. #[inline(always)] #[must_use] pub const fn new(x: bool, y: bool) -> Self { Self { x, y } } /// Creates a vector with all elements set to `v`. #[inline] #[must_use] pub const fn splat(v: bool) -> Self { Self::new(v, v) } /// Returns a bitmask with the lowest 2 bits set from the elements of `self`. /// /// A true element results in a `1` bit and a false element in a `0` bit. Element `x` goes /// into the first lowest bit, element `y` into the second, etc. #[inline] #[must_use] pub fn bitmask(self) -> u32 { (self.x as u32) | (self.y as u32) << 1 } /// Returns true if any of the elements are true, false otherwise. #[inline] #[must_use] pub fn any(self) -> bool { self.x || self.y } /// Returns true if all the elements are true, false otherwise. #[inline] #[must_use] pub fn all(self) -> bool { self.x && self.y } /// Tests the value at `index`. /// /// Panics if `index` is greater than 1. #[inline] #[must_use] pub fn test(&self, index: usize) -> bool { match index { 0 => self.x, 1 => self.y, _ => panic!("index out of bounds"), } } /// Sets the element at `index`. /// /// Panics if `index` is greater than 1. #[inline] pub fn set(&mut self, index: usize, value: bool) { match index { 0 => self.x = value, 1 => self.y = value, _ => panic!("index out of bounds"), } } #[inline] #[must_use] fn into_bool_array(self) -> [bool; 2] { [self.x, self.y] } #[inline] #[must_use] fn into_u32_array(self) -> [u32; 2] { [MASK[self.x as usize], MASK[self.y as usize]] } } impl Default for BVec2 { #[inline] fn default() -> Self { Self::FALSE } } impl BitAnd for BVec2 { type Output = Self; #[inline] fn bitand(self, rhs: Self) -> Self { Self { x: self.x & rhs.x, y: self.y & rhs.y, } } } impl BitAndAssign for BVec2 { #[inline] fn bitand_assign(&mut self, rhs: Self) { *self = self.bitand(rhs); } } impl BitOr for BVec2 { type Output = Self; #[inline] fn bitor(self, rhs: Self) -> Self { Self { x: self.x | rhs.x, y: self.y | rhs.y, } } } impl BitOrAssign for BVec2 { #[inline] fn bitor_assign(&mut self, rhs: Self) { *self = self.bitor(rhs); } } impl BitXor for BVec2 { type Output = Self; #[inline] fn bitxor(self, rhs: Self) -> Self { Self { x: self.x ^ rhs.x, y: self.y ^ rhs.y, } } } impl BitXorAssign for BVec2 { #[inline] fn bitxor_assign(&mut self, rhs: Self) { *self = self.bitxor(rhs); } } impl Not for BVec2 { type Output = Self; #[inline] fn not(self) -> Self { Self { x: !self.x, y: !self.y, } } } #[cfg(not(target_arch = "spirv"))] impl fmt::Debug for BVec2 { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let arr = self.into_u32_array(); write!(f, "{}({:#x}, {:#x})", stringify!(BVec2), arr[0], arr[1]) } } #[cfg(not(target_arch = "spirv"))] impl fmt::Display for BVec2 { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let arr = self.into_bool_array(); write!(f, "[{}, {}]", arr[0], arr[1]) } } impl From for [bool; 2] { #[inline] fn from(mask: BVec2) -> Self { mask.into_bool_array() } } impl From for [u32; 2] { #[inline] fn from(mask: BVec2) -> Self { mask.into_u32_array() } }