// Generated from affine.rs.tera template. Edit the template, not the generated file. use crate::{DMat3, DMat4, DQuat, DVec3}; use core::ops::{Deref, DerefMut, Mul, MulAssign}; /// A 3D affine transform, which can represent translation, rotation, scaling and shear. #[derive(Copy, Clone)] #[repr(C)] pub struct DAffine3 { pub matrix3: DMat3, pub translation: DVec3, } impl DAffine3 { /// The degenerate zero transform. /// /// This transforms any finite vector and point to zero. /// The zero transform is non-invertible. pub const ZERO: Self = Self { matrix3: DMat3::ZERO, translation: DVec3::ZERO, }; /// The identity transform. /// /// Multiplying a vector with this returns the same vector. pub const IDENTITY: Self = Self { matrix3: DMat3::IDENTITY, translation: DVec3::ZERO, }; /// All NAN:s. pub const NAN: Self = Self { matrix3: DMat3::NAN, translation: DVec3::NAN, }; /// Creates an affine transform from three column vectors. #[inline(always)] #[must_use] pub const fn from_cols(x_axis: DVec3, y_axis: DVec3, z_axis: DVec3, w_axis: DVec3) -> Self { Self { matrix3: DMat3::from_cols(x_axis, y_axis, z_axis), translation: w_axis, } } /// Creates an affine transform from a `[f64; 12]` array stored in column major order. #[inline] #[must_use] pub fn from_cols_array(m: &[f64; 12]) -> Self { Self { matrix3: DMat3::from_cols_slice(&m[0..9]), translation: DVec3::from_slice(&m[9..12]), } } /// Creates a `[f64; 12]` array storing data in column major order. #[inline] #[must_use] pub fn to_cols_array(&self) -> [f64; 12] { let x = &self.matrix3.x_axis; let y = &self.matrix3.y_axis; let z = &self.matrix3.z_axis; let w = &self.translation; [x.x, x.y, x.z, y.x, y.y, y.z, z.x, z.y, z.z, w.x, w.y, w.z] } /// Creates an affine transform from a `[[f64; 3]; 4]` /// 3D array stored in column major order. /// If your data is in row major order you will need to `transpose` the returned /// matrix. #[inline] #[must_use] pub fn from_cols_array_2d(m: &[[f64; 3]; 4]) -> Self { Self { matrix3: DMat3::from_cols(m[0].into(), m[1].into(), m[2].into()), translation: m[3].into(), } } /// Creates a `[[f64; 3]; 4]` 3D array storing data in /// column major order. /// If you require data in row major order `transpose` the matrix first. #[inline] #[must_use] pub fn to_cols_array_2d(&self) -> [[f64; 3]; 4] { [ self.matrix3.x_axis.into(), self.matrix3.y_axis.into(), self.matrix3.z_axis.into(), self.translation.into(), ] } /// Creates an affine transform from the first 12 values in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 12 elements long. #[inline] #[must_use] pub fn from_cols_slice(slice: &[f64]) -> Self { Self { matrix3: DMat3::from_cols_slice(&slice[0..9]), translation: DVec3::from_slice(&slice[9..12]), } } /// Writes the columns of `self` to the first 12 elements in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 12 elements long. #[inline] pub fn write_cols_to_slice(self, slice: &mut [f64]) { self.matrix3.write_cols_to_slice(&mut slice[0..9]); self.translation.write_to_slice(&mut slice[9..12]); } /// Creates an affine transform that changes scale. /// Note that if any scale is zero the transform will be non-invertible. #[inline] #[must_use] pub fn from_scale(scale: DVec3) -> Self { Self { matrix3: DMat3::from_diagonal(scale), translation: DVec3::ZERO, } } /// Creates an affine transform from the given `rotation` quaternion. #[inline] #[must_use] pub fn from_quat(rotation: DQuat) -> Self { Self { matrix3: DMat3::from_quat(rotation), translation: DVec3::ZERO, } } /// Creates an affine transform containing a 3D rotation around a normalized /// rotation `axis` of `angle` (in radians). #[inline] #[must_use] pub fn from_axis_angle(axis: DVec3, angle: f64) -> Self { Self { matrix3: DMat3::from_axis_angle(axis, angle), translation: DVec3::ZERO, } } /// Creates an affine transform containing a 3D rotation around the x axis of /// `angle` (in radians). #[inline] #[must_use] pub fn from_rotation_x(angle: f64) -> Self { Self { matrix3: DMat3::from_rotation_x(angle), translation: DVec3::ZERO, } } /// Creates an affine transform containing a 3D rotation around the y axis of /// `angle` (in radians). #[inline] #[must_use] pub fn from_rotation_y(angle: f64) -> Self { Self { matrix3: DMat3::from_rotation_y(angle), translation: DVec3::ZERO, } } /// Creates an affine transform containing a 3D rotation around the z axis of /// `angle` (in radians). #[inline] #[must_use] pub fn from_rotation_z(angle: f64) -> Self { Self { matrix3: DMat3::from_rotation_z(angle), translation: DVec3::ZERO, } } /// Creates an affine transformation from the given 3D `translation`. #[inline] #[must_use] pub fn from_translation(translation: DVec3) -> Self { #[allow(clippy::useless_conversion)] Self { matrix3: DMat3::IDENTITY, translation: translation.into(), } } /// Creates an affine transform from a 3x3 matrix (expressing scale, shear and /// rotation) #[inline] #[must_use] pub fn from_mat3(mat3: DMat3) -> Self { #[allow(clippy::useless_conversion)] Self { matrix3: mat3.into(), translation: DVec3::ZERO, } } /// Creates an affine transform from a 3x3 matrix (expressing scale, shear and rotation) /// and a translation vector. /// /// Equivalent to `DAffine3::from_translation(translation) * DAffine3::from_mat3(mat3)` #[inline] #[must_use] pub fn from_mat3_translation(mat3: DMat3, translation: DVec3) -> Self { #[allow(clippy::useless_conversion)] Self { matrix3: mat3.into(), translation: translation.into(), } } /// Creates an affine transform from the given 3D `scale`, `rotation` and /// `translation`. /// /// Equivalent to `DAffine3::from_translation(translation) * /// DAffine3::from_quat(rotation) * DAffine3::from_scale(scale)` #[inline] #[must_use] pub fn from_scale_rotation_translation( scale: DVec3, rotation: DQuat, translation: DVec3, ) -> Self { let rotation = DMat3::from_quat(rotation); #[allow(clippy::useless_conversion)] Self { matrix3: DMat3::from_cols( rotation.x_axis * scale.x, rotation.y_axis * scale.y, rotation.z_axis * scale.z, ), translation: translation.into(), } } /// Creates an affine transform from the given 3D `rotation` and `translation`. /// /// Equivalent to `DAffine3::from_translation(translation) * DAffine3::from_quat(rotation)` #[inline] #[must_use] pub fn from_rotation_translation(rotation: DQuat, translation: DVec3) -> Self { #[allow(clippy::useless_conversion)] Self { matrix3: DMat3::from_quat(rotation), translation: translation.into(), } } /// The given `DMat4` must be an affine transform, /// i.e. contain no perspective transform. #[inline] #[must_use] pub fn from_mat4(m: DMat4) -> Self { Self { matrix3: DMat3::from_cols( DVec3::from_vec4(m.x_axis), DVec3::from_vec4(m.y_axis), DVec3::from_vec4(m.z_axis), ), translation: DVec3::from_vec4(m.w_axis), } } /// Extracts `scale`, `rotation` and `translation` from `self`. /// /// The transform is expected to be non-degenerate and without shearing, or the output /// will be invalid. /// /// # Panics /// /// Will panic if the determinant `self.matrix3` is zero or if the resulting scale /// vector contains any zero elements when `glam_assert` is enabled. #[inline] #[must_use] pub fn to_scale_rotation_translation(&self) -> (DVec3, DQuat, DVec3) { use crate::f64::math; let det = self.matrix3.determinant(); glam_assert!(det != 0.0); let scale = DVec3::new( self.matrix3.x_axis.length() * math::signum(det), self.matrix3.y_axis.length(), self.matrix3.z_axis.length(), ); glam_assert!(scale.cmpne(DVec3::ZERO).all()); let inv_scale = scale.recip(); #[allow(clippy::useless_conversion)] let rotation = DQuat::from_mat3(&DMat3::from_cols( (self.matrix3.x_axis * inv_scale.x).into(), (self.matrix3.y_axis * inv_scale.y).into(), (self.matrix3.z_axis * inv_scale.z).into(), )); #[allow(clippy::useless_conversion)] (scale, rotation, self.translation.into()) } /// Creates a left-handed view transform using a camera position, an up direction, and a facing /// direction. /// /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=forward`. #[inline] #[must_use] pub fn look_to_lh(eye: DVec3, dir: DVec3, up: DVec3) -> Self { Self::look_to_rh(eye, -dir, up) } /// Creates a right-handed view transform using a camera position, an up direction, and a facing /// direction. /// /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=back`. #[inline] #[must_use] pub fn look_to_rh(eye: DVec3, dir: DVec3, up: DVec3) -> Self { let f = dir.normalize(); let s = f.cross(up).normalize(); let u = s.cross(f); Self { matrix3: DMat3::from_cols( DVec3::new(s.x, u.x, -f.x), DVec3::new(s.y, u.y, -f.y), DVec3::new(s.z, u.z, -f.z), ), translation: DVec3::new(-eye.dot(s), -eye.dot(u), eye.dot(f)), } } /// Creates a left-handed view transform using a camera position, an up direction, and a focal /// point. /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=forward`. /// /// # Panics /// /// Will panic if `up` is not normalized when `glam_assert` is enabled. #[inline] #[must_use] pub fn look_at_lh(eye: DVec3, center: DVec3, up: DVec3) -> Self { glam_assert!(up.is_normalized()); Self::look_to_lh(eye, center - eye, up) } /// Creates a right-handed view transform using a camera position, an up direction, and a focal /// point. /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=back`. /// /// # Panics /// /// Will panic if `up` is not normalized when `glam_assert` is enabled. #[inline] #[must_use] pub fn look_at_rh(eye: DVec3, center: DVec3, up: DVec3) -> Self { glam_assert!(up.is_normalized()); Self::look_to_rh(eye, center - eye, up) } /// Transforms the given 3D points, applying shear, scale, rotation and translation. #[inline] pub fn transform_point3(&self, rhs: DVec3) -> DVec3 { #[allow(clippy::useless_conversion)] ((self.matrix3.x_axis * rhs.x) + (self.matrix3.y_axis * rhs.y) + (self.matrix3.z_axis * rhs.z) + self.translation) .into() } /// Transforms the given 3D vector, applying shear, scale and rotation (but NOT /// translation). /// /// To also apply translation, use [`Self::transform_point3()`] instead. #[inline] #[must_use] pub fn transform_vector3(&self, rhs: DVec3) -> DVec3 { #[allow(clippy::useless_conversion)] ((self.matrix3.x_axis * rhs.x) + (self.matrix3.y_axis * rhs.y) + (self.matrix3.z_axis * rhs.z)) .into() } /// Returns `true` if, and only if, all elements are finite. /// /// If any element is either `NaN`, positive or negative infinity, this will return /// `false`. #[inline] #[must_use] pub fn is_finite(&self) -> bool { self.matrix3.is_finite() && self.translation.is_finite() } /// Returns `true` if any elements are `NaN`. #[inline] #[must_use] pub fn is_nan(&self) -> bool { self.matrix3.is_nan() || self.translation.is_nan() } /// Returns true if the absolute difference of all elements between `self` and `rhs` /// is less than or equal to `max_abs_diff`. /// /// This can be used to compare if two 3x4 matrices contain similar elements. It works /// best when comparing with a known value. The `max_abs_diff` that should be used used /// depends on the values being compared against. /// /// For more see /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/). #[inline] #[must_use] pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f64) -> bool { self.matrix3.abs_diff_eq(rhs.matrix3, max_abs_diff) && self.translation.abs_diff_eq(rhs.translation, max_abs_diff) } /// Return the inverse of this transform. /// /// Note that if the transform is not invertible the result will be invalid. #[inline] #[must_use] pub fn inverse(&self) -> Self { let matrix3 = self.matrix3.inverse(); // transform negative translation by the matrix inverse: let translation = -(matrix3 * self.translation); Self { matrix3, translation, } } } impl Default for DAffine3 { #[inline(always)] fn default() -> Self { Self::IDENTITY } } impl Deref for DAffine3 { type Target = crate::deref::Cols4; #[inline(always)] fn deref(&self) -> &Self::Target { unsafe { &*(self as *const Self as *const Self::Target) } } } impl DerefMut for DAffine3 { #[inline(always)] fn deref_mut(&mut self) -> &mut Self::Target { unsafe { &mut *(self as *mut Self as *mut Self::Target) } } } impl PartialEq for DAffine3 { #[inline] fn eq(&self, rhs: &Self) -> bool { self.matrix3.eq(&rhs.matrix3) && self.translation.eq(&rhs.translation) } } #[cfg(not(target_arch = "spirv"))] impl core::fmt::Debug for DAffine3 { fn fmt(&self, fmt: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { fmt.debug_struct(stringify!(DAffine3)) .field("matrix3", &self.matrix3) .field("translation", &self.translation) .finish() } } #[cfg(not(target_arch = "spirv"))] impl core::fmt::Display for DAffine3 { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { write!( f, "[{}, {}, {}, {}]", self.matrix3.x_axis, self.matrix3.y_axis, self.matrix3.z_axis, self.translation ) } } impl<'a> core::iter::Product<&'a Self> for DAffine3 { fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::IDENTITY, |a, &b| a * b) } } impl Mul for DAffine3 { type Output = DAffine3; #[inline] fn mul(self, rhs: DAffine3) -> Self::Output { Self { matrix3: self.matrix3 * rhs.matrix3, translation: self.matrix3 * rhs.translation + self.translation, } } } impl MulAssign for DAffine3 { #[inline] fn mul_assign(&mut self, rhs: DAffine3) { *self = self.mul(rhs); } } impl From for DMat4 { #[inline] fn from(m: DAffine3) -> DMat4 { DMat4::from_cols( m.matrix3.x_axis.extend(0.0), m.matrix3.y_axis.extend(0.0), m.matrix3.z_axis.extend(0.0), m.translation.extend(1.0), ) } } impl Mul for DAffine3 { type Output = DMat4; #[inline] fn mul(self, rhs: DMat4) -> Self::Output { DMat4::from(self) * rhs } } impl Mul for DMat4 { type Output = DMat4; #[inline] fn mul(self, rhs: DAffine3) -> Self::Output { self * DMat4::from(rhs) } }