// Generated from quat.rs.tera template. Edit the template, not the generated file. use crate::{ euler::{EulerFromQuaternion, EulerRot, EulerToQuaternion}, f64::math, DMat3, DMat4, DVec2, DVec3, DVec4, Quat, }; #[cfg(not(target_arch = "spirv"))] use core::fmt; use core::iter::{Product, Sum}; use core::ops::{Add, Div, Mul, MulAssign, Neg, Sub}; /// Creates a quaternion from `x`, `y`, `z` and `w` values. /// /// This should generally not be called manually unless you know what you are doing. Use /// one of the other constructors instead such as `identity` or `from_axis_angle`. #[inline] #[must_use] pub const fn dquat(x: f64, y: f64, z: f64, w: f64) -> DQuat { DQuat::from_xyzw(x, y, z, w) } /// A quaternion representing an orientation. /// /// This quaternion is intended to be of unit length but may denormalize due to /// floating point "error creep" which can occur when successive quaternion /// operations are applied. #[derive(Clone, Copy)] #[cfg_attr(not(target_arch = "spirv"), repr(C))] #[cfg_attr(target_arch = "spirv", repr(simd))] pub struct DQuat { pub x: f64, pub y: f64, pub z: f64, pub w: f64, } impl DQuat { /// All zeros. const ZERO: Self = Self::from_array([0.0; 4]); /// The identity quaternion. Corresponds to no rotation. pub const IDENTITY: Self = Self::from_xyzw(0.0, 0.0, 0.0, 1.0); /// All NANs. pub const NAN: Self = Self::from_array([f64::NAN; 4]); /// Creates a new rotation quaternion. /// /// This should generally not be called manually unless you know what you are doing. /// Use one of the other constructors instead such as `identity` or `from_axis_angle`. /// /// `from_xyzw` is mostly used by unit tests and `serde` deserialization. /// /// # Preconditions /// /// This function does not check if the input is normalized, it is up to the user to /// provide normalized input or to normalized the resulting quaternion. #[inline(always)] #[must_use] pub const fn from_xyzw(x: f64, y: f64, z: f64, w: f64) -> Self { Self { x, y, z, w } } /// Creates a rotation quaternion from an array. /// /// # Preconditions /// /// This function does not check if the input is normalized, it is up to the user to /// provide normalized input or to normalized the resulting quaternion. #[inline] #[must_use] pub const fn from_array(a: [f64; 4]) -> Self { Self::from_xyzw(a[0], a[1], a[2], a[3]) } /// Creates a new rotation quaternion from a 4D vector. /// /// # Preconditions /// /// This function does not check if the input is normalized, it is up to the user to /// provide normalized input or to normalized the resulting quaternion. #[inline] #[must_use] pub const fn from_vec4(v: DVec4) -> Self { Self { x: v.x, y: v.y, z: v.z, w: v.w, } } /// Creates a rotation quaternion from a slice. /// /// # Preconditions /// /// This function does not check if the input is normalized, it is up to the user to /// provide normalized input or to normalized the resulting quaternion. /// /// # Panics /// /// Panics if `slice` length is less than 4. #[inline] #[must_use] pub fn from_slice(slice: &[f64]) -> Self { Self::from_xyzw(slice[0], slice[1], slice[2], slice[3]) } /// Writes the quaternion to an unaligned slice. /// /// # Panics /// /// Panics if `slice` length is less than 4. #[inline] pub fn write_to_slice(self, slice: &mut [f64]) { slice[0] = self.x; slice[1] = self.y; slice[2] = self.z; slice[3] = self.w; } /// Create a quaternion for a normalized rotation `axis` and `angle` (in radians). /// /// The axis must be a unit vector. /// /// # Panics /// /// Will panic if `axis` is not normalized when `glam_assert` is enabled. #[inline] #[must_use] pub fn from_axis_angle(axis: DVec3, angle: f64) -> Self { glam_assert!(axis.is_normalized()); let (s, c) = math::sin_cos(angle * 0.5); let v = axis * s; Self::from_xyzw(v.x, v.y, v.z, c) } /// Create a quaternion that rotates `v.length()` radians around `v.normalize()`. /// /// `from_scaled_axis(Vec3::ZERO)` results in the identity quaternion. #[inline] #[must_use] pub fn from_scaled_axis(v: DVec3) -> Self { let length = v.length(); if length == 0.0 { Self::IDENTITY } else { Self::from_axis_angle(v / length, length) } } /// Creates a quaternion from the `angle` (in radians) around the x axis. #[inline] #[must_use] pub fn from_rotation_x(angle: f64) -> Self { let (s, c) = math::sin_cos(angle * 0.5); Self::from_xyzw(s, 0.0, 0.0, c) } /// Creates a quaternion from the `angle` (in radians) around the y axis. #[inline] #[must_use] pub fn from_rotation_y(angle: f64) -> Self { let (s, c) = math::sin_cos(angle * 0.5); Self::from_xyzw(0.0, s, 0.0, c) } /// Creates a quaternion from the `angle` (in radians) around the z axis. #[inline] #[must_use] pub fn from_rotation_z(angle: f64) -> Self { let (s, c) = math::sin_cos(angle * 0.5); Self::from_xyzw(0.0, 0.0, s, c) } /// Creates a quaternion from the given Euler rotation sequence and the angles (in radians). #[inline] #[must_use] pub fn from_euler(euler: EulerRot, a: f64, b: f64, c: f64) -> Self { euler.new_quat(a, b, c) } /// From the columns of a 3x3 rotation matrix. #[inline] #[must_use] pub(crate) fn from_rotation_axes(x_axis: DVec3, y_axis: DVec3, z_axis: DVec3) -> Self { // Based on https://github.com/microsoft/DirectXMath `XM$quaternionRotationMatrix` let (m00, m01, m02) = x_axis.into(); let (m10, m11, m12) = y_axis.into(); let (m20, m21, m22) = z_axis.into(); if m22 <= 0.0 { // x^2 + y^2 >= z^2 + w^2 let dif10 = m11 - m00; let omm22 = 1.0 - m22; if dif10 <= 0.0 { // x^2 >= y^2 let four_xsq = omm22 - dif10; let inv4x = 0.5 / math::sqrt(four_xsq); Self::from_xyzw( four_xsq * inv4x, (m01 + m10) * inv4x, (m02 + m20) * inv4x, (m12 - m21) * inv4x, ) } else { // y^2 >= x^2 let four_ysq = omm22 + dif10; let inv4y = 0.5 / math::sqrt(four_ysq); Self::from_xyzw( (m01 + m10) * inv4y, four_ysq * inv4y, (m12 + m21) * inv4y, (m20 - m02) * inv4y, ) } } else { // z^2 + w^2 >= x^2 + y^2 let sum10 = m11 + m00; let opm22 = 1.0 + m22; if sum10 <= 0.0 { // z^2 >= w^2 let four_zsq = opm22 - sum10; let inv4z = 0.5 / math::sqrt(four_zsq); Self::from_xyzw( (m02 + m20) * inv4z, (m12 + m21) * inv4z, four_zsq * inv4z, (m01 - m10) * inv4z, ) } else { // w^2 >= z^2 let four_wsq = opm22 + sum10; let inv4w = 0.5 / math::sqrt(four_wsq); Self::from_xyzw( (m12 - m21) * inv4w, (m20 - m02) * inv4w, (m01 - m10) * inv4w, four_wsq * inv4w, ) } } } /// Creates a quaternion from a 3x3 rotation matrix. #[inline] #[must_use] pub fn from_mat3(mat: &DMat3) -> Self { Self::from_rotation_axes(mat.x_axis, mat.y_axis, mat.z_axis) } /// Creates a quaternion from a 3x3 rotation matrix inside a homogeneous 4x4 matrix. #[inline] #[must_use] pub fn from_mat4(mat: &DMat4) -> Self { Self::from_rotation_axes( mat.x_axis.truncate(), mat.y_axis.truncate(), mat.z_axis.truncate(), ) } /// Gets the minimal rotation for transforming `from` to `to`. The rotation is in the /// plane spanned by the two vectors. Will rotate at most 180 degrees. /// /// The inputs must be unit vectors. /// /// `from_rotation_arc(from, to) * from ≈ to`. /// /// For near-singular cases (from≈to and from≈-to) the current implementation /// is only accurate to about 0.001 (for `f32`). /// /// # Panics /// /// Will panic if `from` or `to` are not normalized when `glam_assert` is enabled. #[must_use] pub fn from_rotation_arc(from: DVec3, to: DVec3) -> Self { glam_assert!(from.is_normalized()); glam_assert!(to.is_normalized()); const ONE_MINUS_EPS: f64 = 1.0 - 2.0 * core::f64::EPSILON; let dot = from.dot(to); if dot > ONE_MINUS_EPS { // 0° singulary: from ≈ to Self::IDENTITY } else if dot < -ONE_MINUS_EPS { // 180° singulary: from ≈ -to use core::f64::consts::PI; // half a turn = 𝛕/2 = 180° Self::from_axis_angle(from.any_orthonormal_vector(), PI) } else { let c = from.cross(to); Self::from_xyzw(c.x, c.y, c.z, 1.0 + dot).normalize() } } /// Gets the minimal rotation for transforming `from` to either `to` or `-to`. This means /// that the resulting quaternion will rotate `from` so that it is colinear with `to`. /// /// The rotation is in the plane spanned by the two vectors. Will rotate at most 90 /// degrees. /// /// The inputs must be unit vectors. /// /// `to.dot(from_rotation_arc_colinear(from, to) * from).abs() ≈ 1`. /// /// # Panics /// /// Will panic if `from` or `to` are not normalized when `glam_assert` is enabled. #[inline] #[must_use] pub fn from_rotation_arc_colinear(from: DVec3, to: DVec3) -> Self { if from.dot(to) < 0.0 { Self::from_rotation_arc(from, -to) } else { Self::from_rotation_arc(from, to) } } /// Gets the minimal rotation for transforming `from` to `to`. The resulting rotation is /// around the z axis. Will rotate at most 180 degrees. /// /// The inputs must be unit vectors. /// /// `from_rotation_arc_2d(from, to) * from ≈ to`. /// /// For near-singular cases (from≈to and from≈-to) the current implementation /// is only accurate to about 0.001 (for `f32`). /// /// # Panics /// /// Will panic if `from` or `to` are not normalized when `glam_assert` is enabled. #[must_use] pub fn from_rotation_arc_2d(from: DVec2, to: DVec2) -> Self { glam_assert!(from.is_normalized()); glam_assert!(to.is_normalized()); const ONE_MINUS_EPSILON: f64 = 1.0 - 2.0 * core::f64::EPSILON; let dot = from.dot(to); if dot > ONE_MINUS_EPSILON { // 0° singulary: from ≈ to Self::IDENTITY } else if dot < -ONE_MINUS_EPSILON { // 180° singulary: from ≈ -to const COS_FRAC_PI_2: f64 = 0.0; const SIN_FRAC_PI_2: f64 = 1.0; // rotation around z by PI radians Self::from_xyzw(0.0, 0.0, SIN_FRAC_PI_2, COS_FRAC_PI_2) } else { // vector3 cross where z=0 let z = from.x * to.y - to.x * from.y; let w = 1.0 + dot; // calculate length with x=0 and y=0 to normalize let len_rcp = 1.0 / math::sqrt(z * z + w * w); Self::from_xyzw(0.0, 0.0, z * len_rcp, w * len_rcp) } } /// Returns the rotation axis (normalized) and angle (in radians) of `self`. #[inline] #[must_use] pub fn to_axis_angle(self) -> (DVec3, f64) { const EPSILON: f64 = 1.0e-8; let v = DVec3::new(self.x, self.y, self.z); let length = v.length(); if length >= EPSILON { let angle = 2.0 * math::atan2(length, self.w); let axis = v / length; (axis, angle) } else { (DVec3::X, 0.0) } } /// Returns the rotation axis scaled by the rotation in radians. #[inline] #[must_use] pub fn to_scaled_axis(self) -> DVec3 { let (axis, angle) = self.to_axis_angle(); axis * angle } /// Returns the rotation angles for the given euler rotation sequence. #[inline] #[must_use] pub fn to_euler(self, euler: EulerRot) -> (f64, f64, f64) { euler.convert_quat(self) } /// `[x, y, z, w]` #[inline] #[must_use] pub fn to_array(&self) -> [f64; 4] { [self.x, self.y, self.z, self.w] } /// Returns the vector part of the quaternion. #[inline] #[must_use] pub fn xyz(self) -> DVec3 { DVec3::new(self.x, self.y, self.z) } /// Returns the quaternion conjugate of `self`. For a unit quaternion the /// conjugate is also the inverse. #[inline] #[must_use] pub fn conjugate(self) -> Self { Self { x: -self.x, y: -self.y, z: -self.z, w: self.w, } } /// Returns the inverse of a normalized quaternion. /// /// Typically quaternion inverse returns the conjugate of a normalized quaternion. /// Because `self` is assumed to already be unit length this method *does not* normalize /// before returning the conjugate. /// /// # Panics /// /// Will panic if `self` is not normalized when `glam_assert` is enabled. #[inline] #[must_use] pub fn inverse(self) -> Self { glam_assert!(self.is_normalized()); self.conjugate() } /// Computes the dot product of `self` and `rhs`. The dot product is /// equal to the cosine of the angle between two quaternion rotations. #[inline] #[must_use] pub fn dot(self, rhs: Self) -> f64 { DVec4::from(self).dot(DVec4::from(rhs)) } /// Computes the length of `self`. #[doc(alias = "magnitude")] #[inline] #[must_use] pub fn length(self) -> f64 { DVec4::from(self).length() } /// Computes the squared length of `self`. /// /// This is generally faster than `length()` as it avoids a square /// root operation. #[doc(alias = "magnitude2")] #[inline] #[must_use] pub fn length_squared(self) -> f64 { DVec4::from(self).length_squared() } /// Computes `1.0 / length()`. /// /// For valid results, `self` must _not_ be of length zero. #[inline] #[must_use] pub fn length_recip(self) -> f64 { DVec4::from(self).length_recip() } /// Returns `self` normalized to length 1.0. /// /// For valid results, `self` must _not_ be of length zero. /// /// Panics /// /// Will panic if `self` is zero length when `glam_assert` is enabled. #[inline] #[must_use] pub fn normalize(self) -> Self { Self::from_vec4(DVec4::from(self).normalize()) } /// Returns `true` if, and only if, all elements are finite. /// If any element is either `NaN`, positive or negative infinity, this will return `false`. #[inline] #[must_use] pub fn is_finite(self) -> bool { DVec4::from(self).is_finite() } #[inline] #[must_use] pub fn is_nan(self) -> bool { DVec4::from(self).is_nan() } /// Returns whether `self` of length `1.0` or not. /// /// Uses a precision threshold of `1e-6`. #[inline] #[must_use] pub fn is_normalized(self) -> bool { DVec4::from(self).is_normalized() } #[inline] #[must_use] pub fn is_near_identity(self) -> bool { // Based on https://github.com/nfrechette/rtm `rtm::quat_near_identity` let threshold_angle = 0.002_847_144_6; // Because of floating point precision, we cannot represent very small rotations. // The closest f32 to 1.0 that is not 1.0 itself yields: // 0.99999994.acos() * 2.0 = 0.000690533954 rad // // An error threshold of 1.e-6 is used by default. // (1.0 - 1.e-6).acos() * 2.0 = 0.00284714461 rad // (1.0 - 1.e-7).acos() * 2.0 = 0.00097656250 rad // // We don't really care about the angle value itself, only if it's close to 0. // This will happen whenever quat.w is close to 1.0. // If the quat.w is close to -1.0, the angle will be near 2*PI which is close to // a negative 0 rotation. By forcing quat.w to be positive, we'll end up with // the shortest path. let positive_w_angle = math::acos_approx(math::abs(self.w)) * 2.0; positive_w_angle < threshold_angle } /// Returns the angle (in radians) for the minimal rotation /// for transforming this quaternion into another. /// /// Both quaternions must be normalized. /// /// # Panics /// /// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled. #[inline] #[must_use] pub fn angle_between(self, rhs: Self) -> f64 { glam_assert!(self.is_normalized() && rhs.is_normalized()); math::acos_approx(math::abs(self.dot(rhs))) * 2.0 } /// Returns true if the absolute difference of all elements between `self` and `rhs` /// is less than or equal to `max_abs_diff`. /// /// This can be used to compare if two quaternions contain similar elements. It works /// best when comparing with a known value. The `max_abs_diff` that should be used used /// depends on the values being compared against. /// /// For more see /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/). #[inline] #[must_use] pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f64) -> bool { DVec4::from(self).abs_diff_eq(DVec4::from(rhs), max_abs_diff) } /// Performs a linear interpolation between `self` and `rhs` based on /// the value `s`. /// /// When `s` is `0.0`, the result will be equal to `self`. When `s` /// is `1.0`, the result will be equal to `rhs`. /// /// # Panics /// /// Will panic if `self` or `end` are not normalized when `glam_assert` is enabled. #[doc(alias = "mix")] #[inline] #[must_use] pub fn lerp(self, end: Self, s: f64) -> Self { glam_assert!(self.is_normalized()); glam_assert!(end.is_normalized()); let start = self; let dot = start.dot(end); let bias = if dot >= 0.0 { 1.0 } else { -1.0 }; let interpolated = start.add(end.mul(bias).sub(start).mul(s)); interpolated.normalize() } /// Performs a spherical linear interpolation between `self` and `end` /// based on the value `s`. /// /// When `s` is `0.0`, the result will be equal to `self`. When `s` /// is `1.0`, the result will be equal to `end`. /// /// # Panics /// /// Will panic if `self` or `end` are not normalized when `glam_assert` is enabled. #[inline] #[must_use] pub fn slerp(self, mut end: Self, s: f64) -> Self { // http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/ glam_assert!(self.is_normalized()); glam_assert!(end.is_normalized()); const DOT_THRESHOLD: f64 = 0.9995; // Note that a rotation can be represented by two quaternions: `q` and // `-q`. The slerp path between `q` and `end` will be different from the // path between `-q` and `end`. One path will take the long way around and // one will take the short way. In order to correct for this, the `dot` // product between `self` and `end` should be positive. If the `dot` // product is negative, slerp between `self` and `-end`. let mut dot = self.dot(end); if dot < 0.0 { end = -end; dot = -dot; } if dot > DOT_THRESHOLD { // assumes lerp returns a normalized quaternion self.lerp(end, s) } else { let theta = math::acos_approx(dot); let scale1 = math::sin(theta * (1.0 - s)); let scale2 = math::sin(theta * s); let theta_sin = math::sin(theta); self.mul(scale1).add(end.mul(scale2)).mul(1.0 / theta_sin) } } /// Multiplies a quaternion and a 3D vector, returning the rotated vector. /// /// # Panics /// /// Will panic if `self` is not normalized when `glam_assert` is enabled. #[inline] #[must_use] pub fn mul_vec3(self, rhs: DVec3) -> DVec3 { glam_assert!(self.is_normalized()); let w = self.w; let b = DVec3::new(self.x, self.y, self.z); let b2 = b.dot(b); rhs.mul(w * w - b2) .add(b.mul(rhs.dot(b) * 2.0)) .add(b.cross(rhs).mul(w * 2.0)) } /// Multiplies two quaternions. If they each represent a rotation, the result will /// represent the combined rotation. /// /// Note that due to floating point rounding the result may not be perfectly normalized. /// /// # Panics /// /// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled. #[inline] #[must_use] pub fn mul_quat(self, rhs: Self) -> Self { glam_assert!(self.is_normalized()); glam_assert!(rhs.is_normalized()); let (x0, y0, z0, w0) = self.into(); let (x1, y1, z1, w1) = rhs.into(); Self::from_xyzw( w0 * x1 + x0 * w1 + y0 * z1 - z0 * y1, w0 * y1 - x0 * z1 + y0 * w1 + z0 * x1, w0 * z1 + x0 * y1 - y0 * x1 + z0 * w1, w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1, ) } /// Creates a quaternion from a 3x3 rotation matrix inside a 3D affine transform. #[inline] #[must_use] pub fn from_affine3(a: &crate::DAffine3) -> Self { #[allow(clippy::useless_conversion)] Self::from_rotation_axes( a.matrix3.x_axis.into(), a.matrix3.y_axis.into(), a.matrix3.z_axis.into(), ) } #[inline] #[must_use] pub fn as_quat(self) -> Quat { Quat::from_xyzw(self.x as f32, self.y as f32, self.z as f32, self.w as f32) } #[inline] #[must_use] #[deprecated(since = "0.24.2", note = "Use as_quat() instead")] pub fn as_f32(self) -> Quat { self.as_quat() } } #[cfg(not(target_arch = "spirv"))] impl fmt::Debug for DQuat { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt.debug_tuple(stringify!(DQuat)) .field(&self.x) .field(&self.y) .field(&self.z) .field(&self.w) .finish() } } #[cfg(not(target_arch = "spirv"))] impl fmt::Display for DQuat { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { write!(fmt, "[{}, {}, {}, {}]", self.x, self.y, self.z, self.w) } } impl Add for DQuat { type Output = Self; /// Adds two quaternions. /// /// The sum is not guaranteed to be normalized. /// /// Note that addition is not the same as combining the rotations represented by the /// two quaternions! That corresponds to multiplication. #[inline] fn add(self, rhs: Self) -> Self { Self::from_vec4(DVec4::from(self) + DVec4::from(rhs)) } } impl Sub for DQuat { type Output = Self; /// Subtracts the `rhs` quaternion from `self`. /// /// The difference is not guaranteed to be normalized. #[inline] fn sub(self, rhs: Self) -> Self { Self::from_vec4(DVec4::from(self) - DVec4::from(rhs)) } } impl Mul for DQuat { type Output = Self; /// Multiplies a quaternion by a scalar value. /// /// The product is not guaranteed to be normalized. #[inline] fn mul(self, rhs: f64) -> Self { Self::from_vec4(DVec4::from(self) * rhs) } } impl Div for DQuat { type Output = Self; /// Divides a quaternion by a scalar value. /// The quotient is not guaranteed to be normalized. #[inline] fn div(self, rhs: f64) -> Self { Self::from_vec4(DVec4::from(self) / rhs) } } impl Mul for DQuat { type Output = Self; /// Multiplies two quaternions. If they each represent a rotation, the result will /// represent the combined rotation. /// /// Note that due to floating point rounding the result may not be perfectly /// normalized. /// /// # Panics /// /// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled. #[inline] fn mul(self, rhs: Self) -> Self { self.mul_quat(rhs) } } impl MulAssign for DQuat { /// Multiplies two quaternions. If they each represent a rotation, the result will /// represent the combined rotation. /// /// Note that due to floating point rounding the result may not be perfectly /// normalized. /// /// # Panics /// /// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled. #[inline] fn mul_assign(&mut self, rhs: Self) { *self = self.mul_quat(rhs); } } impl Mul for DQuat { type Output = DVec3; /// Multiplies a quaternion and a 3D vector, returning the rotated vector. /// /// # Panics /// /// Will panic if `self` is not normalized when `glam_assert` is enabled. #[inline] fn mul(self, rhs: DVec3) -> Self::Output { self.mul_vec3(rhs) } } impl Neg for DQuat { type Output = Self; #[inline] fn neg(self) -> Self { self * -1.0 } } impl Default for DQuat { #[inline] fn default() -> Self { Self::IDENTITY } } impl PartialEq for DQuat { #[inline] fn eq(&self, rhs: &Self) -> bool { DVec4::from(*self).eq(&DVec4::from(*rhs)) } } #[cfg(not(target_arch = "spirv"))] impl AsRef<[f64; 4]> for DQuat { #[inline] fn as_ref(&self) -> &[f64; 4] { unsafe { &*(self as *const Self as *const [f64; 4]) } } } impl Sum for DQuat { fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::ZERO, Self::add) } } impl<'a> Sum<&'a Self> for DQuat { fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::ZERO, |a, &b| Self::add(a, b)) } } impl Product for DQuat { fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::IDENTITY, Self::mul) } } impl<'a> Product<&'a Self> for DQuat { fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b)) } } impl From for DVec4 { #[inline] fn from(q: DQuat) -> Self { Self::new(q.x, q.y, q.z, q.w) } } impl From for (f64, f64, f64, f64) { #[inline] fn from(q: DQuat) -> Self { (q.x, q.y, q.z, q.w) } } impl From for [f64; 4] { #[inline] fn from(q: DQuat) -> Self { [q.x, q.y, q.z, q.w] } }