// Generated from vec.rs.tera template. Edit the template, not the generated file. use crate::{f64::math, BVec2, DVec3, IVec2, UVec2, Vec2}; #[cfg(not(target_arch = "spirv"))] use core::fmt; use core::iter::{Product, Sum}; use core::{f32, ops::*}; /// Creates a 2-dimensional vector. #[inline(always)] #[must_use] pub const fn dvec2(x: f64, y: f64) -> DVec2 { DVec2::new(x, y) } /// A 2-dimensional vector. #[derive(Clone, Copy, PartialEq)] #[cfg_attr(feature = "cuda", repr(align(16)))] #[cfg_attr(not(target_arch = "spirv"), repr(C))] #[cfg_attr(target_arch = "spirv", repr(simd))] pub struct DVec2 { pub x: f64, pub y: f64, } impl DVec2 { /// All zeroes. pub const ZERO: Self = Self::splat(0.0); /// All ones. pub const ONE: Self = Self::splat(1.0); /// All negative ones. pub const NEG_ONE: Self = Self::splat(-1.0); /// All `f64::MIN`. pub const MIN: Self = Self::splat(f64::MIN); /// All `f64::MAX`. pub const MAX: Self = Self::splat(f64::MAX); /// All `f64::NAN`. pub const NAN: Self = Self::splat(f64::NAN); /// All `f64::INFINITY`. pub const INFINITY: Self = Self::splat(f64::INFINITY); /// All `f64::NEG_INFINITY`. pub const NEG_INFINITY: Self = Self::splat(f64::NEG_INFINITY); /// A unit vector pointing along the positive X axis. pub const X: Self = Self::new(1.0, 0.0); /// A unit vector pointing along the positive Y axis. pub const Y: Self = Self::new(0.0, 1.0); /// A unit vector pointing along the negative X axis. pub const NEG_X: Self = Self::new(-1.0, 0.0); /// A unit vector pointing along the negative Y axis. pub const NEG_Y: Self = Self::new(0.0, -1.0); /// The unit axes. pub const AXES: [Self; 2] = [Self::X, Self::Y]; /// Creates a new vector. #[inline(always)] #[must_use] pub const fn new(x: f64, y: f64) -> Self { Self { x, y } } /// Creates a vector with all elements set to `v`. #[inline] #[must_use] pub const fn splat(v: f64) -> Self { Self { x: v, y: v } } /// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use /// for each element of `self`. /// /// A true element in the mask uses the corresponding element from `if_true`, and false /// uses the element from `if_false`. #[inline] #[must_use] pub fn select(mask: BVec2, if_true: Self, if_false: Self) -> Self { Self { x: if mask.test(0) { if_true.x } else { if_false.x }, y: if mask.test(1) { if_true.y } else { if_false.y }, } } /// Creates a new vector from an array. #[inline] #[must_use] pub const fn from_array(a: [f64; 2]) -> Self { Self::new(a[0], a[1]) } /// `[x, y]` #[inline] #[must_use] pub const fn to_array(&self) -> [f64; 2] { [self.x, self.y] } /// Creates a vector from the first 2 values in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 2 elements long. #[inline] #[must_use] pub const fn from_slice(slice: &[f64]) -> Self { Self::new(slice[0], slice[1]) } /// Writes the elements of `self` to the first 2 elements in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 2 elements long. #[inline] pub fn write_to_slice(self, slice: &mut [f64]) { slice[0] = self.x; slice[1] = self.y; } /// Creates a 3D vector from `self` and the given `z` value. #[inline] #[must_use] pub const fn extend(self, z: f64) -> DVec3 { DVec3::new(self.x, self.y, z) } /// Computes the dot product of `self` and `rhs`. #[inline] #[must_use] pub fn dot(self, rhs: Self) -> f64 { (self.x * rhs.x) + (self.y * rhs.y) } /// Returns a vector where every component is the dot product of `self` and `rhs`. #[inline] #[must_use] pub fn dot_into_vec(self, rhs: Self) -> Self { Self::splat(self.dot(rhs)) } /// Returns a vector containing the minimum values for each element of `self` and `rhs`. /// /// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`. #[inline] #[must_use] pub fn min(self, rhs: Self) -> Self { Self { x: self.x.min(rhs.x), y: self.y.min(rhs.y), } } /// Returns a vector containing the maximum values for each element of `self` and `rhs`. /// /// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`. #[inline] #[must_use] pub fn max(self, rhs: Self) -> Self { Self { x: self.x.max(rhs.x), y: self.y.max(rhs.y), } } /// Component-wise clamping of values, similar to [`f64::clamp`]. /// /// Each element in `min` must be less-or-equal to the corresponding element in `max`. /// /// # Panics /// /// Will panic if `min` is greater than `max` when `glam_assert` is enabled. #[inline] #[must_use] pub fn clamp(self, min: Self, max: Self) -> Self { glam_assert!(min.cmple(max).all(), "clamp: expected min <= max"); self.max(min).min(max) } /// Returns the horizontal minimum of `self`. /// /// In other words this computes `min(x, y, ..)`. #[inline] #[must_use] pub fn min_element(self) -> f64 { self.x.min(self.y) } /// Returns the horizontal maximum of `self`. /// /// In other words this computes `max(x, y, ..)`. #[inline] #[must_use] pub fn max_element(self) -> f64 { self.x.max(self.y) } /// Returns a vector mask containing the result of a `==` comparison for each element of /// `self` and `rhs`. /// /// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmpeq(self, rhs: Self) -> BVec2 { BVec2::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y)) } /// Returns a vector mask containing the result of a `!=` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmpne(self, rhs: Self) -> BVec2 { BVec2::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y)) } /// Returns a vector mask containing the result of a `>=` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmpge(self, rhs: Self) -> BVec2 { BVec2::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y)) } /// Returns a vector mask containing the result of a `>` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmpgt(self, rhs: Self) -> BVec2 { BVec2::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y)) } /// Returns a vector mask containing the result of a `<=` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmple(self, rhs: Self) -> BVec2 { BVec2::new(self.x.le(&rhs.x), self.y.le(&rhs.y)) } /// Returns a vector mask containing the result of a `<` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmplt(self, rhs: Self) -> BVec2 { BVec2::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y)) } /// Returns a vector containing the absolute value of each element of `self`. #[inline] #[must_use] pub fn abs(self) -> Self { Self { x: math::abs(self.x), y: math::abs(self.y), } } /// Returns a vector with elements representing the sign of `self`. /// /// - `1.0` if the number is positive, `+0.0` or `INFINITY` /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// - `NAN` if the number is `NAN` #[inline] #[must_use] pub fn signum(self) -> Self { Self { x: math::signum(self.x), y: math::signum(self.y), } } /// Returns a vector with signs of `rhs` and the magnitudes of `self`. #[inline] #[must_use] pub fn copysign(self, rhs: Self) -> Self { Self { x: math::copysign(self.x, rhs.x), y: math::copysign(self.y, rhs.y), } } /// Returns a bitmask with the lowest 2 bits set to the sign bits from the elements of `self`. /// /// A negative element results in a `1` bit and a positive element in a `0` bit. Element `x` goes /// into the first lowest bit, element `y` into the second, etc. #[inline] #[must_use] pub fn is_negative_bitmask(self) -> u32 { (self.x.is_sign_negative() as u32) | (self.y.is_sign_negative() as u32) << 1 } /// Returns `true` if, and only if, all elements are finite. If any element is either /// `NaN`, positive or negative infinity, this will return `false`. #[inline] #[must_use] pub fn is_finite(self) -> bool { self.x.is_finite() && self.y.is_finite() } /// Returns `true` if any elements are `NaN`. #[inline] #[must_use] pub fn is_nan(self) -> bool { self.x.is_nan() || self.y.is_nan() } /// Performs `is_nan` on each element of self, returning a vector mask of the results. /// /// In other words, this computes `[x.is_nan(), y.is_nan(), z.is_nan(), w.is_nan()]`. #[inline] #[must_use] pub fn is_nan_mask(self) -> BVec2 { BVec2::new(self.x.is_nan(), self.y.is_nan()) } /// Computes the length of `self`. #[doc(alias = "magnitude")] #[inline] #[must_use] pub fn length(self) -> f64 { math::sqrt(self.dot(self)) } /// Computes the squared length of `self`. /// /// This is faster than `length()` as it avoids a square root operation. #[doc(alias = "magnitude2")] #[inline] #[must_use] pub fn length_squared(self) -> f64 { self.dot(self) } /// Computes `1.0 / length()`. /// /// For valid results, `self` must _not_ be of length zero. #[inline] #[must_use] pub fn length_recip(self) -> f64 { self.length().recip() } /// Computes the Euclidean distance between two points in space. #[inline] #[must_use] pub fn distance(self, rhs: Self) -> f64 { (self - rhs).length() } /// Compute the squared euclidean distance between two points in space. #[inline] #[must_use] pub fn distance_squared(self, rhs: Self) -> f64 { (self - rhs).length_squared() } /// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`. #[inline] #[must_use] pub fn div_euclid(self, rhs: Self) -> Self { Self::new( math::div_euclid(self.x, rhs.x), math::div_euclid(self.y, rhs.y), ) } /// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`. /// /// [Euclidean division]: f64::rem_euclid #[inline] #[must_use] pub fn rem_euclid(self, rhs: Self) -> Self { Self::new( math::rem_euclid(self.x, rhs.x), math::rem_euclid(self.y, rhs.y), ) } /// Returns `self` normalized to length 1.0. /// /// For valid results, `self` must _not_ be of length zero, nor very close to zero. /// /// See also [`Self::try_normalize()`] and [`Self::normalize_or_zero()`]. /// /// Panics /// /// Will panic if `self` is zero length when `glam_assert` is enabled. #[inline] #[must_use] pub fn normalize(self) -> Self { #[allow(clippy::let_and_return)] let normalized = self.mul(self.length_recip()); glam_assert!(normalized.is_finite()); normalized } /// Returns `self` normalized to length 1.0 if possible, else returns `None`. /// /// In particular, if the input is zero (or very close to zero), or non-finite, /// the result of this operation will be `None`. /// /// See also [`Self::normalize_or_zero()`]. #[inline] #[must_use] pub fn try_normalize(self) -> Option { let rcp = self.length_recip(); if rcp.is_finite() && rcp > 0.0 { Some(self * rcp) } else { None } } /// Returns `self` normalized to length 1.0 if possible, else returns zero. /// /// In particular, if the input is zero (or very close to zero), or non-finite, /// the result of this operation will be zero. /// /// See also [`Self::try_normalize()`]. #[inline] #[must_use] pub fn normalize_or_zero(self) -> Self { let rcp = self.length_recip(); if rcp.is_finite() && rcp > 0.0 { self * rcp } else { Self::ZERO } } /// Returns whether `self` is length `1.0` or not. /// /// Uses a precision threshold of `1e-6`. #[inline] #[must_use] pub fn is_normalized(self) -> bool { // TODO: do something with epsilon math::abs(self.length_squared() - 1.0) <= 1e-4 } /// Returns the vector projection of `self` onto `rhs`. /// /// `rhs` must be of non-zero length. /// /// # Panics /// /// Will panic if `rhs` is zero length when `glam_assert` is enabled. #[inline] #[must_use] pub fn project_onto(self, rhs: Self) -> Self { let other_len_sq_rcp = rhs.dot(rhs).recip(); glam_assert!(other_len_sq_rcp.is_finite()); rhs * self.dot(rhs) * other_len_sq_rcp } /// Returns the vector rejection of `self` from `rhs`. /// /// The vector rejection is the vector perpendicular to the projection of `self` onto /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`. /// /// `rhs` must be of non-zero length. /// /// # Panics /// /// Will panic if `rhs` has a length of zero when `glam_assert` is enabled. #[inline] #[must_use] pub fn reject_from(self, rhs: Self) -> Self { self - self.project_onto(rhs) } /// Returns the vector projection of `self` onto `rhs`. /// /// `rhs` must be normalized. /// /// # Panics /// /// Will panic if `rhs` is not normalized when `glam_assert` is enabled. #[inline] #[must_use] pub fn project_onto_normalized(self, rhs: Self) -> Self { glam_assert!(rhs.is_normalized()); rhs * self.dot(rhs) } /// Returns the vector rejection of `self` from `rhs`. /// /// The vector rejection is the vector perpendicular to the projection of `self` onto /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`. /// /// `rhs` must be normalized. /// /// # Panics /// /// Will panic if `rhs` is not normalized when `glam_assert` is enabled. #[inline] #[must_use] pub fn reject_from_normalized(self, rhs: Self) -> Self { self - self.project_onto_normalized(rhs) } /// Returns a vector containing the nearest integer to a number for each element of `self`. /// Round half-way cases away from 0.0. #[inline] #[must_use] pub fn round(self) -> Self { Self { x: math::round(self.x), y: math::round(self.y), } } /// Returns a vector containing the largest integer less than or equal to a number for each /// element of `self`. #[inline] #[must_use] pub fn floor(self) -> Self { Self { x: math::floor(self.x), y: math::floor(self.y), } } /// Returns a vector containing the smallest integer greater than or equal to a number for /// each element of `self`. #[inline] #[must_use] pub fn ceil(self) -> Self { Self { x: math::ceil(self.x), y: math::ceil(self.y), } } /// Returns a vector containing the integer part each element of `self`. This means numbers are /// always truncated towards zero. #[inline] #[must_use] pub fn trunc(self) -> Self { Self { x: math::trunc(self.x), y: math::trunc(self.y), } } /// Returns a vector containing the fractional part of the vector, e.g. `self - /// self.floor()`. /// /// Note that this is fast but not precise for large numbers. #[inline] #[must_use] pub fn fract(self) -> Self { self - self.floor() } /// Returns a vector containing `e^self` (the exponential function) for each element of /// `self`. #[inline] #[must_use] pub fn exp(self) -> Self { Self::new(math::exp(self.x), math::exp(self.y)) } /// Returns a vector containing each element of `self` raised to the power of `n`. #[inline] #[must_use] pub fn powf(self, n: f64) -> Self { Self::new(math::powf(self.x, n), math::powf(self.y, n)) } /// Returns a vector containing the reciprocal `1.0/n` of each element of `self`. #[inline] #[must_use] pub fn recip(self) -> Self { Self { x: 1.0 / self.x, y: 1.0 / self.y, } } /// Performs a linear interpolation between `self` and `rhs` based on the value `s`. /// /// When `s` is `0.0`, the result will be equal to `self`. When `s` is `1.0`, the result /// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly /// extrapolated. #[doc(alias = "mix")] #[inline] #[must_use] pub fn lerp(self, rhs: Self, s: f64) -> Self { self + ((rhs - self) * s) } /// Returns true if the absolute difference of all elements between `self` and `rhs` is /// less than or equal to `max_abs_diff`. /// /// This can be used to compare if two vectors contain similar elements. It works best when /// comparing with a known value. The `max_abs_diff` that should be used used depends on /// the values being compared against. /// /// For more see /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/). #[inline] #[must_use] pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f64) -> bool { self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all() } /// Returns a vector with a length no less than `min` and no more than `max` /// /// # Panics /// /// Will panic if `min` is greater than `max` when `glam_assert` is enabled. #[inline] #[must_use] pub fn clamp_length(self, min: f64, max: f64) -> Self { glam_assert!(min <= max); let length_sq = self.length_squared(); if length_sq < min * min { min * (self / math::sqrt(length_sq)) } else if length_sq > max * max { max * (self / math::sqrt(length_sq)) } else { self } } /// Returns a vector with a length no more than `max` #[inline] #[must_use] pub fn clamp_length_max(self, max: f64) -> Self { let length_sq = self.length_squared(); if length_sq > max * max { max * (self / math::sqrt(length_sq)) } else { self } } /// Returns a vector with a length no less than `min` #[inline] #[must_use] pub fn clamp_length_min(self, min: f64) -> Self { let length_sq = self.length_squared(); if length_sq < min * min { min * (self / math::sqrt(length_sq)) } else { self } } /// Fused multiply-add. Computes `(self * a) + b` element-wise with only one rounding /// error, yielding a more accurate result than an unfused multiply-add. /// /// Using `mul_add` *may* be more performant than an unfused multiply-add if the target /// architecture has a dedicated fma CPU instruction. However, this is not always true, /// and will be heavily dependant on designing algorithms with specific target hardware in /// mind. #[inline] #[must_use] pub fn mul_add(self, a: Self, b: Self) -> Self { Self::new( math::mul_add(self.x, a.x, b.x), math::mul_add(self.y, a.y, b.y), ) } /// Creates a 2D vector containing `[angle.cos(), angle.sin()]`. This can be used in /// conjunction with the [`rotate()`][Self::rotate()] method, e.g. /// `DVec2::from_angle(PI).rotate(DVec2::Y)` will create the vector `[-1, 0]` /// and rotate [`DVec2::Y`] around it returning `-DVec2::Y`. #[inline] #[must_use] pub fn from_angle(angle: f64) -> Self { let (sin, cos) = math::sin_cos(angle); Self { x: cos, y: sin } } /// Returns the angle (in radians) of this vector in the range `[-π, +π]`. /// /// The input does not need to be a unit vector however it must be non-zero. #[inline] #[must_use] pub fn to_angle(self) -> f64 { math::atan2(self.y, self.x) } /// Returns the angle (in radians) between `self` and `rhs` in the range `[-π, +π]`. /// /// The inputs do not need to be unit vectors however they must be non-zero. #[inline] #[must_use] pub fn angle_between(self, rhs: Self) -> f64 { let angle = math::acos_approx( self.dot(rhs) / math::sqrt(self.length_squared() * rhs.length_squared()), ); angle * math::signum(self.perp_dot(rhs)) } /// Returns a vector that is equal to `self` rotated by 90 degrees. #[inline] #[must_use] pub fn perp(self) -> Self { Self { x: -self.y, y: self.x, } } /// The perpendicular dot product of `self` and `rhs`. /// Also known as the wedge product, 2D cross product, and determinant. #[doc(alias = "wedge")] #[doc(alias = "cross")] #[doc(alias = "determinant")] #[inline] #[must_use] pub fn perp_dot(self, rhs: Self) -> f64 { (self.x * rhs.y) - (self.y * rhs.x) } /// Returns `rhs` rotated by the angle of `self`. If `self` is normalized, /// then this just rotation. This is what you usually want. Otherwise, /// it will be like a rotation with a multiplication by `self`'s length. #[inline] #[must_use] pub fn rotate(self, rhs: Self) -> Self { Self { x: self.x * rhs.x - self.y * rhs.y, y: self.y * rhs.x + self.x * rhs.y, } } /// Casts all elements of `self` to `f32`. #[inline] #[must_use] pub fn as_vec2(&self) -> crate::Vec2 { crate::Vec2::new(self.x as f32, self.y as f32) } /// Casts all elements of `self` to `i16`. #[inline] #[must_use] pub fn as_i16vec2(&self) -> crate::I16Vec2 { crate::I16Vec2::new(self.x as i16, self.y as i16) } /// Casts all elements of `self` to `u16`. #[inline] #[must_use] pub fn as_u16vec2(&self) -> crate::U16Vec2 { crate::U16Vec2::new(self.x as u16, self.y as u16) } /// Casts all elements of `self` to `i32`. #[inline] #[must_use] pub fn as_ivec2(&self) -> crate::IVec2 { crate::IVec2::new(self.x as i32, self.y as i32) } /// Casts all elements of `self` to `u32`. #[inline] #[must_use] pub fn as_uvec2(&self) -> crate::UVec2 { crate::UVec2::new(self.x as u32, self.y as u32) } /// Casts all elements of `self` to `i64`. #[inline] #[must_use] pub fn as_i64vec2(&self) -> crate::I64Vec2 { crate::I64Vec2::new(self.x as i64, self.y as i64) } /// Casts all elements of `self` to `u64`. #[inline] #[must_use] pub fn as_u64vec2(&self) -> crate::U64Vec2 { crate::U64Vec2::new(self.x as u64, self.y as u64) } } impl Default for DVec2 { #[inline(always)] fn default() -> Self { Self::ZERO } } impl Div for DVec2 { type Output = Self; #[inline] fn div(self, rhs: Self) -> Self { Self { x: self.x.div(rhs.x), y: self.y.div(rhs.y), } } } impl DivAssign for DVec2 { #[inline] fn div_assign(&mut self, rhs: Self) { self.x.div_assign(rhs.x); self.y.div_assign(rhs.y); } } impl Div for DVec2 { type Output = Self; #[inline] fn div(self, rhs: f64) -> Self { Self { x: self.x.div(rhs), y: self.y.div(rhs), } } } impl DivAssign for DVec2 { #[inline] fn div_assign(&mut self, rhs: f64) { self.x.div_assign(rhs); self.y.div_assign(rhs); } } impl Div for f64 { type Output = DVec2; #[inline] fn div(self, rhs: DVec2) -> DVec2 { DVec2 { x: self.div(rhs.x), y: self.div(rhs.y), } } } impl Mul for DVec2 { type Output = Self; #[inline] fn mul(self, rhs: Self) -> Self { Self { x: self.x.mul(rhs.x), y: self.y.mul(rhs.y), } } } impl MulAssign for DVec2 { #[inline] fn mul_assign(&mut self, rhs: Self) { self.x.mul_assign(rhs.x); self.y.mul_assign(rhs.y); } } impl Mul for DVec2 { type Output = Self; #[inline] fn mul(self, rhs: f64) -> Self { Self { x: self.x.mul(rhs), y: self.y.mul(rhs), } } } impl MulAssign for DVec2 { #[inline] fn mul_assign(&mut self, rhs: f64) { self.x.mul_assign(rhs); self.y.mul_assign(rhs); } } impl Mul for f64 { type Output = DVec2; #[inline] fn mul(self, rhs: DVec2) -> DVec2 { DVec2 { x: self.mul(rhs.x), y: self.mul(rhs.y), } } } impl Add for DVec2 { type Output = Self; #[inline] fn add(self, rhs: Self) -> Self { Self { x: self.x.add(rhs.x), y: self.y.add(rhs.y), } } } impl AddAssign for DVec2 { #[inline] fn add_assign(&mut self, rhs: Self) { self.x.add_assign(rhs.x); self.y.add_assign(rhs.y); } } impl Add for DVec2 { type Output = Self; #[inline] fn add(self, rhs: f64) -> Self { Self { x: self.x.add(rhs), y: self.y.add(rhs), } } } impl AddAssign for DVec2 { #[inline] fn add_assign(&mut self, rhs: f64) { self.x.add_assign(rhs); self.y.add_assign(rhs); } } impl Add for f64 { type Output = DVec2; #[inline] fn add(self, rhs: DVec2) -> DVec2 { DVec2 { x: self.add(rhs.x), y: self.add(rhs.y), } } } impl Sub for DVec2 { type Output = Self; #[inline] fn sub(self, rhs: Self) -> Self { Self { x: self.x.sub(rhs.x), y: self.y.sub(rhs.y), } } } impl SubAssign for DVec2 { #[inline] fn sub_assign(&mut self, rhs: DVec2) { self.x.sub_assign(rhs.x); self.y.sub_assign(rhs.y); } } impl Sub for DVec2 { type Output = Self; #[inline] fn sub(self, rhs: f64) -> Self { Self { x: self.x.sub(rhs), y: self.y.sub(rhs), } } } impl SubAssign for DVec2 { #[inline] fn sub_assign(&mut self, rhs: f64) { self.x.sub_assign(rhs); self.y.sub_assign(rhs); } } impl Sub for f64 { type Output = DVec2; #[inline] fn sub(self, rhs: DVec2) -> DVec2 { DVec2 { x: self.sub(rhs.x), y: self.sub(rhs.y), } } } impl Rem for DVec2 { type Output = Self; #[inline] fn rem(self, rhs: Self) -> Self { Self { x: self.x.rem(rhs.x), y: self.y.rem(rhs.y), } } } impl RemAssign for DVec2 { #[inline] fn rem_assign(&mut self, rhs: Self) { self.x.rem_assign(rhs.x); self.y.rem_assign(rhs.y); } } impl Rem for DVec2 { type Output = Self; #[inline] fn rem(self, rhs: f64) -> Self { Self { x: self.x.rem(rhs), y: self.y.rem(rhs), } } } impl RemAssign for DVec2 { #[inline] fn rem_assign(&mut self, rhs: f64) { self.x.rem_assign(rhs); self.y.rem_assign(rhs); } } impl Rem for f64 { type Output = DVec2; #[inline] fn rem(self, rhs: DVec2) -> DVec2 { DVec2 { x: self.rem(rhs.x), y: self.rem(rhs.y), } } } #[cfg(not(target_arch = "spirv"))] impl AsRef<[f64; 2]> for DVec2 { #[inline] fn as_ref(&self) -> &[f64; 2] { unsafe { &*(self as *const DVec2 as *const [f64; 2]) } } } #[cfg(not(target_arch = "spirv"))] impl AsMut<[f64; 2]> for DVec2 { #[inline] fn as_mut(&mut self) -> &mut [f64; 2] { unsafe { &mut *(self as *mut DVec2 as *mut [f64; 2]) } } } impl Sum for DVec2 { #[inline] fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::ZERO, Self::add) } } impl<'a> Sum<&'a Self> for DVec2 { #[inline] fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::ZERO, |a, &b| Self::add(a, b)) } } impl Product for DVec2 { #[inline] fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::ONE, Self::mul) } } impl<'a> Product<&'a Self> for DVec2 { #[inline] fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::ONE, |a, &b| Self::mul(a, b)) } } impl Neg for DVec2 { type Output = Self; #[inline] fn neg(self) -> Self { Self { x: self.x.neg(), y: self.y.neg(), } } } impl Index for DVec2 { type Output = f64; #[inline] fn index(&self, index: usize) -> &Self::Output { match index { 0 => &self.x, 1 => &self.y, _ => panic!("index out of bounds"), } } } impl IndexMut for DVec2 { #[inline] fn index_mut(&mut self, index: usize) -> &mut Self::Output { match index { 0 => &mut self.x, 1 => &mut self.y, _ => panic!("index out of bounds"), } } } #[cfg(not(target_arch = "spirv"))] impl fmt::Display for DVec2 { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "[{}, {}]", self.x, self.y) } } #[cfg(not(target_arch = "spirv"))] impl fmt::Debug for DVec2 { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt.debug_tuple(stringify!(DVec2)) .field(&self.x) .field(&self.y) .finish() } } impl From<[f64; 2]> for DVec2 { #[inline] fn from(a: [f64; 2]) -> Self { Self::new(a[0], a[1]) } } impl From for [f64; 2] { #[inline] fn from(v: DVec2) -> Self { [v.x, v.y] } } impl From<(f64, f64)> for DVec2 { #[inline] fn from(t: (f64, f64)) -> Self { Self::new(t.0, t.1) } } impl From for (f64, f64) { #[inline] fn from(v: DVec2) -> Self { (v.x, v.y) } } impl From for DVec2 { #[inline] fn from(v: Vec2) -> Self { Self::new(f64::from(v.x), f64::from(v.y)) } } impl From for DVec2 { #[inline] fn from(v: IVec2) -> Self { Self::new(f64::from(v.x), f64::from(v.y)) } } impl From for DVec2 { #[inline] fn from(v: UVec2) -> Self { Self::new(f64::from(v.x), f64::from(v.y)) } }