// Generated from vec.rs.tera template. Edit the template, not the generated file. use crate::{BVec4, I16Vec4, I64Vec4, IVec4, U16Vec2, U16Vec3, U64Vec4, UVec4}; #[cfg(not(target_arch = "spirv"))] use core::fmt; use core::iter::{Product, Sum}; use core::{f32, ops::*}; /// Creates a 4-dimensional vector. #[inline(always)] #[must_use] pub const fn u16vec4(x: u16, y: u16, z: u16, w: u16) -> U16Vec4 { U16Vec4::new(x, y, z, w) } /// A 4-dimensional vector. #[cfg_attr(not(target_arch = "spirv"), derive(Hash))] #[derive(Clone, Copy, PartialEq, Eq)] #[cfg_attr(feature = "cuda", repr(align(8)))] #[cfg_attr(not(target_arch = "spirv"), repr(C))] #[cfg_attr(target_arch = "spirv", repr(simd))] pub struct U16Vec4 { pub x: u16, pub y: u16, pub z: u16, pub w: u16, } impl U16Vec4 { /// All zeroes. pub const ZERO: Self = Self::splat(0); /// All ones. pub const ONE: Self = Self::splat(1); /// All `u16::MIN`. pub const MIN: Self = Self::splat(u16::MIN); /// All `u16::MAX`. pub const MAX: Self = Self::splat(u16::MAX); /// A unit vector pointing along the positive X axis. pub const X: Self = Self::new(1, 0, 0, 0); /// A unit vector pointing along the positive Y axis. pub const Y: Self = Self::new(0, 1, 0, 0); /// A unit vector pointing along the positive Z axis. pub const Z: Self = Self::new(0, 0, 1, 0); /// A unit vector pointing along the positive W axis. pub const W: Self = Self::new(0, 0, 0, 1); /// The unit axes. pub const AXES: [Self; 4] = [Self::X, Self::Y, Self::Z, Self::W]; /// Creates a new vector. #[inline(always)] #[must_use] pub const fn new(x: u16, y: u16, z: u16, w: u16) -> Self { Self { x, y, z, w } } /// Creates a vector with all elements set to `v`. #[inline] #[must_use] pub const fn splat(v: u16) -> Self { Self { x: v, y: v, z: v, w: v, } } /// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use /// for each element of `self`. /// /// A true element in the mask uses the corresponding element from `if_true`, and false /// uses the element from `if_false`. #[inline] #[must_use] pub fn select(mask: BVec4, if_true: Self, if_false: Self) -> Self { Self { x: if mask.test(0) { if_true.x } else { if_false.x }, y: if mask.test(1) { if_true.y } else { if_false.y }, z: if mask.test(2) { if_true.z } else { if_false.z }, w: if mask.test(3) { if_true.w } else { if_false.w }, } } /// Creates a new vector from an array. #[inline] #[must_use] pub const fn from_array(a: [u16; 4]) -> Self { Self::new(a[0], a[1], a[2], a[3]) } /// `[x, y, z, w]` #[inline] #[must_use] pub const fn to_array(&self) -> [u16; 4] { [self.x, self.y, self.z, self.w] } /// Creates a vector from the first 4 values in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 4 elements long. #[inline] #[must_use] pub const fn from_slice(slice: &[u16]) -> Self { Self::new(slice[0], slice[1], slice[2], slice[3]) } /// Writes the elements of `self` to the first 4 elements in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 4 elements long. #[inline] pub fn write_to_slice(self, slice: &mut [u16]) { slice[0] = self.x; slice[1] = self.y; slice[2] = self.z; slice[3] = self.w; } /// Creates a 3D vector from the `x`, `y` and `z` elements of `self`, discarding `w`. /// /// Truncation to [`U16Vec3`] may also be performed by using [`self.xyz()`][crate::swizzles::Vec4Swizzles::xyz()]. #[inline] #[must_use] pub fn truncate(self) -> U16Vec3 { use crate::swizzles::Vec4Swizzles; self.xyz() } /// Computes the dot product of `self` and `rhs`. #[inline] #[must_use] pub fn dot(self, rhs: Self) -> u16 { (self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z) + (self.w * rhs.w) } /// Returns a vector where every component is the dot product of `self` and `rhs`. #[inline] #[must_use] pub fn dot_into_vec(self, rhs: Self) -> Self { Self::splat(self.dot(rhs)) } /// Returns a vector containing the minimum values for each element of `self` and `rhs`. /// /// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`. #[inline] #[must_use] pub fn min(self, rhs: Self) -> Self { Self { x: self.x.min(rhs.x), y: self.y.min(rhs.y), z: self.z.min(rhs.z), w: self.w.min(rhs.w), } } /// Returns a vector containing the maximum values for each element of `self` and `rhs`. /// /// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`. #[inline] #[must_use] pub fn max(self, rhs: Self) -> Self { Self { x: self.x.max(rhs.x), y: self.y.max(rhs.y), z: self.z.max(rhs.z), w: self.w.max(rhs.w), } } /// Component-wise clamping of values, similar to [`u16::clamp`]. /// /// Each element in `min` must be less-or-equal to the corresponding element in `max`. /// /// # Panics /// /// Will panic if `min` is greater than `max` when `glam_assert` is enabled. #[inline] #[must_use] pub fn clamp(self, min: Self, max: Self) -> Self { glam_assert!(min.cmple(max).all(), "clamp: expected min <= max"); self.max(min).min(max) } /// Returns the horizontal minimum of `self`. /// /// In other words this computes `min(x, y, ..)`. #[inline] #[must_use] pub fn min_element(self) -> u16 { self.x.min(self.y.min(self.z.min(self.w))) } /// Returns the horizontal maximum of `self`. /// /// In other words this computes `max(x, y, ..)`. #[inline] #[must_use] pub fn max_element(self) -> u16 { self.x.max(self.y.max(self.z.max(self.w))) } /// Returns a vector mask containing the result of a `==` comparison for each element of /// `self` and `rhs`. /// /// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmpeq(self, rhs: Self) -> BVec4 { BVec4::new( self.x.eq(&rhs.x), self.y.eq(&rhs.y), self.z.eq(&rhs.z), self.w.eq(&rhs.w), ) } /// Returns a vector mask containing the result of a `!=` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmpne(self, rhs: Self) -> BVec4 { BVec4::new( self.x.ne(&rhs.x), self.y.ne(&rhs.y), self.z.ne(&rhs.z), self.w.ne(&rhs.w), ) } /// Returns a vector mask containing the result of a `>=` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmpge(self, rhs: Self) -> BVec4 { BVec4::new( self.x.ge(&rhs.x), self.y.ge(&rhs.y), self.z.ge(&rhs.z), self.w.ge(&rhs.w), ) } /// Returns a vector mask containing the result of a `>` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmpgt(self, rhs: Self) -> BVec4 { BVec4::new( self.x.gt(&rhs.x), self.y.gt(&rhs.y), self.z.gt(&rhs.z), self.w.gt(&rhs.w), ) } /// Returns a vector mask containing the result of a `<=` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmple(self, rhs: Self) -> BVec4 { BVec4::new( self.x.le(&rhs.x), self.y.le(&rhs.y), self.z.le(&rhs.z), self.w.le(&rhs.w), ) } /// Returns a vector mask containing the result of a `<` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmplt(self, rhs: Self) -> BVec4 { BVec4::new( self.x.lt(&rhs.x), self.y.lt(&rhs.y), self.z.lt(&rhs.z), self.w.lt(&rhs.w), ) } /// Computes the squared length of `self`. #[doc(alias = "magnitude2")] #[inline] #[must_use] pub fn length_squared(self) -> u16 { self.dot(self) } /// Casts all elements of `self` to `f32`. #[inline] #[must_use] pub fn as_vec4(&self) -> crate::Vec4 { crate::Vec4::new(self.x as f32, self.y as f32, self.z as f32, self.w as f32) } /// Casts all elements of `self` to `f64`. #[inline] #[must_use] pub fn as_dvec4(&self) -> crate::DVec4 { crate::DVec4::new(self.x as f64, self.y as f64, self.z as f64, self.w as f64) } /// Casts all elements of `self` to `i16`. #[inline] #[must_use] pub fn as_i16vec4(&self) -> crate::I16Vec4 { crate::I16Vec4::new(self.x as i16, self.y as i16, self.z as i16, self.w as i16) } /// Casts all elements of `self` to `i32`. #[inline] #[must_use] pub fn as_ivec4(&self) -> crate::IVec4 { crate::IVec4::new(self.x as i32, self.y as i32, self.z as i32, self.w as i32) } /// Casts all elements of `self` to `u32`. #[inline] #[must_use] pub fn as_uvec4(&self) -> crate::UVec4 { crate::UVec4::new(self.x as u32, self.y as u32, self.z as u32, self.w as u32) } /// Casts all elements of `self` to `i64`. #[inline] #[must_use] pub fn as_i64vec4(&self) -> crate::I64Vec4 { crate::I64Vec4::new(self.x as i64, self.y as i64, self.z as i64, self.w as i64) } /// Casts all elements of `self` to `u64`. #[inline] #[must_use] pub fn as_u64vec4(&self) -> crate::U64Vec4 { crate::U64Vec4::new(self.x as u64, self.y as u64, self.z as u64, self.w as u64) } /// Returns a vector containing the wrapping addition of `self` and `rhs`. /// /// In other words this computes `[self.x.wrapping_add(rhs.x), self.y.wrapping_add(rhs.y), ..]`. #[inline] #[must_use] pub const fn wrapping_add(self, rhs: Self) -> Self { Self { x: self.x.wrapping_add(rhs.x), y: self.y.wrapping_add(rhs.y), z: self.z.wrapping_add(rhs.z), w: self.w.wrapping_add(rhs.w), } } /// Returns a vector containing the wrapping subtraction of `self` and `rhs`. /// /// In other words this computes `[self.x.wrapping_sub(rhs.x), self.y.wrapping_sub(rhs.y), ..]`. #[inline] #[must_use] pub const fn wrapping_sub(self, rhs: Self) -> Self { Self { x: self.x.wrapping_sub(rhs.x), y: self.y.wrapping_sub(rhs.y), z: self.z.wrapping_sub(rhs.z), w: self.w.wrapping_sub(rhs.w), } } /// Returns a vector containing the wrapping multiplication of `self` and `rhs`. /// /// In other words this computes `[self.x.wrapping_mul(rhs.x), self.y.wrapping_mul(rhs.y), ..]`. #[inline] #[must_use] pub const fn wrapping_mul(self, rhs: Self) -> Self { Self { x: self.x.wrapping_mul(rhs.x), y: self.y.wrapping_mul(rhs.y), z: self.z.wrapping_mul(rhs.z), w: self.w.wrapping_mul(rhs.w), } } /// Returns a vector containing the wrapping division of `self` and `rhs`. /// /// In other words this computes `[self.x.wrapping_div(rhs.x), self.y.wrapping_div(rhs.y), ..]`. #[inline] #[must_use] pub const fn wrapping_div(self, rhs: Self) -> Self { Self { x: self.x.wrapping_div(rhs.x), y: self.y.wrapping_div(rhs.y), z: self.z.wrapping_div(rhs.z), w: self.w.wrapping_div(rhs.w), } } /// Returns a vector containing the saturating addition of `self` and `rhs`. /// /// In other words this computes `[self.x.saturating_add(rhs.x), self.y.saturating_add(rhs.y), ..]`. #[inline] #[must_use] pub const fn saturating_add(self, rhs: Self) -> Self { Self { x: self.x.saturating_add(rhs.x), y: self.y.saturating_add(rhs.y), z: self.z.saturating_add(rhs.z), w: self.w.saturating_add(rhs.w), } } /// Returns a vector containing the saturating subtraction of `self` and `rhs`. /// /// In other words this computes `[self.x.saturating_sub(rhs.x), self.y.saturating_sub(rhs.y), ..]`. #[inline] #[must_use] pub const fn saturating_sub(self, rhs: Self) -> Self { Self { x: self.x.saturating_sub(rhs.x), y: self.y.saturating_sub(rhs.y), z: self.z.saturating_sub(rhs.z), w: self.w.saturating_sub(rhs.w), } } /// Returns a vector containing the saturating multiplication of `self` and `rhs`. /// /// In other words this computes `[self.x.saturating_mul(rhs.x), self.y.saturating_mul(rhs.y), ..]`. #[inline] #[must_use] pub const fn saturating_mul(self, rhs: Self) -> Self { Self { x: self.x.saturating_mul(rhs.x), y: self.y.saturating_mul(rhs.y), z: self.z.saturating_mul(rhs.z), w: self.w.saturating_mul(rhs.w), } } /// Returns a vector containing the saturating division of `self` and `rhs`. /// /// In other words this computes `[self.x.saturating_div(rhs.x), self.y.saturating_div(rhs.y), ..]`. #[inline] #[must_use] pub const fn saturating_div(self, rhs: Self) -> Self { Self { x: self.x.saturating_div(rhs.x), y: self.y.saturating_div(rhs.y), z: self.z.saturating_div(rhs.z), w: self.w.saturating_div(rhs.w), } } } impl Default for U16Vec4 { #[inline(always)] fn default() -> Self { Self::ZERO } } impl Div for U16Vec4 { type Output = Self; #[inline] fn div(self, rhs: Self) -> Self { Self { x: self.x.div(rhs.x), y: self.y.div(rhs.y), z: self.z.div(rhs.z), w: self.w.div(rhs.w), } } } impl DivAssign for U16Vec4 { #[inline] fn div_assign(&mut self, rhs: Self) { self.x.div_assign(rhs.x); self.y.div_assign(rhs.y); self.z.div_assign(rhs.z); self.w.div_assign(rhs.w); } } impl Div for U16Vec4 { type Output = Self; #[inline] fn div(self, rhs: u16) -> Self { Self { x: self.x.div(rhs), y: self.y.div(rhs), z: self.z.div(rhs), w: self.w.div(rhs), } } } impl DivAssign for U16Vec4 { #[inline] fn div_assign(&mut self, rhs: u16) { self.x.div_assign(rhs); self.y.div_assign(rhs); self.z.div_assign(rhs); self.w.div_assign(rhs); } } impl Div for u16 { type Output = U16Vec4; #[inline] fn div(self, rhs: U16Vec4) -> U16Vec4 { U16Vec4 { x: self.div(rhs.x), y: self.div(rhs.y), z: self.div(rhs.z), w: self.div(rhs.w), } } } impl Mul for U16Vec4 { type Output = Self; #[inline] fn mul(self, rhs: Self) -> Self { Self { x: self.x.mul(rhs.x), y: self.y.mul(rhs.y), z: self.z.mul(rhs.z), w: self.w.mul(rhs.w), } } } impl MulAssign for U16Vec4 { #[inline] fn mul_assign(&mut self, rhs: Self) { self.x.mul_assign(rhs.x); self.y.mul_assign(rhs.y); self.z.mul_assign(rhs.z); self.w.mul_assign(rhs.w); } } impl Mul for U16Vec4 { type Output = Self; #[inline] fn mul(self, rhs: u16) -> Self { Self { x: self.x.mul(rhs), y: self.y.mul(rhs), z: self.z.mul(rhs), w: self.w.mul(rhs), } } } impl MulAssign for U16Vec4 { #[inline] fn mul_assign(&mut self, rhs: u16) { self.x.mul_assign(rhs); self.y.mul_assign(rhs); self.z.mul_assign(rhs); self.w.mul_assign(rhs); } } impl Mul for u16 { type Output = U16Vec4; #[inline] fn mul(self, rhs: U16Vec4) -> U16Vec4 { U16Vec4 { x: self.mul(rhs.x), y: self.mul(rhs.y), z: self.mul(rhs.z), w: self.mul(rhs.w), } } } impl Add for U16Vec4 { type Output = Self; #[inline] fn add(self, rhs: Self) -> Self { Self { x: self.x.add(rhs.x), y: self.y.add(rhs.y), z: self.z.add(rhs.z), w: self.w.add(rhs.w), } } } impl AddAssign for U16Vec4 { #[inline] fn add_assign(&mut self, rhs: Self) { self.x.add_assign(rhs.x); self.y.add_assign(rhs.y); self.z.add_assign(rhs.z); self.w.add_assign(rhs.w); } } impl Add for U16Vec4 { type Output = Self; #[inline] fn add(self, rhs: u16) -> Self { Self { x: self.x.add(rhs), y: self.y.add(rhs), z: self.z.add(rhs), w: self.w.add(rhs), } } } impl AddAssign for U16Vec4 { #[inline] fn add_assign(&mut self, rhs: u16) { self.x.add_assign(rhs); self.y.add_assign(rhs); self.z.add_assign(rhs); self.w.add_assign(rhs); } } impl Add for u16 { type Output = U16Vec4; #[inline] fn add(self, rhs: U16Vec4) -> U16Vec4 { U16Vec4 { x: self.add(rhs.x), y: self.add(rhs.y), z: self.add(rhs.z), w: self.add(rhs.w), } } } impl Sub for U16Vec4 { type Output = Self; #[inline] fn sub(self, rhs: Self) -> Self { Self { x: self.x.sub(rhs.x), y: self.y.sub(rhs.y), z: self.z.sub(rhs.z), w: self.w.sub(rhs.w), } } } impl SubAssign for U16Vec4 { #[inline] fn sub_assign(&mut self, rhs: U16Vec4) { self.x.sub_assign(rhs.x); self.y.sub_assign(rhs.y); self.z.sub_assign(rhs.z); self.w.sub_assign(rhs.w); } } impl Sub for U16Vec4 { type Output = Self; #[inline] fn sub(self, rhs: u16) -> Self { Self { x: self.x.sub(rhs), y: self.y.sub(rhs), z: self.z.sub(rhs), w: self.w.sub(rhs), } } } impl SubAssign for U16Vec4 { #[inline] fn sub_assign(&mut self, rhs: u16) { self.x.sub_assign(rhs); self.y.sub_assign(rhs); self.z.sub_assign(rhs); self.w.sub_assign(rhs); } } impl Sub for u16 { type Output = U16Vec4; #[inline] fn sub(self, rhs: U16Vec4) -> U16Vec4 { U16Vec4 { x: self.sub(rhs.x), y: self.sub(rhs.y), z: self.sub(rhs.z), w: self.sub(rhs.w), } } } impl Rem for U16Vec4 { type Output = Self; #[inline] fn rem(self, rhs: Self) -> Self { Self { x: self.x.rem(rhs.x), y: self.y.rem(rhs.y), z: self.z.rem(rhs.z), w: self.w.rem(rhs.w), } } } impl RemAssign for U16Vec4 { #[inline] fn rem_assign(&mut self, rhs: Self) { self.x.rem_assign(rhs.x); self.y.rem_assign(rhs.y); self.z.rem_assign(rhs.z); self.w.rem_assign(rhs.w); } } impl Rem for U16Vec4 { type Output = Self; #[inline] fn rem(self, rhs: u16) -> Self { Self { x: self.x.rem(rhs), y: self.y.rem(rhs), z: self.z.rem(rhs), w: self.w.rem(rhs), } } } impl RemAssign for U16Vec4 { #[inline] fn rem_assign(&mut self, rhs: u16) { self.x.rem_assign(rhs); self.y.rem_assign(rhs); self.z.rem_assign(rhs); self.w.rem_assign(rhs); } } impl Rem for u16 { type Output = U16Vec4; #[inline] fn rem(self, rhs: U16Vec4) -> U16Vec4 { U16Vec4 { x: self.rem(rhs.x), y: self.rem(rhs.y), z: self.rem(rhs.z), w: self.rem(rhs.w), } } } #[cfg(not(target_arch = "spirv"))] impl AsRef<[u16; 4]> for U16Vec4 { #[inline] fn as_ref(&self) -> &[u16; 4] { unsafe { &*(self as *const U16Vec4 as *const [u16; 4]) } } } #[cfg(not(target_arch = "spirv"))] impl AsMut<[u16; 4]> for U16Vec4 { #[inline] fn as_mut(&mut self) -> &mut [u16; 4] { unsafe { &mut *(self as *mut U16Vec4 as *mut [u16; 4]) } } } impl Sum for U16Vec4 { #[inline] fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::ZERO, Self::add) } } impl<'a> Sum<&'a Self> for U16Vec4 { #[inline] fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::ZERO, |a, &b| Self::add(a, b)) } } impl Product for U16Vec4 { #[inline] fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::ONE, Self::mul) } } impl<'a> Product<&'a Self> for U16Vec4 { #[inline] fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::ONE, |a, &b| Self::mul(a, b)) } } impl Not for U16Vec4 { type Output = Self; #[inline] fn not(self) -> Self::Output { Self { x: self.x.not(), y: self.y.not(), z: self.z.not(), w: self.w.not(), } } } impl BitAnd for U16Vec4 { type Output = Self; #[inline] fn bitand(self, rhs: Self) -> Self::Output { Self { x: self.x.bitand(rhs.x), y: self.y.bitand(rhs.y), z: self.z.bitand(rhs.z), w: self.w.bitand(rhs.w), } } } impl BitOr for U16Vec4 { type Output = Self; #[inline] fn bitor(self, rhs: Self) -> Self::Output { Self { x: self.x.bitor(rhs.x), y: self.y.bitor(rhs.y), z: self.z.bitor(rhs.z), w: self.w.bitor(rhs.w), } } } impl BitXor for U16Vec4 { type Output = Self; #[inline] fn bitxor(self, rhs: Self) -> Self::Output { Self { x: self.x.bitxor(rhs.x), y: self.y.bitxor(rhs.y), z: self.z.bitxor(rhs.z), w: self.w.bitxor(rhs.w), } } } impl BitAnd for U16Vec4 { type Output = Self; #[inline] fn bitand(self, rhs: u16) -> Self::Output { Self { x: self.x.bitand(rhs), y: self.y.bitand(rhs), z: self.z.bitand(rhs), w: self.w.bitand(rhs), } } } impl BitOr for U16Vec4 { type Output = Self; #[inline] fn bitor(self, rhs: u16) -> Self::Output { Self { x: self.x.bitor(rhs), y: self.y.bitor(rhs), z: self.z.bitor(rhs), w: self.w.bitor(rhs), } } } impl BitXor for U16Vec4 { type Output = Self; #[inline] fn bitxor(self, rhs: u16) -> Self::Output { Self { x: self.x.bitxor(rhs), y: self.y.bitxor(rhs), z: self.z.bitxor(rhs), w: self.w.bitxor(rhs), } } } impl Shl for U16Vec4 { type Output = Self; #[inline] fn shl(self, rhs: i8) -> Self::Output { Self { x: self.x.shl(rhs), y: self.y.shl(rhs), z: self.z.shl(rhs), w: self.w.shl(rhs), } } } impl Shr for U16Vec4 { type Output = Self; #[inline] fn shr(self, rhs: i8) -> Self::Output { Self { x: self.x.shr(rhs), y: self.y.shr(rhs), z: self.z.shr(rhs), w: self.w.shr(rhs), } } } impl Shl for U16Vec4 { type Output = Self; #[inline] fn shl(self, rhs: i16) -> Self::Output { Self { x: self.x.shl(rhs), y: self.y.shl(rhs), z: self.z.shl(rhs), w: self.w.shl(rhs), } } } impl Shr for U16Vec4 { type Output = Self; #[inline] fn shr(self, rhs: i16) -> Self::Output { Self { x: self.x.shr(rhs), y: self.y.shr(rhs), z: self.z.shr(rhs), w: self.w.shr(rhs), } } } impl Shl for U16Vec4 { type Output = Self; #[inline] fn shl(self, rhs: i32) -> Self::Output { Self { x: self.x.shl(rhs), y: self.y.shl(rhs), z: self.z.shl(rhs), w: self.w.shl(rhs), } } } impl Shr for U16Vec4 { type Output = Self; #[inline] fn shr(self, rhs: i32) -> Self::Output { Self { x: self.x.shr(rhs), y: self.y.shr(rhs), z: self.z.shr(rhs), w: self.w.shr(rhs), } } } impl Shl for U16Vec4 { type Output = Self; #[inline] fn shl(self, rhs: i64) -> Self::Output { Self { x: self.x.shl(rhs), y: self.y.shl(rhs), z: self.z.shl(rhs), w: self.w.shl(rhs), } } } impl Shr for U16Vec4 { type Output = Self; #[inline] fn shr(self, rhs: i64) -> Self::Output { Self { x: self.x.shr(rhs), y: self.y.shr(rhs), z: self.z.shr(rhs), w: self.w.shr(rhs), } } } impl Shl for U16Vec4 { type Output = Self; #[inline] fn shl(self, rhs: u8) -> Self::Output { Self { x: self.x.shl(rhs), y: self.y.shl(rhs), z: self.z.shl(rhs), w: self.w.shl(rhs), } } } impl Shr for U16Vec4 { type Output = Self; #[inline] fn shr(self, rhs: u8) -> Self::Output { Self { x: self.x.shr(rhs), y: self.y.shr(rhs), z: self.z.shr(rhs), w: self.w.shr(rhs), } } } impl Shl for U16Vec4 { type Output = Self; #[inline] fn shl(self, rhs: u16) -> Self::Output { Self { x: self.x.shl(rhs), y: self.y.shl(rhs), z: self.z.shl(rhs), w: self.w.shl(rhs), } } } impl Shr for U16Vec4 { type Output = Self; #[inline] fn shr(self, rhs: u16) -> Self::Output { Self { x: self.x.shr(rhs), y: self.y.shr(rhs), z: self.z.shr(rhs), w: self.w.shr(rhs), } } } impl Shl for U16Vec4 { type Output = Self; #[inline] fn shl(self, rhs: u32) -> Self::Output { Self { x: self.x.shl(rhs), y: self.y.shl(rhs), z: self.z.shl(rhs), w: self.w.shl(rhs), } } } impl Shr for U16Vec4 { type Output = Self; #[inline] fn shr(self, rhs: u32) -> Self::Output { Self { x: self.x.shr(rhs), y: self.y.shr(rhs), z: self.z.shr(rhs), w: self.w.shr(rhs), } } } impl Shl for U16Vec4 { type Output = Self; #[inline] fn shl(self, rhs: u64) -> Self::Output { Self { x: self.x.shl(rhs), y: self.y.shl(rhs), z: self.z.shl(rhs), w: self.w.shl(rhs), } } } impl Shr for U16Vec4 { type Output = Self; #[inline] fn shr(self, rhs: u64) -> Self::Output { Self { x: self.x.shr(rhs), y: self.y.shr(rhs), z: self.z.shr(rhs), w: self.w.shr(rhs), } } } impl Shl for U16Vec4 { type Output = Self; #[inline] fn shl(self, rhs: crate::IVec4) -> Self::Output { Self { x: self.x.shl(rhs.x), y: self.y.shl(rhs.y), z: self.z.shl(rhs.z), w: self.w.shl(rhs.w), } } } impl Shr for U16Vec4 { type Output = Self; #[inline] fn shr(self, rhs: crate::IVec4) -> Self::Output { Self { x: self.x.shr(rhs.x), y: self.y.shr(rhs.y), z: self.z.shr(rhs.z), w: self.w.shr(rhs.w), } } } impl Shl for U16Vec4 { type Output = Self; #[inline] fn shl(self, rhs: crate::UVec4) -> Self::Output { Self { x: self.x.shl(rhs.x), y: self.y.shl(rhs.y), z: self.z.shl(rhs.z), w: self.w.shl(rhs.w), } } } impl Shr for U16Vec4 { type Output = Self; #[inline] fn shr(self, rhs: crate::UVec4) -> Self::Output { Self { x: self.x.shr(rhs.x), y: self.y.shr(rhs.y), z: self.z.shr(rhs.z), w: self.w.shr(rhs.w), } } } impl Index for U16Vec4 { type Output = u16; #[inline] fn index(&self, index: usize) -> &Self::Output { match index { 0 => &self.x, 1 => &self.y, 2 => &self.z, 3 => &self.w, _ => panic!("index out of bounds"), } } } impl IndexMut for U16Vec4 { #[inline] fn index_mut(&mut self, index: usize) -> &mut Self::Output { match index { 0 => &mut self.x, 1 => &mut self.y, 2 => &mut self.z, 3 => &mut self.w, _ => panic!("index out of bounds"), } } } #[cfg(not(target_arch = "spirv"))] impl fmt::Display for U16Vec4 { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "[{}, {}, {}, {}]", self.x, self.y, self.z, self.w) } } #[cfg(not(target_arch = "spirv"))] impl fmt::Debug for U16Vec4 { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt.debug_tuple(stringify!(U16Vec4)) .field(&self.x) .field(&self.y) .field(&self.z) .field(&self.w) .finish() } } impl From<[u16; 4]> for U16Vec4 { #[inline] fn from(a: [u16; 4]) -> Self { Self::new(a[0], a[1], a[2], a[3]) } } impl From for [u16; 4] { #[inline] fn from(v: U16Vec4) -> Self { [v.x, v.y, v.z, v.w] } } impl From<(u16, u16, u16, u16)> for U16Vec4 { #[inline] fn from(t: (u16, u16, u16, u16)) -> Self { Self::new(t.0, t.1, t.2, t.3) } } impl From for (u16, u16, u16, u16) { #[inline] fn from(v: U16Vec4) -> Self { (v.x, v.y, v.z, v.w) } } impl From<(U16Vec3, u16)> for U16Vec4 { #[inline] fn from((v, w): (U16Vec3, u16)) -> Self { Self::new(v.x, v.y, v.z, w) } } impl From<(u16, U16Vec3)> for U16Vec4 { #[inline] fn from((x, v): (u16, U16Vec3)) -> Self { Self::new(x, v.x, v.y, v.z) } } impl From<(U16Vec2, u16, u16)> for U16Vec4 { #[inline] fn from((v, z, w): (U16Vec2, u16, u16)) -> Self { Self::new(v.x, v.y, z, w) } } impl From<(U16Vec2, U16Vec2)> for U16Vec4 { #[inline] fn from((v, u): (U16Vec2, U16Vec2)) -> Self { Self::new(v.x, v.y, u.x, u.y) } } impl TryFrom for U16Vec4 { type Error = core::num::TryFromIntError; #[inline] fn try_from(v: I16Vec4) -> Result { Ok(Self::new( u16::try_from(v.x)?, u16::try_from(v.y)?, u16::try_from(v.z)?, u16::try_from(v.w)?, )) } } impl TryFrom for U16Vec4 { type Error = core::num::TryFromIntError; #[inline] fn try_from(v: IVec4) -> Result { Ok(Self::new( u16::try_from(v.x)?, u16::try_from(v.y)?, u16::try_from(v.z)?, u16::try_from(v.w)?, )) } } impl TryFrom for U16Vec4 { type Error = core::num::TryFromIntError; #[inline] fn try_from(v: UVec4) -> Result { Ok(Self::new( u16::try_from(v.x)?, u16::try_from(v.y)?, u16::try_from(v.z)?, u16::try_from(v.w)?, )) } } impl TryFrom for U16Vec4 { type Error = core::num::TryFromIntError; #[inline] fn try_from(v: I64Vec4) -> Result { Ok(Self::new( u16::try_from(v.x)?, u16::try_from(v.y)?, u16::try_from(v.z)?, u16::try_from(v.w)?, )) } } impl TryFrom for U16Vec4 { type Error = core::num::TryFromIntError; #[inline] fn try_from(v: U64Vec4) -> Result { Ok(Self::new( u16::try_from(v.x)?, u16::try_from(v.y)?, u16::try_from(v.z)?, u16::try_from(v.w)?, )) } }