// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Complex numbers. //! //! ## Compatibility //! //! The `num-complex` crate is tested for rustc 1.60 and greater. #![doc(html_root_url = "https://docs.rs/num-complex/0.4")] #![no_std] #[cfg(any(test, feature = "std"))] #[cfg_attr(test, macro_use)] extern crate std; use core::fmt; #[cfg(test)] use core::hash; use core::iter::{Product, Sum}; use core::ops::{Add, Div, Mul, Neg, Rem, Sub}; use core::str::FromStr; #[cfg(feature = "std")] use std::error::Error; use num_traits::{ConstOne, ConstZero, Inv, MulAdd, Num, One, Pow, Signed, Zero}; use num_traits::float::FloatCore; #[cfg(any(feature = "std", feature = "libm"))] use num_traits::float::{Float, FloatConst}; mod cast; mod pow; #[cfg(any(feature = "std", feature = "libm"))] mod complex_float; #[cfg(any(feature = "std", feature = "libm"))] pub use crate::complex_float::ComplexFloat; #[cfg(feature = "rand")] mod crand; #[cfg(feature = "rand")] pub use crate::crand::ComplexDistribution; // FIXME #1284: handle complex NaN & infinity etc. This // probably doesn't map to C's _Complex correctly. /// A complex number in Cartesian form. /// /// ## Representation and Foreign Function Interface Compatibility /// /// `Complex` is memory layout compatible with an array `[T; 2]`. /// /// Note that `Complex` where F is a floating point type is **only** memory /// layout compatible with C's complex types, **not** necessarily calling /// convention compatible. This means that for FFI you can only pass /// `Complex` behind a pointer, not as a value. /// /// ## Examples /// /// Example of extern function declaration. /// /// ``` /// use num_complex::Complex; /// use std::os::raw::c_int; /// /// extern "C" { /// fn zaxpy_(n: *const c_int, alpha: *const Complex, /// x: *const Complex, incx: *const c_int, /// y: *mut Complex, incy: *const c_int); /// } /// ``` #[derive(PartialEq, Eq, Copy, Clone, Hash, Debug, Default)] #[repr(C)] #[cfg_attr( feature = "rkyv", derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize) )] #[cfg_attr(feature = "rkyv", archive(as = "Complex"))] #[cfg_attr(feature = "bytecheck", derive(bytecheck::CheckBytes))] pub struct Complex { /// Real portion of the complex number pub re: T, /// Imaginary portion of the complex number pub im: T, } /// Alias for a [`Complex`] pub type Complex32 = Complex; /// Create a new [`Complex`] with arguments that can convert [`Into`]. /// /// ``` /// use num_complex::{c32, Complex32}; /// assert_eq!(c32(1u8, 2), Complex32::new(1.0, 2.0)); /// ``` /// /// Note: ambiguous integer literals in Rust will [default] to `i32`, which does **not** implement /// `Into`, so a call like `c32(1, 2)` will result in a type error. The example above uses a /// suffixed `1u8` to set its type, and then the `2` can be inferred as the same type. /// /// [default]: https://doc.rust-lang.org/reference/expressions/literal-expr.html#integer-literal-expressions #[inline] pub fn c32>(re: T, im: T) -> Complex32 { Complex::new(re.into(), im.into()) } /// Alias for a [`Complex`] pub type Complex64 = Complex; /// Create a new [`Complex`] with arguments that can convert [`Into`]. /// /// ``` /// use num_complex::{c64, Complex64}; /// assert_eq!(c64(1, 2), Complex64::new(1.0, 2.0)); /// ``` #[inline] pub fn c64>(re: T, im: T) -> Complex64 { Complex::new(re.into(), im.into()) } impl Complex { /// Create a new `Complex` #[inline] pub const fn new(re: T, im: T) -> Self { Complex { re, im } } } impl Complex { /// Returns the imaginary unit. /// /// See also [`Complex::I`]. #[inline] pub fn i() -> Self { Self::new(T::zero(), T::one()) } /// Returns the square of the norm (since `T` doesn't necessarily /// have a sqrt function), i.e. `re^2 + im^2`. #[inline] pub fn norm_sqr(&self) -> T { self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone() } /// Multiplies `self` by the scalar `t`. #[inline] pub fn scale(&self, t: T) -> Self { Self::new(self.re.clone() * t.clone(), self.im.clone() * t) } /// Divides `self` by the scalar `t`. #[inline] pub fn unscale(&self, t: T) -> Self { Self::new(self.re.clone() / t.clone(), self.im.clone() / t) } /// Raises `self` to an unsigned integer power. #[inline] pub fn powu(&self, exp: u32) -> Self { Pow::pow(self, exp) } } impl> Complex { /// Returns the complex conjugate. i.e. `re - i im` #[inline] pub fn conj(&self) -> Self { Self::new(self.re.clone(), -self.im.clone()) } /// Returns `1/self` #[inline] pub fn inv(&self) -> Self { let norm_sqr = self.norm_sqr(); Self::new( self.re.clone() / norm_sqr.clone(), -self.im.clone() / norm_sqr, ) } /// Raises `self` to a signed integer power. #[inline] pub fn powi(&self, exp: i32) -> Self { Pow::pow(self, exp) } } impl Complex { /// Returns the L1 norm `|re| + |im|` -- the [Manhattan distance] from the origin. /// /// [Manhattan distance]: https://en.wikipedia.org/wiki/Taxicab_geometry #[inline] pub fn l1_norm(&self) -> T { self.re.abs() + self.im.abs() } } #[cfg(any(feature = "std", feature = "libm"))] impl Complex { /// Create a new Complex with a given phase: `exp(i * phase)`. /// See [cis (mathematics)](https://en.wikipedia.org/wiki/Cis_(mathematics)). #[inline] pub fn cis(phase: T) -> Self { Self::new(phase.cos(), phase.sin()) } /// Calculate |self| #[inline] pub fn norm(self) -> T { self.re.hypot(self.im) } /// Calculate the principal Arg of self. #[inline] pub fn arg(self) -> T { self.im.atan2(self.re) } /// Convert to polar form (r, theta), such that /// `self = r * exp(i * theta)` #[inline] pub fn to_polar(self) -> (T, T) { (self.norm(), self.arg()) } /// Convert a polar representation into a complex number. #[inline] pub fn from_polar(r: T, theta: T) -> Self { Self::new(r * theta.cos(), r * theta.sin()) } /// Computes `e^(self)`, where `e` is the base of the natural logarithm. #[inline] pub fn exp(self) -> Self { // formula: e^(a + bi) = e^a (cos(b) + i*sin(b)) = from_polar(e^a, b) let Complex { re, mut im } = self; // Treat the corner cases +∞, -∞, and NaN if re.is_infinite() { if re < T::zero() { if !im.is_finite() { return Self::new(T::zero(), T::zero()); } } else if im == T::zero() || !im.is_finite() { if im.is_infinite() { im = T::nan(); } return Self::new(re, im); } } else if re.is_nan() && im == T::zero() { return self; } Self::from_polar(re.exp(), im) } /// Computes the principal value of natural logarithm of `self`. /// /// This function has one branch cut: /// /// * `(-∞, 0]`, continuous from above. /// /// The branch satisfies `-π ≤ arg(ln(z)) ≤ π`. #[inline] pub fn ln(self) -> Self { // formula: ln(z) = ln|z| + i*arg(z) let (r, theta) = self.to_polar(); Self::new(r.ln(), theta) } /// Computes the principal value of the square root of `self`. /// /// This function has one branch cut: /// /// * `(-∞, 0)`, continuous from above. /// /// The branch satisfies `-π/2 ≤ arg(sqrt(z)) ≤ π/2`. #[inline] pub fn sqrt(self) -> Self { if self.im.is_zero() { if self.re.is_sign_positive() { // simple positive real √r, and copy `im` for its sign Self::new(self.re.sqrt(), self.im) } else { // √(r e^(iπ)) = √r e^(iπ/2) = i√r // √(r e^(-iπ)) = √r e^(-iπ/2) = -i√r let re = T::zero(); let im = (-self.re).sqrt(); if self.im.is_sign_positive() { Self::new(re, im) } else { Self::new(re, -im) } } } else if self.re.is_zero() { // √(r e^(iπ/2)) = √r e^(iπ/4) = √(r/2) + i√(r/2) // √(r e^(-iπ/2)) = √r e^(-iπ/4) = √(r/2) - i√(r/2) let one = T::one(); let two = one + one; let x = (self.im.abs() / two).sqrt(); if self.im.is_sign_positive() { Self::new(x, x) } else { Self::new(x, -x) } } else { // formula: sqrt(r e^(it)) = sqrt(r) e^(it/2) let one = T::one(); let two = one + one; let (r, theta) = self.to_polar(); Self::from_polar(r.sqrt(), theta / two) } } /// Computes the principal value of the cube root of `self`. /// /// This function has one branch cut: /// /// * `(-∞, 0)`, continuous from above. /// /// The branch satisfies `-π/3 ≤ arg(cbrt(z)) ≤ π/3`. /// /// Note that this does not match the usual result for the cube root of /// negative real numbers. For example, the real cube root of `-8` is `-2`, /// but the principal complex cube root of `-8` is `1 + i√3`. #[inline] pub fn cbrt(self) -> Self { if self.im.is_zero() { if self.re.is_sign_positive() { // simple positive real ∛r, and copy `im` for its sign Self::new(self.re.cbrt(), self.im) } else { // ∛(r e^(iπ)) = ∛r e^(iπ/3) = ∛r/2 + i∛r√3/2 // ∛(r e^(-iπ)) = ∛r e^(-iπ/3) = ∛r/2 - i∛r√3/2 let one = T::one(); let two = one + one; let three = two + one; let re = (-self.re).cbrt() / two; let im = three.sqrt() * re; if self.im.is_sign_positive() { Self::new(re, im) } else { Self::new(re, -im) } } } else if self.re.is_zero() { // ∛(r e^(iπ/2)) = ∛r e^(iπ/6) = ∛r√3/2 + i∛r/2 // ∛(r e^(-iπ/2)) = ∛r e^(-iπ/6) = ∛r√3/2 - i∛r/2 let one = T::one(); let two = one + one; let three = two + one; let im = self.im.abs().cbrt() / two; let re = three.sqrt() * im; if self.im.is_sign_positive() { Self::new(re, im) } else { Self::new(re, -im) } } else { // formula: cbrt(r e^(it)) = cbrt(r) e^(it/3) let one = T::one(); let three = one + one + one; let (r, theta) = self.to_polar(); Self::from_polar(r.cbrt(), theta / three) } } /// Raises `self` to a floating point power. #[inline] pub fn powf(self, exp: T) -> Self { if exp.is_zero() { return Self::one(); } // formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y) // = from_polar(ρ^y, θ y) let (r, theta) = self.to_polar(); Self::from_polar(r.powf(exp), theta * exp) } /// Returns the logarithm of `self` with respect to an arbitrary base. #[inline] pub fn log(self, base: T) -> Self { // formula: log_y(x) = log_y(ρ e^(i θ)) // = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y) // = log_y(ρ) + i θ / ln(y) let (r, theta) = self.to_polar(); Self::new(r.log(base), theta / base.ln()) } /// Raises `self` to a complex power. #[inline] pub fn powc(self, exp: Self) -> Self { if exp.is_zero() { return Self::one(); } // formula: x^y = exp(y * ln(x)) (exp * self.ln()).exp() } /// Raises a floating point number to the complex power `self`. #[inline] pub fn expf(self, base: T) -> Self { // formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i) // = from_polar(x^a, b ln(x)) Self::from_polar(base.powf(self.re), self.im * base.ln()) } /// Computes the sine of `self`. #[inline] pub fn sin(self) -> Self { // formula: sin(a + bi) = sin(a)cosh(b) + i*cos(a)sinh(b) Self::new( self.re.sin() * self.im.cosh(), self.re.cos() * self.im.sinh(), ) } /// Computes the cosine of `self`. #[inline] pub fn cos(self) -> Self { // formula: cos(a + bi) = cos(a)cosh(b) - i*sin(a)sinh(b) Self::new( self.re.cos() * self.im.cosh(), -self.re.sin() * self.im.sinh(), ) } /// Computes the tangent of `self`. #[inline] pub fn tan(self) -> Self { // formula: tan(a + bi) = (sin(2a) + i*sinh(2b))/(cos(2a) + cosh(2b)) let (two_re, two_im) = (self.re + self.re, self.im + self.im); Self::new(two_re.sin(), two_im.sinh()).unscale(two_re.cos() + two_im.cosh()) } /// Computes the principal value of the inverse sine of `self`. /// /// This function has two branch cuts: /// /// * `(-∞, -1)`, continuous from above. /// * `(1, ∞)`, continuous from below. /// /// The branch satisfies `-π/2 ≤ Re(asin(z)) ≤ π/2`. #[inline] pub fn asin(self) -> Self { // formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz) let i = Self::i(); -i * ((Self::one() - self * self).sqrt() + i * self).ln() } /// Computes the principal value of the inverse cosine of `self`. /// /// This function has two branch cuts: /// /// * `(-∞, -1)`, continuous from above. /// * `(1, ∞)`, continuous from below. /// /// The branch satisfies `0 ≤ Re(acos(z)) ≤ π`. #[inline] pub fn acos(self) -> Self { // formula: arccos(z) = -i ln(i sqrt(1-z^2) + z) let i = Self::i(); -i * (i * (Self::one() - self * self).sqrt() + self).ln() } /// Computes the principal value of the inverse tangent of `self`. /// /// This function has two branch cuts: /// /// * `(-∞i, -i]`, continuous from the left. /// * `[i, ∞i)`, continuous from the right. /// /// The branch satisfies `-π/2 ≤ Re(atan(z)) ≤ π/2`. #[inline] pub fn atan(self) -> Self { // formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i) let i = Self::i(); let one = Self::one(); let two = one + one; if self == i { return Self::new(T::zero(), T::infinity()); } else if self == -i { return Self::new(T::zero(), -T::infinity()); } ((one + i * self).ln() - (one - i * self).ln()) / (two * i) } /// Computes the hyperbolic sine of `self`. #[inline] pub fn sinh(self) -> Self { // formula: sinh(a + bi) = sinh(a)cos(b) + i*cosh(a)sin(b) Self::new( self.re.sinh() * self.im.cos(), self.re.cosh() * self.im.sin(), ) } /// Computes the hyperbolic cosine of `self`. #[inline] pub fn cosh(self) -> Self { // formula: cosh(a + bi) = cosh(a)cos(b) + i*sinh(a)sin(b) Self::new( self.re.cosh() * self.im.cos(), self.re.sinh() * self.im.sin(), ) } /// Computes the hyperbolic tangent of `self`. #[inline] pub fn tanh(self) -> Self { // formula: tanh(a + bi) = (sinh(2a) + i*sin(2b))/(cosh(2a) + cos(2b)) let (two_re, two_im) = (self.re + self.re, self.im + self.im); Self::new(two_re.sinh(), two_im.sin()).unscale(two_re.cosh() + two_im.cos()) } /// Computes the principal value of inverse hyperbolic sine of `self`. /// /// This function has two branch cuts: /// /// * `(-∞i, -i)`, continuous from the left. /// * `(i, ∞i)`, continuous from the right. /// /// The branch satisfies `-π/2 ≤ Im(asinh(z)) ≤ π/2`. #[inline] pub fn asinh(self) -> Self { // formula: arcsinh(z) = ln(z + sqrt(1+z^2)) let one = Self::one(); (self + (one + self * self).sqrt()).ln() } /// Computes the principal value of inverse hyperbolic cosine of `self`. /// /// This function has one branch cut: /// /// * `(-∞, 1)`, continuous from above. /// /// The branch satisfies `-π ≤ Im(acosh(z)) ≤ π` and `0 ≤ Re(acosh(z)) < ∞`. #[inline] pub fn acosh(self) -> Self { // formula: arccosh(z) = 2 ln(sqrt((z+1)/2) + sqrt((z-1)/2)) let one = Self::one(); let two = one + one; two * (((self + one) / two).sqrt() + ((self - one) / two).sqrt()).ln() } /// Computes the principal value of inverse hyperbolic tangent of `self`. /// /// This function has two branch cuts: /// /// * `(-∞, -1]`, continuous from above. /// * `[1, ∞)`, continuous from below. /// /// The branch satisfies `-π/2 ≤ Im(atanh(z)) ≤ π/2`. #[inline] pub fn atanh(self) -> Self { // formula: arctanh(z) = (ln(1+z) - ln(1-z))/2 let one = Self::one(); let two = one + one; if self == one { return Self::new(T::infinity(), T::zero()); } else if self == -one { return Self::new(-T::infinity(), T::zero()); } ((one + self).ln() - (one - self).ln()) / two } /// Returns `1/self` using floating-point operations. /// /// This may be more accurate than the generic `self.inv()` in cases /// where `self.norm_sqr()` would overflow to ∞ or underflow to 0. /// /// # Examples /// /// ``` /// use num_complex::Complex64; /// let c = Complex64::new(1e300, 1e300); /// /// // The generic `inv()` will overflow. /// assert!(!c.inv().is_normal()); /// /// // But we can do better for `Float` types. /// let inv = c.finv(); /// assert!(inv.is_normal()); /// println!("{:e}", inv); /// /// let expected = Complex64::new(5e-301, -5e-301); /// assert!((inv - expected).norm() < 1e-315); /// ``` #[inline] pub fn finv(self) -> Complex { let norm = self.norm(); self.conj() / norm / norm } /// Returns `self/other` using floating-point operations. /// /// This may be more accurate than the generic `Div` implementation in cases /// where `other.norm_sqr()` would overflow to ∞ or underflow to 0. /// /// # Examples /// /// ``` /// use num_complex::Complex64; /// let a = Complex64::new(2.0, 3.0); /// let b = Complex64::new(1e300, 1e300); /// /// // Generic division will overflow. /// assert!(!(a / b).is_normal()); /// /// // But we can do better for `Float` types. /// let quotient = a.fdiv(b); /// assert!(quotient.is_normal()); /// println!("{:e}", quotient); /// /// let expected = Complex64::new(2.5e-300, 5e-301); /// assert!((quotient - expected).norm() < 1e-315); /// ``` #[inline] pub fn fdiv(self, other: Complex) -> Complex { self * other.finv() } } #[cfg(any(feature = "std", feature = "libm"))] impl Complex { /// Computes `2^(self)`. #[inline] pub fn exp2(self) -> Self { // formula: 2^(a + bi) = 2^a (cos(b*log2) + i*sin(b*log2)) // = from_polar(2^a, b*log2) Self::from_polar(self.re.exp2(), self.im * T::LN_2()) } /// Computes the principal value of log base 2 of `self`. #[inline] pub fn log2(self) -> Self { Self::ln(self) / T::LN_2() } /// Computes the principal value of log base 10 of `self`. #[inline] pub fn log10(self) -> Self { Self::ln(self) / T::LN_10() } } impl Complex { /// Checks if the given complex number is NaN #[inline] pub fn is_nan(self) -> bool { self.re.is_nan() || self.im.is_nan() } /// Checks if the given complex number is infinite #[inline] pub fn is_infinite(self) -> bool { !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite()) } /// Checks if the given complex number is finite #[inline] pub fn is_finite(self) -> bool { self.re.is_finite() && self.im.is_finite() } /// Checks if the given complex number is normal #[inline] pub fn is_normal(self) -> bool { self.re.is_normal() && self.im.is_normal() } } // Safety: `Complex` is `repr(C)` and contains only instances of `T`, so we // can guarantee it contains no *added* padding. Thus, if `T: Zeroable`, // `Complex` is also `Zeroable` #[cfg(feature = "bytemuck")] unsafe impl bytemuck::Zeroable for Complex {} // Safety: `Complex` is `repr(C)` and contains only instances of `T`, so we // can guarantee it contains no *added* padding. Thus, if `T: Pod`, // `Complex` is also `Pod` #[cfg(feature = "bytemuck")] unsafe impl bytemuck::Pod for Complex {} impl From for Complex { #[inline] fn from(re: T) -> Self { Self::new(re, T::zero()) } } impl<'a, T: Clone + Num> From<&'a T> for Complex { #[inline] fn from(re: &T) -> Self { From::from(re.clone()) } } macro_rules! forward_ref_ref_binop { (impl $imp:ident, $method:ident) => { impl<'a, 'b, T: Clone + Num> $imp<&'b Complex> for &'a Complex { type Output = Complex; #[inline] fn $method(self, other: &Complex) -> Self::Output { self.clone().$method(other.clone()) } } }; } macro_rules! forward_ref_val_binop { (impl $imp:ident, $method:ident) => { impl<'a, T: Clone + Num> $imp> for &'a Complex { type Output = Complex; #[inline] fn $method(self, other: Complex) -> Self::Output { self.clone().$method(other) } } }; } macro_rules! forward_val_ref_binop { (impl $imp:ident, $method:ident) => { impl<'a, T: Clone + Num> $imp<&'a Complex> for Complex { type Output = Complex; #[inline] fn $method(self, other: &Complex) -> Self::Output { self.$method(other.clone()) } } }; } macro_rules! forward_all_binop { (impl $imp:ident, $method:ident) => { forward_ref_ref_binop!(impl $imp, $method); forward_ref_val_binop!(impl $imp, $method); forward_val_ref_binop!(impl $imp, $method); }; } // arithmetic forward_all_binop!(impl Add, add); // (a + i b) + (c + i d) == (a + c) + i (b + d) impl Add> for Complex { type Output = Self; #[inline] fn add(self, other: Self) -> Self::Output { Self::Output::new(self.re + other.re, self.im + other.im) } } forward_all_binop!(impl Sub, sub); // (a + i b) - (c + i d) == (a - c) + i (b - d) impl Sub> for Complex { type Output = Self; #[inline] fn sub(self, other: Self) -> Self::Output { Self::Output::new(self.re - other.re, self.im - other.im) } } forward_all_binop!(impl Mul, mul); // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c) impl Mul> for Complex { type Output = Self; #[inline] fn mul(self, other: Self) -> Self::Output { let re = self.re.clone() * other.re.clone() - self.im.clone() * other.im.clone(); let im = self.re * other.im + self.im * other.re; Self::Output::new(re, im) } } // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (a*d + (b*c + f)) impl> MulAdd> for Complex { type Output = Complex; #[inline] fn mul_add(self, other: Complex, add: Complex) -> Complex { let re = self.re.clone().mul_add(other.re.clone(), add.re) - (self.im.clone() * other.im.clone()); // FIXME: use mulsub when available in rust let im = self.re.mul_add(other.im, self.im.mul_add(other.re, add.im)); Complex::new(re, im) } } impl<'a, 'b, T: Clone + Num + MulAdd> MulAdd<&'b Complex> for &'a Complex { type Output = Complex; #[inline] fn mul_add(self, other: &Complex, add: &Complex) -> Complex { self.clone().mul_add(other.clone(), add.clone()) } } forward_all_binop!(impl Div, div); // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d) // == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)] impl Div> for Complex { type Output = Self; #[inline] fn div(self, other: Self) -> Self::Output { let norm_sqr = other.norm_sqr(); let re = self.re.clone() * other.re.clone() + self.im.clone() * other.im.clone(); let im = self.im * other.re - self.re * other.im; Self::Output::new(re / norm_sqr.clone(), im / norm_sqr) } } forward_all_binop!(impl Rem, rem); impl Complex { /// Find the gaussian integer corresponding to the true ratio rounded towards zero. fn div_trunc(&self, divisor: &Self) -> Self { let Complex { re, im } = self / divisor; Complex::new(re.clone() - re % T::one(), im.clone() - im % T::one()) } } impl Rem> for Complex { type Output = Self; #[inline] fn rem(self, modulus: Self) -> Self::Output { let gaussian = self.div_trunc(&modulus); self - modulus * gaussian } } // Op Assign mod opassign { use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign}; use num_traits::{MulAddAssign, NumAssign}; use crate::Complex; impl AddAssign for Complex { fn add_assign(&mut self, other: Self) { self.re += other.re; self.im += other.im; } } impl SubAssign for Complex { fn sub_assign(&mut self, other: Self) { self.re -= other.re; self.im -= other.im; } } // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c) impl MulAssign for Complex { fn mul_assign(&mut self, other: Self) { let a = self.re.clone(); self.re *= other.re.clone(); self.re -= self.im.clone() * other.im.clone(); self.im *= other.re; self.im += a * other.im; } } // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (b*c + (a*d + f)) impl MulAddAssign for Complex { fn mul_add_assign(&mut self, other: Complex, add: Complex) { let a = self.re.clone(); self.re.mul_add_assign(other.re.clone(), add.re); // (a*c + e) self.re -= self.im.clone() * other.im.clone(); // ((a*c + e) - b*d) let mut adf = a; adf.mul_add_assign(other.im, add.im); // (a*d + f) self.im.mul_add_assign(other.re, adf); // (b*c + (a*d + f)) } } impl<'a, 'b, T: Clone + NumAssign + MulAddAssign> MulAddAssign<&'a Complex, &'b Complex> for Complex { fn mul_add_assign(&mut self, other: &Complex, add: &Complex) { self.mul_add_assign(other.clone(), add.clone()); } } // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d) // == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)] impl DivAssign for Complex { fn div_assign(&mut self, other: Self) { let a = self.re.clone(); let norm_sqr = other.norm_sqr(); self.re *= other.re.clone(); self.re += self.im.clone() * other.im.clone(); self.re /= norm_sqr.clone(); self.im *= other.re; self.im -= a * other.im; self.im /= norm_sqr; } } impl RemAssign for Complex { fn rem_assign(&mut self, modulus: Self) { let gaussian = self.div_trunc(&modulus); *self -= modulus * gaussian; } } impl AddAssign for Complex { fn add_assign(&mut self, other: T) { self.re += other; } } impl SubAssign for Complex { fn sub_assign(&mut self, other: T) { self.re -= other; } } impl MulAssign for Complex { fn mul_assign(&mut self, other: T) { self.re *= other.clone(); self.im *= other; } } impl DivAssign for Complex { fn div_assign(&mut self, other: T) { self.re /= other.clone(); self.im /= other; } } impl RemAssign for Complex { fn rem_assign(&mut self, other: T) { self.re %= other.clone(); self.im %= other; } } macro_rules! forward_op_assign { (impl $imp:ident, $method:ident) => { impl<'a, T: Clone + NumAssign> $imp<&'a Complex> for Complex { #[inline] fn $method(&mut self, other: &Self) { self.$method(other.clone()) } } impl<'a, T: Clone + NumAssign> $imp<&'a T> for Complex { #[inline] fn $method(&mut self, other: &T) { self.$method(other.clone()) } } }; } forward_op_assign!(impl AddAssign, add_assign); forward_op_assign!(impl SubAssign, sub_assign); forward_op_assign!(impl MulAssign, mul_assign); forward_op_assign!(impl DivAssign, div_assign); forward_op_assign!(impl RemAssign, rem_assign); } impl> Neg for Complex { type Output = Self; #[inline] fn neg(self) -> Self::Output { Self::Output::new(-self.re, -self.im) } } impl<'a, T: Clone + Num + Neg> Neg for &'a Complex { type Output = Complex; #[inline] fn neg(self) -> Self::Output { -self.clone() } } impl> Inv for Complex { type Output = Self; #[inline] fn inv(self) -> Self::Output { Complex::inv(&self) } } impl<'a, T: Clone + Num + Neg> Inv for &'a Complex { type Output = Complex; #[inline] fn inv(self) -> Self::Output { Complex::inv(self) } } macro_rules! real_arithmetic { (@forward $imp:ident::$method:ident for $($real:ident),*) => ( impl<'a, T: Clone + Num> $imp<&'a T> for Complex { type Output = Complex; #[inline] fn $method(self, other: &T) -> Self::Output { self.$method(other.clone()) } } impl<'a, T: Clone + Num> $imp for &'a Complex { type Output = Complex; #[inline] fn $method(self, other: T) -> Self::Output { self.clone().$method(other) } } impl<'a, 'b, T: Clone + Num> $imp<&'a T> for &'b Complex { type Output = Complex; #[inline] fn $method(self, other: &T) -> Self::Output { self.clone().$method(other.clone()) } } $( impl<'a> $imp<&'a Complex<$real>> for $real { type Output = Complex<$real>; #[inline] fn $method(self, other: &Complex<$real>) -> Complex<$real> { self.$method(other.clone()) } } impl<'a> $imp> for &'a $real { type Output = Complex<$real>; #[inline] fn $method(self, other: Complex<$real>) -> Complex<$real> { self.clone().$method(other) } } impl<'a, 'b> $imp<&'a Complex<$real>> for &'b $real { type Output = Complex<$real>; #[inline] fn $method(self, other: &Complex<$real>) -> Complex<$real> { self.clone().$method(other.clone()) } } )* ); ($($real:ident),*) => ( real_arithmetic!(@forward Add::add for $($real),*); real_arithmetic!(@forward Sub::sub for $($real),*); real_arithmetic!(@forward Mul::mul for $($real),*); real_arithmetic!(@forward Div::div for $($real),*); real_arithmetic!(@forward Rem::rem for $($real),*); $( impl Add> for $real { type Output = Complex<$real>; #[inline] fn add(self, other: Complex<$real>) -> Self::Output { Self::Output::new(self + other.re, other.im) } } impl Sub> for $real { type Output = Complex<$real>; #[inline] fn sub(self, other: Complex<$real>) -> Self::Output { Self::Output::new(self - other.re, $real::zero() - other.im) } } impl Mul> for $real { type Output = Complex<$real>; #[inline] fn mul(self, other: Complex<$real>) -> Self::Output { Self::Output::new(self * other.re, self * other.im) } } impl Div> for $real { type Output = Complex<$real>; #[inline] fn div(self, other: Complex<$real>) -> Self::Output { // a / (c + i d) == [a * (c - i d)] / (c*c + d*d) let norm_sqr = other.norm_sqr(); Self::Output::new(self * other.re / norm_sqr.clone(), $real::zero() - self * other.im / norm_sqr) } } impl Rem> for $real { type Output = Complex<$real>; #[inline] fn rem(self, other: Complex<$real>) -> Self::Output { Self::Output::new(self, Self::zero()) % other } } )* ); } impl Add for Complex { type Output = Complex; #[inline] fn add(self, other: T) -> Self::Output { Self::Output::new(self.re + other, self.im) } } impl Sub for Complex { type Output = Complex; #[inline] fn sub(self, other: T) -> Self::Output { Self::Output::new(self.re - other, self.im) } } impl Mul for Complex { type Output = Complex; #[inline] fn mul(self, other: T) -> Self::Output { Self::Output::new(self.re * other.clone(), self.im * other) } } impl Div for Complex { type Output = Self; #[inline] fn div(self, other: T) -> Self::Output { Self::Output::new(self.re / other.clone(), self.im / other) } } impl Rem for Complex { type Output = Complex; #[inline] fn rem(self, other: T) -> Self::Output { Self::Output::new(self.re % other.clone(), self.im % other) } } real_arithmetic!(usize, u8, u16, u32, u64, u128, isize, i8, i16, i32, i64, i128, f32, f64); // constants impl Complex { /// A constant `Complex` 0. pub const ZERO: Self = Self::new(T::ZERO, T::ZERO); } impl ConstZero for Complex { const ZERO: Self = Self::ZERO; } impl Zero for Complex { #[inline] fn zero() -> Self { Self::new(Zero::zero(), Zero::zero()) } #[inline] fn is_zero(&self) -> bool { self.re.is_zero() && self.im.is_zero() } #[inline] fn set_zero(&mut self) { self.re.set_zero(); self.im.set_zero(); } } impl Complex { /// A constant `Complex` 1. pub const ONE: Self = Self::new(T::ONE, T::ZERO); /// A constant `Complex` _i_, the imaginary unit. pub const I: Self = Self::new(T::ZERO, T::ONE); } impl ConstOne for Complex { const ONE: Self = Self::ONE; } impl One for Complex { #[inline] fn one() -> Self { Self::new(One::one(), Zero::zero()) } #[inline] fn is_one(&self) -> bool { self.re.is_one() && self.im.is_zero() } #[inline] fn set_one(&mut self) { self.re.set_one(); self.im.set_zero(); } } macro_rules! write_complex { ($f:ident, $t:expr, $prefix:expr, $re:expr, $im:expr, $T:ident) => {{ let abs_re = if $re < Zero::zero() { $T::zero() - $re.clone() } else { $re.clone() }; let abs_im = if $im < Zero::zero() { $T::zero() - $im.clone() } else { $im.clone() }; return if let Some(prec) = $f.precision() { fmt_re_im( $f, $re < $T::zero(), $im < $T::zero(), format_args!(concat!("{:.1$", $t, "}"), abs_re, prec), format_args!(concat!("{:.1$", $t, "}"), abs_im, prec), ) } else { fmt_re_im( $f, $re < $T::zero(), $im < $T::zero(), format_args!(concat!("{:", $t, "}"), abs_re), format_args!(concat!("{:", $t, "}"), abs_im), ) }; fn fmt_re_im( f: &mut fmt::Formatter<'_>, re_neg: bool, im_neg: bool, real: fmt::Arguments<'_>, imag: fmt::Arguments<'_>, ) -> fmt::Result { let prefix = if f.alternate() { $prefix } else { "" }; let sign = if re_neg { "-" } else if f.sign_plus() { "+" } else { "" }; if im_neg { fmt_complex( f, format_args!( "{}{pre}{re}-{pre}{im}i", sign, re = real, im = imag, pre = prefix ), ) } else { fmt_complex( f, format_args!( "{}{pre}{re}+{pre}{im}i", sign, re = real, im = imag, pre = prefix ), ) } } #[cfg(feature = "std")] // Currently, we can only apply width using an intermediate `String` (and thus `std`) fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result { use std::string::ToString; if let Some(width) = f.width() { write!(f, "{0: >1$}", complex.to_string(), width) } else { write!(f, "{}", complex) } } #[cfg(not(feature = "std"))] fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result { write!(f, "{}", complex) } }}; } // string conversions impl fmt::Display for Complex where T: fmt::Display + Num + PartialOrd + Clone, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write_complex!(f, "", "", self.re, self.im, T) } } impl fmt::LowerExp for Complex where T: fmt::LowerExp + Num + PartialOrd + Clone, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write_complex!(f, "e", "", self.re, self.im, T) } } impl fmt::UpperExp for Complex where T: fmt::UpperExp + Num + PartialOrd + Clone, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write_complex!(f, "E", "", self.re, self.im, T) } } impl fmt::LowerHex for Complex where T: fmt::LowerHex + Num + PartialOrd + Clone, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write_complex!(f, "x", "0x", self.re, self.im, T) } } impl fmt::UpperHex for Complex where T: fmt::UpperHex + Num + PartialOrd + Clone, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write_complex!(f, "X", "0x", self.re, self.im, T) } } impl fmt::Octal for Complex where T: fmt::Octal + Num + PartialOrd + Clone, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write_complex!(f, "o", "0o", self.re, self.im, T) } } impl fmt::Binary for Complex where T: fmt::Binary + Num + PartialOrd + Clone, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write_complex!(f, "b", "0b", self.re, self.im, T) } } fn from_str_generic(s: &str, from: F) -> Result, ParseComplexError> where F: Fn(&str) -> Result, T: Clone + Num, { let imag = match s.rfind('j') { None => 'i', _ => 'j', }; let mut neg_b = false; let mut a = s; let mut b = ""; for (i, w) in s.as_bytes().windows(2).enumerate() { let p = w[0]; let c = w[1]; // ignore '+'/'-' if part of an exponent if (c == b'+' || c == b'-') && !(p == b'e' || p == b'E') { // trim whitespace around the separator a = s[..=i].trim_end_matches(char::is_whitespace); b = s[i + 2..].trim_start_matches(char::is_whitespace); neg_b = c == b'-'; if b.is_empty() || (neg_b && b.starts_with('-')) { return Err(ParseComplexError::expr_error()); } break; } } // split off real and imaginary parts if b.is_empty() { // input was either pure real or pure imaginary b = if a.ends_with(imag) { "0" } else { "0i" }; } let re; let neg_re; let im; let neg_im; if a.ends_with(imag) { im = a; neg_im = false; re = b; neg_re = neg_b; } else if b.ends_with(imag) { re = a; neg_re = false; im = b; neg_im = neg_b; } else { return Err(ParseComplexError::expr_error()); } // parse re let re = from(re).map_err(ParseComplexError::from_error)?; let re = if neg_re { T::zero() - re } else { re }; // pop imaginary unit off let mut im = &im[..im.len() - 1]; // handle im == "i" or im == "-i" if im.is_empty() || im == "+" { im = "1"; } else if im == "-" { im = "-1"; } // parse im let im = from(im).map_err(ParseComplexError::from_error)?; let im = if neg_im { T::zero() - im } else { im }; Ok(Complex::new(re, im)) } impl FromStr for Complex where T: FromStr + Num + Clone, { type Err = ParseComplexError; /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T` fn from_str(s: &str) -> Result { from_str_generic(s, T::from_str) } } impl Num for Complex { type FromStrRadixErr = ParseComplexError; /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T` /// /// `radix` must be <= 18; larger radix would include *i* and *j* as digits, /// which cannot be supported. /// /// The conversion returns an error if 18 <= radix <= 36; it panics if radix > 36. /// /// The elements of `T` are parsed using `Num::from_str_radix` too, and errors /// (or panics) from that are reflected here as well. fn from_str_radix(s: &str, radix: u32) -> Result { assert!( radix <= 36, "from_str_radix: radix is too high (maximum 36)" ); // larger radix would include 'i' and 'j' as digits, which cannot be supported if radix > 18 { return Err(ParseComplexError::unsupported_radix()); } from_str_generic(s, |x| -> Result { T::from_str_radix(x, radix) }) } } impl Sum for Complex { fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::zero(), |acc, c| acc + c) } } impl<'a, T: 'a + Num + Clone> Sum<&'a Complex> for Complex { fn sum(iter: I) -> Self where I: Iterator>, { iter.fold(Self::zero(), |acc, c| acc + c) } } impl Product for Complex { fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::one(), |acc, c| acc * c) } } impl<'a, T: 'a + Num + Clone> Product<&'a Complex> for Complex { fn product(iter: I) -> Self where I: Iterator>, { iter.fold(Self::one(), |acc, c| acc * c) } } #[cfg(feature = "serde")] impl serde::Serialize for Complex where T: serde::Serialize, { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { (&self.re, &self.im).serialize(serializer) } } #[cfg(feature = "serde")] impl<'de, T> serde::Deserialize<'de> for Complex where T: serde::Deserialize<'de>, { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { let (re, im) = serde::Deserialize::deserialize(deserializer)?; Ok(Self::new(re, im)) } } #[derive(Debug, PartialEq)] pub struct ParseComplexError { kind: ComplexErrorKind, } #[derive(Debug, PartialEq)] enum ComplexErrorKind { ParseError(E), ExprError, UnsupportedRadix, } impl ParseComplexError { fn expr_error() -> Self { ParseComplexError { kind: ComplexErrorKind::ExprError, } } fn unsupported_radix() -> Self { ParseComplexError { kind: ComplexErrorKind::UnsupportedRadix, } } fn from_error(error: E) -> Self { ParseComplexError { kind: ComplexErrorKind::ParseError(error), } } } #[cfg(feature = "std")] impl Error for ParseComplexError { #[allow(deprecated)] fn description(&self) -> &str { match self.kind { ComplexErrorKind::ParseError(ref e) => e.description(), ComplexErrorKind::ExprError => "invalid or unsupported complex expression", ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion", } } } impl fmt::Display for ParseComplexError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self.kind { ComplexErrorKind::ParseError(ref e) => e.fmt(f), ComplexErrorKind::ExprError => "invalid or unsupported complex expression".fmt(f), ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion".fmt(f), } } } #[cfg(test)] fn hash(x: &T) -> u64 { use std::collections::hash_map::RandomState; use std::hash::{BuildHasher, Hasher}; let mut hasher = ::Hasher::new(); x.hash(&mut hasher); hasher.finish() } #[cfg(test)] pub(crate) mod test { #![allow(non_upper_case_globals)] use super::{Complex, Complex64}; use super::{ComplexErrorKind, ParseComplexError}; use core::f64; use core::str::FromStr; use std::string::{String, ToString}; use num_traits::{Num, One, Zero}; pub const _0_0i: Complex64 = Complex::new(0.0, 0.0); pub const _1_0i: Complex64 = Complex::new(1.0, 0.0); pub const _1_1i: Complex64 = Complex::new(1.0, 1.0); pub const _0_1i: Complex64 = Complex::new(0.0, 1.0); pub const _neg1_1i: Complex64 = Complex::new(-1.0, 1.0); pub const _05_05i: Complex64 = Complex::new(0.5, 0.5); pub const all_consts: [Complex64; 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i]; pub const _4_2i: Complex64 = Complex::new(4.0, 2.0); pub const _1_infi: Complex64 = Complex::new(1.0, f64::INFINITY); pub const _neg1_infi: Complex64 = Complex::new(-1.0, f64::INFINITY); pub const _1_nani: Complex64 = Complex::new(1.0, f64::NAN); pub const _neg1_nani: Complex64 = Complex::new(-1.0, f64::NAN); pub const _inf_0i: Complex64 = Complex::new(f64::INFINITY, 0.0); pub const _neginf_1i: Complex64 = Complex::new(f64::NEG_INFINITY, 1.0); pub const _neginf_neg1i: Complex64 = Complex::new(f64::NEG_INFINITY, -1.0); pub const _inf_1i: Complex64 = Complex::new(f64::INFINITY, 1.0); pub const _inf_neg1i: Complex64 = Complex::new(f64::INFINITY, -1.0); pub const _neginf_infi: Complex64 = Complex::new(f64::NEG_INFINITY, f64::INFINITY); pub const _inf_infi: Complex64 = Complex::new(f64::INFINITY, f64::INFINITY); pub const _neginf_nani: Complex64 = Complex::new(f64::NEG_INFINITY, f64::NAN); pub const _inf_nani: Complex64 = Complex::new(f64::INFINITY, f64::NAN); pub const _nan_0i: Complex64 = Complex::new(f64::NAN, 0.0); pub const _nan_1i: Complex64 = Complex::new(f64::NAN, 1.0); pub const _nan_neg1i: Complex64 = Complex::new(f64::NAN, -1.0); pub const _nan_nani: Complex64 = Complex::new(f64::NAN, f64::NAN); #[test] fn test_consts() { // check our constants are what Complex::new creates fn test(c: Complex64, r: f64, i: f64) { assert_eq!(c, Complex::new(r, i)); } test(_0_0i, 0.0, 0.0); test(_1_0i, 1.0, 0.0); test(_1_1i, 1.0, 1.0); test(_neg1_1i, -1.0, 1.0); test(_05_05i, 0.5, 0.5); assert_eq!(_0_0i, Zero::zero()); assert_eq!(_1_0i, One::one()); } #[test] fn test_scale_unscale() { assert_eq!(_05_05i.scale(2.0), _1_1i); assert_eq!(_1_1i.unscale(2.0), _05_05i); for &c in all_consts.iter() { assert_eq!(c.scale(2.0).unscale(2.0), c); } } #[test] fn test_conj() { for &c in all_consts.iter() { assert_eq!(c.conj(), Complex::new(c.re, -c.im)); assert_eq!(c.conj().conj(), c); } } #[test] fn test_inv() { assert_eq!(_1_1i.inv(), _05_05i.conj()); assert_eq!(_1_0i.inv(), _1_0i.inv()); } #[test] #[should_panic] fn test_divide_by_zero_natural() { let n = Complex::new(2, 3); let d = Complex::new(0, 0); let _x = n / d; } #[test] fn test_inv_zero() { // FIXME #20: should this really fail, or just NaN? assert!(_0_0i.inv().is_nan()); } #[test] #[allow(clippy::float_cmp)] fn test_l1_norm() { assert_eq!(_0_0i.l1_norm(), 0.0); assert_eq!(_1_0i.l1_norm(), 1.0); assert_eq!(_1_1i.l1_norm(), 2.0); assert_eq!(_0_1i.l1_norm(), 1.0); assert_eq!(_neg1_1i.l1_norm(), 2.0); assert_eq!(_05_05i.l1_norm(), 1.0); assert_eq!(_4_2i.l1_norm(), 6.0); } #[test] fn test_pow() { for c in all_consts.iter() { assert_eq!(c.powi(0), _1_0i); let mut pos = _1_0i; let mut neg = _1_0i; for i in 1i32..20 { pos *= c; assert_eq!(pos, c.powi(i)); if c.is_zero() { assert!(c.powi(-i).is_nan()); } else { neg /= c; assert_eq!(neg, c.powi(-i)); } } } } #[cfg(any(feature = "std", feature = "libm"))] pub(crate) mod float { use core::f64::INFINITY; use super::*; use num_traits::{Float, Pow}; #[test] fn test_cis() { assert!(close(Complex::cis(0.0 * f64::consts::PI), _1_0i)); assert!(close(Complex::cis(0.5 * f64::consts::PI), _0_1i)); assert!(close(Complex::cis(1.0 * f64::consts::PI), -_1_0i)); assert!(close(Complex::cis(1.5 * f64::consts::PI), -_0_1i)); assert!(close(Complex::cis(2.0 * f64::consts::PI), _1_0i)); } #[test] #[cfg_attr(target_arch = "x86", ignore)] // FIXME #7158: (maybe?) currently failing on x86. #[allow(clippy::float_cmp)] fn test_norm() { fn test(c: Complex64, ns: f64) { assert_eq!(c.norm_sqr(), ns); assert_eq!(c.norm(), ns.sqrt()) } test(_0_0i, 0.0); test(_1_0i, 1.0); test(_1_1i, 2.0); test(_neg1_1i, 2.0); test(_05_05i, 0.5); } #[test] fn test_arg() { fn test(c: Complex64, arg: f64) { assert!((c.arg() - arg).abs() < 1.0e-6) } test(_1_0i, 0.0); test(_1_1i, 0.25 * f64::consts::PI); test(_neg1_1i, 0.75 * f64::consts::PI); test(_05_05i, 0.25 * f64::consts::PI); } #[test] fn test_polar_conv() { fn test(c: Complex64) { let (r, theta) = c.to_polar(); assert!((c - Complex::from_polar(r, theta)).norm() < 1e-6); } for &c in all_consts.iter() { test(c); } } pub(crate) fn close(a: Complex64, b: Complex64) -> bool { close_to_tol(a, b, 1e-10) } fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool { // returns true if a and b are reasonably close let close = (a == b) || (a - b).norm() < tol; if !close { println!("{:?} != {:?}", a, b); } close } // Version that also works if re or im are +inf, -inf, or nan fn close_naninf(a: Complex64, b: Complex64) -> bool { close_naninf_to_tol(a, b, 1.0e-10) } fn close_naninf_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool { let mut close = true; // Compare the real parts if a.re.is_finite() { if b.re.is_finite() { close = (a.re == b.re) || (a.re - b.re).abs() < tol; } else { close = false; } } else if (a.re.is_nan() && !b.re.is_nan()) || (a.re.is_infinite() && a.re.is_sign_positive() && !(b.re.is_infinite() && b.re.is_sign_positive())) || (a.re.is_infinite() && a.re.is_sign_negative() && !(b.re.is_infinite() && b.re.is_sign_negative())) { close = false; } // Compare the imaginary parts if a.im.is_finite() { if b.im.is_finite() { close &= (a.im == b.im) || (a.im - b.im).abs() < tol; } else { close = false; } } else if (a.im.is_nan() && !b.im.is_nan()) || (a.im.is_infinite() && a.im.is_sign_positive() && !(b.im.is_infinite() && b.im.is_sign_positive())) || (a.im.is_infinite() && a.im.is_sign_negative() && !(b.im.is_infinite() && b.im.is_sign_negative())) { close = false; } if close == false { println!("{:?} != {:?}", a, b); } close } #[test] fn test_exp2() { assert!(close(_0_0i.exp2(), _1_0i)); } #[test] fn test_exp() { assert!(close(_1_0i.exp(), _1_0i.scale(f64::consts::E))); assert!(close(_0_0i.exp(), _1_0i)); assert!(close(_0_1i.exp(), Complex::new(1.0.cos(), 1.0.sin()))); assert!(close(_05_05i.exp() * _05_05i.exp(), _1_1i.exp())); assert!(close( _0_1i.scale(-f64::consts::PI).exp(), _1_0i.scale(-1.0) )); for &c in all_consts.iter() { // e^conj(z) = conj(e^z) assert!(close(c.conj().exp(), c.exp().conj())); // e^(z + 2 pi i) = e^z assert!(close( c.exp(), (c + _0_1i.scale(f64::consts::PI * 2.0)).exp() )); } // The test values below were taken from https://en.cppreference.com/w/cpp/numeric/complex/exp assert!(close_naninf(_1_infi.exp(), _nan_nani)); assert!(close_naninf(_neg1_infi.exp(), _nan_nani)); assert!(close_naninf(_1_nani.exp(), _nan_nani)); assert!(close_naninf(_neg1_nani.exp(), _nan_nani)); assert!(close_naninf(_inf_0i.exp(), _inf_0i)); assert!(close_naninf(_neginf_1i.exp(), 0.0 * Complex::cis(1.0))); assert!(close_naninf(_neginf_neg1i.exp(), 0.0 * Complex::cis(-1.0))); assert!(close_naninf( _inf_1i.exp(), f64::INFINITY * Complex::cis(1.0) )); assert!(close_naninf( _inf_neg1i.exp(), f64::INFINITY * Complex::cis(-1.0) )); assert!(close_naninf(_neginf_infi.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified assert!(close_naninf(_inf_infi.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified assert!(close_naninf(_neginf_nani.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified assert!(close_naninf(_inf_nani.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified assert!(close_naninf(_nan_0i.exp(), _nan_0i)); assert!(close_naninf(_nan_1i.exp(), _nan_nani)); assert!(close_naninf(_nan_neg1i.exp(), _nan_nani)); assert!(close_naninf(_nan_nani.exp(), _nan_nani)); } #[test] fn test_ln() { assert!(close(_1_0i.ln(), _0_0i)); assert!(close(_0_1i.ln(), _0_1i.scale(f64::consts::PI / 2.0))); assert!(close(_0_0i.ln(), Complex::new(f64::neg_infinity(), 0.0))); assert!(close( (_neg1_1i * _05_05i).ln(), _neg1_1i.ln() + _05_05i.ln() )); for &c in all_consts.iter() { // ln(conj(z() = conj(ln(z)) assert!(close(c.conj().ln(), c.ln().conj())); // for this branch, -pi <= arg(ln(z)) <= pi assert!(-f64::consts::PI <= c.ln().arg() && c.ln().arg() <= f64::consts::PI); } } #[test] fn test_powc() { let a = Complex::new(2.0, -3.0); let b = Complex::new(3.0, 0.0); assert!(close(a.powc(b), a.powf(b.re))); assert!(close(b.powc(a), a.expf(b.re))); let c = Complex::new(1.0 / 3.0, 0.1); assert!(close_to_tol( a.powc(c), Complex::new(1.65826, -0.33502), 1e-5 )); let z = Complex::new(0.0, 0.0); assert!(close(z.powc(b), z)); assert!(z.powc(Complex64::new(0., INFINITY)).is_nan()); assert!(z.powc(Complex64::new(10., INFINITY)).is_nan()); assert!(z.powc(Complex64::new(INFINITY, INFINITY)).is_nan()); assert!(close(z.powc(Complex64::new(INFINITY, 0.)), z)); assert!(z.powc(Complex64::new(-1., 0.)).re.is_infinite()); assert!(z.powc(Complex64::new(-1., 0.)).im.is_nan()); for c in all_consts.iter() { assert_eq!(c.powc(_0_0i), _1_0i); } assert_eq!(_nan_nani.powc(_0_0i), _1_0i); } #[test] fn test_powf() { let c = Complex64::new(2.0, -1.0); let expected = Complex64::new(-0.8684746, -16.695934); assert!(close_to_tol(c.powf(3.5), expected, 1e-5)); assert!(close_to_tol(Pow::pow(c, 3.5_f64), expected, 1e-5)); assert!(close_to_tol(Pow::pow(c, 3.5_f32), expected, 1e-5)); for c in all_consts.iter() { assert_eq!(c.powf(0.0), _1_0i); } assert_eq!(_nan_nani.powf(0.0), _1_0i); } #[test] fn test_log() { let c = Complex::new(2.0, -1.0); let r = c.log(10.0); assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5)); } #[test] fn test_log2() { assert!(close(_1_0i.log2(), _0_0i)); } #[test] fn test_log10() { assert!(close(_1_0i.log10(), _0_0i)); } #[test] fn test_some_expf_cases() { let c = Complex::new(2.0, -1.0); let r = c.expf(10.0); assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5)); let c = Complex::new(5.0, -2.0); let r = c.expf(3.4); assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2)); let c = Complex::new(-1.5, 2.0 / 3.0); let r = c.expf(1.0 / 3.0); assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2)); } #[test] fn test_sqrt() { assert!(close(_0_0i.sqrt(), _0_0i)); assert!(close(_1_0i.sqrt(), _1_0i)); assert!(close(Complex::new(-1.0, 0.0).sqrt(), _0_1i)); assert!(close(Complex::new(-1.0, -0.0).sqrt(), _0_1i.scale(-1.0))); assert!(close(_0_1i.sqrt(), _05_05i.scale(2.0.sqrt()))); for &c in all_consts.iter() { // sqrt(conj(z() = conj(sqrt(z)) assert!(close(c.conj().sqrt(), c.sqrt().conj())); // for this branch, -pi/2 <= arg(sqrt(z)) <= pi/2 assert!( -f64::consts::FRAC_PI_2 <= c.sqrt().arg() && c.sqrt().arg() <= f64::consts::FRAC_PI_2 ); // sqrt(z) * sqrt(z) = z assert!(close(c.sqrt() * c.sqrt(), c)); } } #[test] fn test_sqrt_real() { for n in (0..100).map(f64::from) { // √(n² + 0i) = n + 0i let n2 = n * n; assert_eq!(Complex64::new(n2, 0.0).sqrt(), Complex64::new(n, 0.0)); // √(-n² + 0i) = 0 + ni assert_eq!(Complex64::new(-n2, 0.0).sqrt(), Complex64::new(0.0, n)); // √(-n² - 0i) = 0 - ni assert_eq!(Complex64::new(-n2, -0.0).sqrt(), Complex64::new(0.0, -n)); } } #[test] fn test_sqrt_imag() { for n in (0..100).map(f64::from) { // √(0 + n²i) = n e^(iπ/4) let n2 = n * n; assert!(close( Complex64::new(0.0, n2).sqrt(), Complex64::from_polar(n, f64::consts::FRAC_PI_4) )); // √(0 - n²i) = n e^(-iπ/4) assert!(close( Complex64::new(0.0, -n2).sqrt(), Complex64::from_polar(n, -f64::consts::FRAC_PI_4) )); } } #[test] fn test_cbrt() { assert!(close(_0_0i.cbrt(), _0_0i)); assert!(close(_1_0i.cbrt(), _1_0i)); assert!(close( Complex::new(-1.0, 0.0).cbrt(), Complex::new(0.5, 0.75.sqrt()) )); assert!(close( Complex::new(-1.0, -0.0).cbrt(), Complex::new(0.5, -(0.75.sqrt())) )); assert!(close(_0_1i.cbrt(), Complex::new(0.75.sqrt(), 0.5))); assert!(close(_0_1i.conj().cbrt(), Complex::new(0.75.sqrt(), -0.5))); for &c in all_consts.iter() { // cbrt(conj(z() = conj(cbrt(z)) assert!(close(c.conj().cbrt(), c.cbrt().conj())); // for this branch, -pi/3 <= arg(cbrt(z)) <= pi/3 assert!( -f64::consts::FRAC_PI_3 <= c.cbrt().arg() && c.cbrt().arg() <= f64::consts::FRAC_PI_3 ); // cbrt(z) * cbrt(z) cbrt(z) = z assert!(close(c.cbrt() * c.cbrt() * c.cbrt(), c)); } } #[test] fn test_cbrt_real() { for n in (0..100).map(f64::from) { // ∛(n³ + 0i) = n + 0i let n3 = n * n * n; assert!(close( Complex64::new(n3, 0.0).cbrt(), Complex64::new(n, 0.0) )); // ∛(-n³ + 0i) = n e^(iπ/3) assert!(close( Complex64::new(-n3, 0.0).cbrt(), Complex64::from_polar(n, f64::consts::FRAC_PI_3) )); // ∛(-n³ - 0i) = n e^(-iπ/3) assert!(close( Complex64::new(-n3, -0.0).cbrt(), Complex64::from_polar(n, -f64::consts::FRAC_PI_3) )); } } #[test] fn test_cbrt_imag() { for n in (0..100).map(f64::from) { // ∛(0 + n³i) = n e^(iπ/6) let n3 = n * n * n; assert!(close( Complex64::new(0.0, n3).cbrt(), Complex64::from_polar(n, f64::consts::FRAC_PI_6) )); // ∛(0 - n³i) = n e^(-iπ/6) assert!(close( Complex64::new(0.0, -n3).cbrt(), Complex64::from_polar(n, -f64::consts::FRAC_PI_6) )); } } #[test] fn test_sin() { assert!(close(_0_0i.sin(), _0_0i)); assert!(close(_1_0i.scale(f64::consts::PI * 2.0).sin(), _0_0i)); assert!(close(_0_1i.sin(), _0_1i.scale(1.0.sinh()))); for &c in all_consts.iter() { // sin(conj(z)) = conj(sin(z)) assert!(close(c.conj().sin(), c.sin().conj())); // sin(-z) = -sin(z) assert!(close(c.scale(-1.0).sin(), c.sin().scale(-1.0))); } } #[test] fn test_cos() { assert!(close(_0_0i.cos(), _1_0i)); assert!(close(_1_0i.scale(f64::consts::PI * 2.0).cos(), _1_0i)); assert!(close(_0_1i.cos(), _1_0i.scale(1.0.cosh()))); for &c in all_consts.iter() { // cos(conj(z)) = conj(cos(z)) assert!(close(c.conj().cos(), c.cos().conj())); // cos(-z) = cos(z) assert!(close(c.scale(-1.0).cos(), c.cos())); } } #[test] fn test_tan() { assert!(close(_0_0i.tan(), _0_0i)); assert!(close(_1_0i.scale(f64::consts::PI / 4.0).tan(), _1_0i)); assert!(close(_1_0i.scale(f64::consts::PI).tan(), _0_0i)); for &c in all_consts.iter() { // tan(conj(z)) = conj(tan(z)) assert!(close(c.conj().tan(), c.tan().conj())); // tan(-z) = -tan(z) assert!(close(c.scale(-1.0).tan(), c.tan().scale(-1.0))); } } #[test] fn test_asin() { assert!(close(_0_0i.asin(), _0_0i)); assert!(close(_1_0i.asin(), _1_0i.scale(f64::consts::PI / 2.0))); assert!(close( _1_0i.scale(-1.0).asin(), _1_0i.scale(-f64::consts::PI / 2.0) )); assert!(close(_0_1i.asin(), _0_1i.scale((1.0 + 2.0.sqrt()).ln()))); for &c in all_consts.iter() { // asin(conj(z)) = conj(asin(z)) assert!(close(c.conj().asin(), c.asin().conj())); // asin(-z) = -asin(z) assert!(close(c.scale(-1.0).asin(), c.asin().scale(-1.0))); // for this branch, -pi/2 <= asin(z).re <= pi/2 assert!( -f64::consts::PI / 2.0 <= c.asin().re && c.asin().re <= f64::consts::PI / 2.0 ); } } #[test] fn test_acos() { assert!(close(_0_0i.acos(), _1_0i.scale(f64::consts::PI / 2.0))); assert!(close(_1_0i.acos(), _0_0i)); assert!(close( _1_0i.scale(-1.0).acos(), _1_0i.scale(f64::consts::PI) )); assert!(close( _0_1i.acos(), Complex::new(f64::consts::PI / 2.0, (2.0.sqrt() - 1.0).ln()) )); for &c in all_consts.iter() { // acos(conj(z)) = conj(acos(z)) assert!(close(c.conj().acos(), c.acos().conj())); // for this branch, 0 <= acos(z).re <= pi assert!(0.0 <= c.acos().re && c.acos().re <= f64::consts::PI); } } #[test] fn test_atan() { assert!(close(_0_0i.atan(), _0_0i)); assert!(close(_1_0i.atan(), _1_0i.scale(f64::consts::PI / 4.0))); assert!(close( _1_0i.scale(-1.0).atan(), _1_0i.scale(-f64::consts::PI / 4.0) )); assert!(close(_0_1i.atan(), Complex::new(0.0, f64::infinity()))); for &c in all_consts.iter() { // atan(conj(z)) = conj(atan(z)) assert!(close(c.conj().atan(), c.atan().conj())); // atan(-z) = -atan(z) assert!(close(c.scale(-1.0).atan(), c.atan().scale(-1.0))); // for this branch, -pi/2 <= atan(z).re <= pi/2 assert!( -f64::consts::PI / 2.0 <= c.atan().re && c.atan().re <= f64::consts::PI / 2.0 ); } } #[test] fn test_sinh() { assert!(close(_0_0i.sinh(), _0_0i)); assert!(close( _1_0i.sinh(), _1_0i.scale((f64::consts::E - 1.0 / f64::consts::E) / 2.0) )); assert!(close(_0_1i.sinh(), _0_1i.scale(1.0.sin()))); for &c in all_consts.iter() { // sinh(conj(z)) = conj(sinh(z)) assert!(close(c.conj().sinh(), c.sinh().conj())); // sinh(-z) = -sinh(z) assert!(close(c.scale(-1.0).sinh(), c.sinh().scale(-1.0))); } } #[test] fn test_cosh() { assert!(close(_0_0i.cosh(), _1_0i)); assert!(close( _1_0i.cosh(), _1_0i.scale((f64::consts::E + 1.0 / f64::consts::E) / 2.0) )); assert!(close(_0_1i.cosh(), _1_0i.scale(1.0.cos()))); for &c in all_consts.iter() { // cosh(conj(z)) = conj(cosh(z)) assert!(close(c.conj().cosh(), c.cosh().conj())); // cosh(-z) = cosh(z) assert!(close(c.scale(-1.0).cosh(), c.cosh())); } } #[test] fn test_tanh() { assert!(close(_0_0i.tanh(), _0_0i)); assert!(close( _1_0i.tanh(), _1_0i.scale((f64::consts::E.powi(2) - 1.0) / (f64::consts::E.powi(2) + 1.0)) )); assert!(close(_0_1i.tanh(), _0_1i.scale(1.0.tan()))); for &c in all_consts.iter() { // tanh(conj(z)) = conj(tanh(z)) assert!(close(c.conj().tanh(), c.conj().tanh())); // tanh(-z) = -tanh(z) assert!(close(c.scale(-1.0).tanh(), c.tanh().scale(-1.0))); } } #[test] fn test_asinh() { assert!(close(_0_0i.asinh(), _0_0i)); assert!(close(_1_0i.asinh(), _1_0i.scale(1.0 + 2.0.sqrt()).ln())); assert!(close(_0_1i.asinh(), _0_1i.scale(f64::consts::PI / 2.0))); assert!(close( _0_1i.asinh().scale(-1.0), _0_1i.scale(-f64::consts::PI / 2.0) )); for &c in all_consts.iter() { // asinh(conj(z)) = conj(asinh(z)) assert!(close(c.conj().asinh(), c.conj().asinh())); // asinh(-z) = -asinh(z) assert!(close(c.scale(-1.0).asinh(), c.asinh().scale(-1.0))); // for this branch, -pi/2 <= asinh(z).im <= pi/2 assert!( -f64::consts::PI / 2.0 <= c.asinh().im && c.asinh().im <= f64::consts::PI / 2.0 ); } } #[test] fn test_acosh() { assert!(close(_0_0i.acosh(), _0_1i.scale(f64::consts::PI / 2.0))); assert!(close(_1_0i.acosh(), _0_0i)); assert!(close( _1_0i.scale(-1.0).acosh(), _0_1i.scale(f64::consts::PI) )); for &c in all_consts.iter() { // acosh(conj(z)) = conj(acosh(z)) assert!(close(c.conj().acosh(), c.conj().acosh())); // for this branch, -pi <= acosh(z).im <= pi and 0 <= acosh(z).re assert!( -f64::consts::PI <= c.acosh().im && c.acosh().im <= f64::consts::PI && 0.0 <= c.cosh().re ); } } #[test] fn test_atanh() { assert!(close(_0_0i.atanh(), _0_0i)); assert!(close(_0_1i.atanh(), _0_1i.scale(f64::consts::PI / 4.0))); assert!(close(_1_0i.atanh(), Complex::new(f64::infinity(), 0.0))); for &c in all_consts.iter() { // atanh(conj(z)) = conj(atanh(z)) assert!(close(c.conj().atanh(), c.conj().atanh())); // atanh(-z) = -atanh(z) assert!(close(c.scale(-1.0).atanh(), c.atanh().scale(-1.0))); // for this branch, -pi/2 <= atanh(z).im <= pi/2 assert!( -f64::consts::PI / 2.0 <= c.atanh().im && c.atanh().im <= f64::consts::PI / 2.0 ); } } #[test] fn test_exp_ln() { for &c in all_consts.iter() { // e^ln(z) = z assert!(close(c.ln().exp(), c)); } } #[test] fn test_exp2_log() { for &c in all_consts.iter() { // 2^log2(z) = z assert!(close(c.log2().exp2(), c)); } } #[test] fn test_trig_to_hyperbolic() { for &c in all_consts.iter() { // sin(iz) = i sinh(z) assert!(close((_0_1i * c).sin(), _0_1i * c.sinh())); // cos(iz) = cosh(z) assert!(close((_0_1i * c).cos(), c.cosh())); // tan(iz) = i tanh(z) assert!(close((_0_1i * c).tan(), _0_1i * c.tanh())); } } #[test] fn test_trig_identities() { for &c in all_consts.iter() { // tan(z) = sin(z)/cos(z) assert!(close(c.tan(), c.sin() / c.cos())); // sin(z)^2 + cos(z)^2 = 1 assert!(close(c.sin() * c.sin() + c.cos() * c.cos(), _1_0i)); // sin(asin(z)) = z assert!(close(c.asin().sin(), c)); // cos(acos(z)) = z assert!(close(c.acos().cos(), c)); // tan(atan(z)) = z // i and -i are branch points if c != _0_1i && c != _0_1i.scale(-1.0) { assert!(close(c.atan().tan(), c)); } // sin(z) = (e^(iz) - e^(-iz))/(2i) assert!(close( ((_0_1i * c).exp() - (_0_1i * c).exp().inv()) / _0_1i.scale(2.0), c.sin() )); // cos(z) = (e^(iz) + e^(-iz))/2 assert!(close( ((_0_1i * c).exp() + (_0_1i * c).exp().inv()).unscale(2.0), c.cos() )); // tan(z) = i (1 - e^(2iz))/(1 + e^(2iz)) assert!(close( _0_1i * (_1_0i - (_0_1i * c).scale(2.0).exp()) / (_1_0i + (_0_1i * c).scale(2.0).exp()), c.tan() )); } } #[test] fn test_hyperbolic_identites() { for &c in all_consts.iter() { // tanh(z) = sinh(z)/cosh(z) assert!(close(c.tanh(), c.sinh() / c.cosh())); // cosh(z)^2 - sinh(z)^2 = 1 assert!(close(c.cosh() * c.cosh() - c.sinh() * c.sinh(), _1_0i)); // sinh(asinh(z)) = z assert!(close(c.asinh().sinh(), c)); // cosh(acosh(z)) = z assert!(close(c.acosh().cosh(), c)); // tanh(atanh(z)) = z // 1 and -1 are branch points if c != _1_0i && c != _1_0i.scale(-1.0) { assert!(close(c.atanh().tanh(), c)); } // sinh(z) = (e^z - e^(-z))/2 assert!(close((c.exp() - c.exp().inv()).unscale(2.0), c.sinh())); // cosh(z) = (e^z + e^(-z))/2 assert!(close((c.exp() + c.exp().inv()).unscale(2.0), c.cosh())); // tanh(z) = ( e^(2z) - 1)/(e^(2z) + 1) assert!(close( (c.scale(2.0).exp() - _1_0i) / (c.scale(2.0).exp() + _1_0i), c.tanh() )); } } } // Test both a + b and a += b macro_rules! test_a_op_b { ($a:ident + $b:expr, $answer:expr) => { assert_eq!($a + $b, $answer); assert_eq!( { let mut x = $a; x += $b; x }, $answer ); }; ($a:ident - $b:expr, $answer:expr) => { assert_eq!($a - $b, $answer); assert_eq!( { let mut x = $a; x -= $b; x }, $answer ); }; ($a:ident * $b:expr, $answer:expr) => { assert_eq!($a * $b, $answer); assert_eq!( { let mut x = $a; x *= $b; x }, $answer ); }; ($a:ident / $b:expr, $answer:expr) => { assert_eq!($a / $b, $answer); assert_eq!( { let mut x = $a; x /= $b; x }, $answer ); }; ($a:ident % $b:expr, $answer:expr) => { assert_eq!($a % $b, $answer); assert_eq!( { let mut x = $a; x %= $b; x }, $answer ); }; } // Test both a + b and a + &b macro_rules! test_op { ($a:ident $op:tt $b:expr, $answer:expr) => { test_a_op_b!($a $op $b, $answer); test_a_op_b!($a $op &$b, $answer); }; } mod complex_arithmetic { use super::{_05_05i, _0_0i, _0_1i, _1_0i, _1_1i, _4_2i, _neg1_1i, all_consts}; use num_traits::{MulAdd, MulAddAssign, Zero}; #[test] fn test_add() { test_op!(_05_05i + _05_05i, _1_1i); test_op!(_0_1i + _1_0i, _1_1i); test_op!(_1_0i + _neg1_1i, _0_1i); for &c in all_consts.iter() { test_op!(_0_0i + c, c); test_op!(c + _0_0i, c); } } #[test] fn test_sub() { test_op!(_05_05i - _05_05i, _0_0i); test_op!(_0_1i - _1_0i, _neg1_1i); test_op!(_0_1i - _neg1_1i, _1_0i); for &c in all_consts.iter() { test_op!(c - _0_0i, c); test_op!(c - c, _0_0i); } } #[test] fn test_mul() { test_op!(_05_05i * _05_05i, _0_1i.unscale(2.0)); test_op!(_1_1i * _0_1i, _neg1_1i); // i^2 & i^4 test_op!(_0_1i * _0_1i, -_1_0i); assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i); for &c in all_consts.iter() { test_op!(c * _1_0i, c); test_op!(_1_0i * c, c); } } #[test] #[cfg(any(feature = "std", feature = "libm"))] fn test_mul_add_float() { assert_eq!(_05_05i.mul_add(_05_05i, _0_0i), _05_05i * _05_05i + _0_0i); assert_eq!(_05_05i * _05_05i + _0_0i, _05_05i.mul_add(_05_05i, _0_0i)); assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i); assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i); assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i)); let mut x = _1_0i; x.mul_add_assign(_1_0i, _1_0i); assert_eq!(x, _1_0i * _1_0i + _1_0i); for &a in &all_consts { for &b in &all_consts { for &c in &all_consts { let abc = a * b + c; assert_eq!(a.mul_add(b, c), abc); let mut x = a; x.mul_add_assign(b, c); assert_eq!(x, abc); } } } } #[test] fn test_mul_add() { use super::Complex; const _0_0i: Complex = Complex { re: 0, im: 0 }; const _1_0i: Complex = Complex { re: 1, im: 0 }; const _1_1i: Complex = Complex { re: 1, im: 1 }; const _0_1i: Complex = Complex { re: 0, im: 1 }; const _neg1_1i: Complex = Complex { re: -1, im: 1 }; const all_consts: [Complex; 5] = [_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i]; assert_eq!(_1_0i.mul_add(_1_0i, _0_0i), _1_0i * _1_0i + _0_0i); assert_eq!(_1_0i * _1_0i + _0_0i, _1_0i.mul_add(_1_0i, _0_0i)); assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i); assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i); assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i)); let mut x = _1_0i; x.mul_add_assign(_1_0i, _1_0i); assert_eq!(x, _1_0i * _1_0i + _1_0i); for &a in &all_consts { for &b in &all_consts { for &c in &all_consts { let abc = a * b + c; assert_eq!(a.mul_add(b, c), abc); let mut x = a; x.mul_add_assign(b, c); assert_eq!(x, abc); } } } } #[test] fn test_div() { test_op!(_neg1_1i / _0_1i, _1_1i); for &c in all_consts.iter() { if c != Zero::zero() { test_op!(c / c, _1_0i); } } } #[test] fn test_rem() { test_op!(_neg1_1i % _0_1i, _0_0i); test_op!(_4_2i % _0_1i, _0_0i); test_op!(_05_05i % _0_1i, _05_05i); test_op!(_05_05i % _1_1i, _05_05i); assert_eq!((_4_2i + _05_05i) % _0_1i, _05_05i); assert_eq!((_4_2i + _05_05i) % _1_1i, _05_05i); } #[test] fn test_neg() { assert_eq!(-_1_0i + _0_1i, _neg1_1i); assert_eq!((-_0_1i) * _0_1i, _1_0i); for &c in all_consts.iter() { assert_eq!(-(-c), c); } } } mod real_arithmetic { use super::super::Complex; use super::{_4_2i, _neg1_1i}; #[test] fn test_add() { test_op!(_4_2i + 0.5, Complex::new(4.5, 2.0)); assert_eq!(0.5 + _4_2i, Complex::new(4.5, 2.0)); } #[test] fn test_sub() { test_op!(_4_2i - 0.5, Complex::new(3.5, 2.0)); assert_eq!(0.5 - _4_2i, Complex::new(-3.5, -2.0)); } #[test] fn test_mul() { assert_eq!(_4_2i * 0.5, Complex::new(2.0, 1.0)); assert_eq!(0.5 * _4_2i, Complex::new(2.0, 1.0)); } #[test] fn test_div() { assert_eq!(_4_2i / 0.5, Complex::new(8.0, 4.0)); assert_eq!(0.5 / _4_2i, Complex::new(0.1, -0.05)); } #[test] fn test_rem() { assert_eq!(_4_2i % 2.0, Complex::new(0.0, 0.0)); assert_eq!(_4_2i % 3.0, Complex::new(1.0, 2.0)); assert_eq!(3.0 % _4_2i, Complex::new(3.0, 0.0)); assert_eq!(_neg1_1i % 2.0, _neg1_1i); assert_eq!(-_4_2i % 3.0, Complex::new(-1.0, -2.0)); } #[test] fn test_div_rem_gaussian() { // These would overflow with `norm_sqr` division. let max = Complex::new(255u8, 255u8); assert_eq!(max / 200, Complex::new(1, 1)); assert_eq!(max % 200, Complex::new(55, 55)); } } #[test] fn test_to_string() { fn test(c: Complex64, s: String) { assert_eq!(c.to_string(), s); } test(_0_0i, "0+0i".to_string()); test(_1_0i, "1+0i".to_string()); test(_0_1i, "0+1i".to_string()); test(_1_1i, "1+1i".to_string()); test(_neg1_1i, "-1+1i".to_string()); test(-_neg1_1i, "1-1i".to_string()); test(_05_05i, "0.5+0.5i".to_string()); } #[test] fn test_string_formatting() { let a = Complex::new(1.23456, 123.456); assert_eq!(format!("{}", a), "1.23456+123.456i"); assert_eq!(format!("{:.2}", a), "1.23+123.46i"); assert_eq!(format!("{:.2e}", a), "1.23e0+1.23e2i"); assert_eq!(format!("{:+.2E}", a), "+1.23E0+1.23E2i"); #[cfg(feature = "std")] assert_eq!(format!("{:+20.2E}", a), " +1.23E0+1.23E2i"); let b = Complex::new(0x80, 0xff); assert_eq!(format!("{:X}", b), "80+FFi"); assert_eq!(format!("{:#x}", b), "0x80+0xffi"); assert_eq!(format!("{:+#b}", b), "+0b10000000+0b11111111i"); assert_eq!(format!("{:+#o}", b), "+0o200+0o377i"); #[cfg(feature = "std")] assert_eq!(format!("{:+#16o}", b), " +0o200+0o377i"); let c = Complex::new(-10, -10000); assert_eq!(format!("{}", c), "-10-10000i"); #[cfg(feature = "std")] assert_eq!(format!("{:16}", c), " -10-10000i"); } #[test] fn test_hash() { let a = Complex::new(0i32, 0i32); let b = Complex::new(1i32, 0i32); let c = Complex::new(0i32, 1i32); assert!(crate::hash(&a) != crate::hash(&b)); assert!(crate::hash(&b) != crate::hash(&c)); assert!(crate::hash(&c) != crate::hash(&a)); } #[test] fn test_hashset() { use std::collections::HashSet; let a = Complex::new(0i32, 0i32); let b = Complex::new(1i32, 0i32); let c = Complex::new(0i32, 1i32); let set: HashSet<_> = [a, b, c].iter().cloned().collect(); assert!(set.contains(&a)); assert!(set.contains(&b)); assert!(set.contains(&c)); assert!(!set.contains(&(a + b + c))); } #[test] fn test_is_nan() { assert!(!_1_1i.is_nan()); let a = Complex::new(f64::NAN, f64::NAN); assert!(a.is_nan()); } #[test] fn test_is_nan_special_cases() { let a = Complex::new(0f64, f64::NAN); let b = Complex::new(f64::NAN, 0f64); assert!(a.is_nan()); assert!(b.is_nan()); } #[test] fn test_is_infinite() { let a = Complex::new(2f64, f64::INFINITY); assert!(a.is_infinite()); } #[test] fn test_is_finite() { assert!(_1_1i.is_finite()) } #[test] fn test_is_normal() { let a = Complex::new(0f64, f64::NAN); let b = Complex::new(2f64, f64::INFINITY); assert!(!a.is_normal()); assert!(!b.is_normal()); assert!(_1_1i.is_normal()); } #[test] fn test_from_str() { fn test(z: Complex64, s: &str) { assert_eq!(FromStr::from_str(s), Ok(z)); } test(_0_0i, "0 + 0i"); test(_0_0i, "0+0j"); test(_0_0i, "0 - 0j"); test(_0_0i, "0-0i"); test(_0_0i, "0i + 0"); test(_0_0i, "0"); test(_0_0i, "-0"); test(_0_0i, "0i"); test(_0_0i, "0j"); test(_0_0i, "+0j"); test(_0_0i, "-0i"); test(_1_0i, "1 + 0i"); test(_1_0i, "1+0j"); test(_1_0i, "1 - 0j"); test(_1_0i, "+1-0i"); test(_1_0i, "-0j+1"); test(_1_0i, "1"); test(_1_1i, "1 + i"); test(_1_1i, "1+j"); test(_1_1i, "1 + 1j"); test(_1_1i, "1+1i"); test(_1_1i, "i + 1"); test(_1_1i, "1i+1"); test(_1_1i, "+j+1"); test(_0_1i, "0 + i"); test(_0_1i, "0+j"); test(_0_1i, "-0 + j"); test(_0_1i, "-0+i"); test(_0_1i, "0 + 1i"); test(_0_1i, "0+1j"); test(_0_1i, "-0 + 1j"); test(_0_1i, "-0+1i"); test(_0_1i, "j + 0"); test(_0_1i, "i"); test(_0_1i, "j"); test(_0_1i, "1j"); test(_neg1_1i, "-1 + i"); test(_neg1_1i, "-1+j"); test(_neg1_1i, "-1 + 1j"); test(_neg1_1i, "-1+1i"); test(_neg1_1i, "1i-1"); test(_neg1_1i, "j + -1"); test(_05_05i, "0.5 + 0.5i"); test(_05_05i, "0.5+0.5j"); test(_05_05i, "5e-1+0.5j"); test(_05_05i, "5E-1 + 0.5j"); test(_05_05i, "5E-1i + 0.5"); test(_05_05i, "0.05e+1j + 50E-2"); } #[test] fn test_from_str_radix() { fn test(z: Complex64, s: &str, radix: u32) { let res: Result::FromStrRadixErr> = Num::from_str_radix(s, radix); assert_eq!(res.unwrap(), z) } test(_4_2i, "4+2i", 10); test(Complex::new(15.0, 32.0), "F+20i", 16); test(Complex::new(15.0, 32.0), "1111+100000i", 2); test(Complex::new(-15.0, -32.0), "-F-20i", 16); test(Complex::new(-15.0, -32.0), "-1111-100000i", 2); fn test_error(s: &str, radix: u32) -> ParseComplexError<::FromStrRadixErr> { let res = Complex64::from_str_radix(s, radix); res.expect_err(&format!("Expected failure on input {:?}", s)) } let err = test_error("1ii", 19); if let ComplexErrorKind::UnsupportedRadix = err.kind { /* pass */ } else { panic!("Expected failure on invalid radix, got {:?}", err); } let err = test_error("1 + 0", 16); if let ComplexErrorKind::ExprError = err.kind { /* pass */ } else { panic!("Expected failure on expr error, got {:?}", err); } } #[test] #[should_panic(expected = "radix is too high")] fn test_from_str_radix_fail() { // ensure we preserve the underlying panic on radix > 36 let _complex = Complex64::from_str_radix("1", 37); } #[test] fn test_from_str_fail() { fn test(s: &str) { let complex: Result = FromStr::from_str(s); assert!( complex.is_err(), "complex {:?} -> {:?} should be an error", s, complex ); } test("foo"); test("6E"); test("0 + 2.718"); test("1 - -2i"); test("314e-2ij"); test("4.3j - i"); test("1i - 2i"); test("+ 1 - 3.0i"); } #[test] fn test_sum() { let v = vec![_0_1i, _1_0i]; assert_eq!(v.iter().sum::(), _1_1i); assert_eq!(v.into_iter().sum::(), _1_1i); } #[test] fn test_prod() { let v = vec![_0_1i, _1_0i]; assert_eq!(v.iter().product::(), _0_1i); assert_eq!(v.into_iter().product::(), _0_1i); } #[test] fn test_zero() { let zero = Complex64::zero(); assert!(zero.is_zero()); let mut c = Complex::new(1.23, 4.56); assert!(!c.is_zero()); assert_eq!(c + zero, c); c.set_zero(); assert!(c.is_zero()); } #[test] fn test_one() { let one = Complex64::one(); assert!(one.is_one()); let mut c = Complex::new(1.23, 4.56); assert!(!c.is_one()); assert_eq!(c * one, c); c.set_one(); assert!(c.is_one()); } #[test] #[allow(clippy::float_cmp)] fn test_const() { const R: f64 = 12.3; const I: f64 = -4.5; const C: Complex64 = Complex::new(R, I); assert_eq!(C.re, 12.3); assert_eq!(C.im, -4.5); } }