/* * Copyright 2023 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/private/base/SkFloatingPoint.h" #include #include #include #include // Return the positive magnitude of a double. // * normalized - given 1.bbb...bbb x 2^e return 2^e. // * subnormal - return 0. // * nan & infinity - return infinity static double magnitude(double a) { static constexpr int64_t extractMagnitude = 0b0'11111111111'0000000000000000000000000000000000000000000000000000; int64_t bits; memcpy(&bits, &a, sizeof(bits)); bits &= extractMagnitude; double out; memcpy(&out, &bits, sizeof(out)); return out; } bool sk_doubles_nearly_equal_ulps(double a, double b, uint8_t maxUlpsDiff) { // The maximum magnitude to construct the ulp tolerance. The proper magnitude for // subnormal numbers is minMagnitude, which is 2^-1021, so if a and b are subnormal (having a // magnitude of 0) use minMagnitude. If a or b are infinity or nan, then maxMagnitude will be // +infinity. This means the tolerance will also be infinity, but the expression b - a below // will either be NaN or infinity, so a tolerance of infinity doesn't matter. static constexpr double minMagnitude = std::numeric_limits::min(); const double maxMagnitude = std::max(std::max(magnitude(a), minMagnitude), magnitude(b)); // Given a magnitude, this is the factor that generates the ulp for that magnitude. // In numbers, 2 ^ (-precision + 1) = 2 ^ -52. static constexpr double ulpFactor = std::numeric_limits::epsilon(); // The tolerance in ULPs given the maxMagnitude. Because the return statement must use < // for comparison instead of <= to correctly handle infinities, bump maxUlpsDiff up to get // the full maxUlpsDiff range. const double tolerance = maxMagnitude * (ulpFactor * (maxUlpsDiff + 1)); // The expression a == b is mainly for handling infinities, but it also catches the exact // equals. return a == b || std::abs(b - a) < tolerance; } bool sk_double_nearly_zero(double a) { return a == 0 || fabs(a) < std::numeric_limits::epsilon(); }