/* * Copyright 2020 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkM44.h" #include "include/core/SkMatrix.h" #include "include/core/SkRect.h" #include "include/private/base/SkDebug.h" #include "include/private/base/SkFloatingPoint.h" #include "src/base/SkVx.h" #include "src/core/SkMatrixInvert.h" #include "src/core/SkMatrixPriv.h" #include "src/core/SkPathPriv.h" bool SkM44::operator==(const SkM44& other) const { if (this == &other) { return true; } auto a0 = skvx::float4::Load(fMat + 0); auto a1 = skvx::float4::Load(fMat + 4); auto a2 = skvx::float4::Load(fMat + 8); auto a3 = skvx::float4::Load(fMat + 12); auto b0 = skvx::float4::Load(other.fMat + 0); auto b1 = skvx::float4::Load(other.fMat + 4); auto b2 = skvx::float4::Load(other.fMat + 8); auto b3 = skvx::float4::Load(other.fMat + 12); auto eq = (a0 == b0) & (a1 == b1) & (a2 == b2) & (a3 == b3); return (eq[0] & eq[1] & eq[2] & eq[3]) == ~0; } static void transpose_arrays(SkScalar dst[], const SkScalar src[]) { dst[0] = src[0]; dst[1] = src[4]; dst[2] = src[8]; dst[3] = src[12]; dst[4] = src[1]; dst[5] = src[5]; dst[6] = src[9]; dst[7] = src[13]; dst[8] = src[2]; dst[9] = src[6]; dst[10] = src[10]; dst[11] = src[14]; dst[12] = src[3]; dst[13] = src[7]; dst[14] = src[11]; dst[15] = src[15]; } void SkM44::getRowMajor(SkScalar v[]) const { transpose_arrays(v, fMat); } SkM44& SkM44::setConcat(const SkM44& a, const SkM44& b) { auto c0 = skvx::float4::Load(a.fMat + 0); auto c1 = skvx::float4::Load(a.fMat + 4); auto c2 = skvx::float4::Load(a.fMat + 8); auto c3 = skvx::float4::Load(a.fMat + 12); auto compute = [&](skvx::float4 r) { return c0*r[0] + (c1*r[1] + (c2*r[2] + c3*r[3])); }; auto m0 = compute(skvx::float4::Load(b.fMat + 0)); auto m1 = compute(skvx::float4::Load(b.fMat + 4)); auto m2 = compute(skvx::float4::Load(b.fMat + 8)); auto m3 = compute(skvx::float4::Load(b.fMat + 12)); m0.store(fMat + 0); m1.store(fMat + 4); m2.store(fMat + 8); m3.store(fMat + 12); return *this; } SkM44& SkM44::preConcat(const SkMatrix& b) { auto c0 = skvx::float4::Load(fMat + 0); auto c1 = skvx::float4::Load(fMat + 4); auto c3 = skvx::float4::Load(fMat + 12); auto compute = [&](float r0, float r1, float r3) { return (c0*r0 + (c1*r1 + c3*r3)); }; auto m0 = compute(b[0], b[3], b[6]); auto m1 = compute(b[1], b[4], b[7]); auto m3 = compute(b[2], b[5], b[8]); m0.store(fMat + 0); m1.store(fMat + 4); m3.store(fMat + 12); return *this; } SkM44& SkM44::preTranslate(SkScalar x, SkScalar y, SkScalar z) { auto c0 = skvx::float4::Load(fMat + 0); auto c1 = skvx::float4::Load(fMat + 4); auto c2 = skvx::float4::Load(fMat + 8); auto c3 = skvx::float4::Load(fMat + 12); // only need to update the last column (c0*x + (c1*y + (c2*z + c3))).store(fMat + 12); return *this; } SkM44& SkM44::postTranslate(SkScalar x, SkScalar y, SkScalar z) { skvx::float4 t = { x, y, z, 0 }; (t * fMat[ 3] + skvx::float4::Load(fMat + 0)).store(fMat + 0); (t * fMat[ 7] + skvx::float4::Load(fMat + 4)).store(fMat + 4); (t * fMat[11] + skvx::float4::Load(fMat + 8)).store(fMat + 8); (t * fMat[15] + skvx::float4::Load(fMat + 12)).store(fMat + 12); return *this; } SkM44& SkM44::preScale(SkScalar x, SkScalar y) { auto c0 = skvx::float4::Load(fMat + 0); auto c1 = skvx::float4::Load(fMat + 4); (c0 * x).store(fMat + 0); (c1 * y).store(fMat + 4); return *this; } SkM44& SkM44::preScale(SkScalar x, SkScalar y, SkScalar z) { auto c0 = skvx::float4::Load(fMat + 0); auto c1 = skvx::float4::Load(fMat + 4); auto c2 = skvx::float4::Load(fMat + 8); (c0 * x).store(fMat + 0); (c1 * y).store(fMat + 4); (c2 * z).store(fMat + 8); return *this; } SkV4 SkM44::map(float x, float y, float z, float w) const { auto c0 = skvx::float4::Load(fMat + 0); auto c1 = skvx::float4::Load(fMat + 4); auto c2 = skvx::float4::Load(fMat + 8); auto c3 = skvx::float4::Load(fMat + 12); SkV4 v; (c0*x + (c1*y + (c2*z + c3*w))).store(&v.x); return v; } static SkRect map_rect_affine(const SkRect& src, const float mat[16]) { // When multiplied against vectors of the form , 'flip' allows a single min() // to compute both the min and "negated" max between the xy coordinates. Once finished, another // multiplication produces the original max. const skvx::float4 flip{1.f, 1.f, -1.f, -1.f}; // Since z = 0 and it's assumed ther's no perspective, only load the upper 2x2 and (tx,ty) in c3 auto c0 = skvx::shuffle<0,1,0,1>(skvx::float2::Load(mat + 0)) * flip; auto c1 = skvx::shuffle<0,1,0,1>(skvx::float2::Load(mat + 4)) * flip; auto c3 = skvx::shuffle<0,1,0,1>(skvx::float2::Load(mat + 12)); // Compute the min and max of the four transformed corners pre-translation; then translate once // at the end. auto minMax = c3 + flip * min(min(c0 * src.fLeft + c1 * src.fTop, c0 * src.fRight + c1 * src.fTop), min(c0 * src.fLeft + c1 * src.fBottom, c0 * src.fRight + c1 * src.fBottom)); // minMax holds (min x, min y, max x, max y) so can be copied into an SkRect expecting l,t,r,b SkRect r; minMax.store(&r); return r; } static SkRect map_rect_perspective(const SkRect& src, const float mat[16]) { // Like map_rect_affine, z = 0 so we can skip the 3rd column, but we do need to compute w's // for each corner of the src rect. auto c0 = skvx::float4::Load(mat + 0); auto c1 = skvx::float4::Load(mat + 4); auto c3 = skvx::float4::Load(mat + 12); // Unlike map_rect_affine, we do not defer the 4th column since we may need to homogeneous // coordinates to clip against the w=0 plane auto tl = c0 * src.fLeft + c1 * src.fTop + c3; auto tr = c0 * src.fRight + c1 * src.fTop + c3; auto bl = c0 * src.fLeft + c1 * src.fBottom + c3; auto br = c0 * src.fRight + c1 * src.fBottom + c3; // After clipping to w>0 and projecting to 2d, 'project' employs the same negation trick to // compute min and max at the same time. const skvx::float4 flip{1.f, 1.f, -1.f, -1.f}; auto project = [&flip](const skvx::float4& p0, const skvx::float4& p1, const skvx::float4& p2) { float w0 = p0[3]; if (w0 >= SkPathPriv::kW0PlaneDistance) { // Unclipped, just divide by w return flip * skvx::shuffle<0,1,0,1>(p0) / w0; } else { auto clip = [&](const skvx::float4& p) { float w = p[3]; if (w >= SkPathPriv::kW0PlaneDistance) { float t = (SkPathPriv::kW0PlaneDistance - w0) / (w - w0); auto c = (t * skvx::shuffle<0,1>(p) + (1.f - t) * skvx::shuffle<0,1>(p0)) / SkPathPriv::kW0PlaneDistance; return flip * skvx::shuffle<0,1,0,1>(c); } else { return skvx::float4(SK_ScalarInfinity); } }; // Clip both edges leaving p0, and return the min/max of the two clipped points // (since clip returns infinity when both p0 and 2nd vertex have w<0, it'll // automatically be ignored). return min(clip(p1), clip(p2)); } }; // Project all 4 corners, and pass in their adjacent vertices for clipping if it has w < 0, // then accumulate the min and max xy's. auto minMax = flip * min(min(project(tl, tr, bl), project(tr, br, tl)), min(project(br, bl, tr), project(bl, tl, br))); SkRect r; minMax.store(&r); return r; } SkRect SkMatrixPriv::MapRect(const SkM44& m, const SkRect& src) { const bool hasPerspective = m.fMat[3] != 0 || m.fMat[7] != 0 || m.fMat[11] != 0 || m.fMat[15] != 1; if (hasPerspective) { return map_rect_perspective(src, m.fMat); } else { return map_rect_affine(src, m.fMat); } } void SkM44::normalizePerspective() { // If the bottom row of the matrix is [0, 0, 0, not_one], we will treat the matrix as if it // is in perspective, even though it stills behaves like its affine. If we divide everything // by the not_one value, then it will behave the same, but will be treated as affine, // and therefore faster (e.g. clients can forward-difference calculations). if (fMat[15] != 1 && fMat[15] != 0 && fMat[3] == 0 && fMat[7] == 0 && fMat[11] == 0) { double inv = 1.0 / fMat[15]; (skvx::float4::Load(fMat + 0) * inv).store(fMat + 0); (skvx::float4::Load(fMat + 4) * inv).store(fMat + 4); (skvx::float4::Load(fMat + 8) * inv).store(fMat + 8); (skvx::float4::Load(fMat + 12) * inv).store(fMat + 12); fMat[15] = 1.0f; } } /////////////////////////////////////////////////////////////////////////////// /** We always perform the calculation in doubles, to avoid prematurely losing precision along the way. This relies on the compiler automatically promoting our SkScalar values to double (if needed). */ bool SkM44::invert(SkM44* inverse) const { SkScalar tmp[16]; if (SkInvert4x4Matrix(fMat, tmp) == 0.0f) { return false; } memcpy(inverse->fMat, tmp, sizeof(tmp)); return true; } SkM44 SkM44::transpose() const { SkM44 trans(SkM44::kUninitialized_Constructor); transpose_arrays(trans.fMat, fMat); return trans; } SkM44& SkM44::setRotateUnitSinCos(SkV3 axis, SkScalar sinAngle, SkScalar cosAngle) { // Taken from "Essential Mathematics for Games and Interactive Applications" // James M. Van Verth and Lars M. Bishop -- third edition SkScalar x = axis.x; SkScalar y = axis.y; SkScalar z = axis.z; SkScalar c = cosAngle; SkScalar s = sinAngle; SkScalar t = 1 - c; *this = { t*x*x + c, t*x*y - s*z, t*x*z + s*y, 0, t*x*y + s*z, t*y*y + c, t*y*z - s*x, 0, t*x*z - s*y, t*y*z + s*x, t*z*z + c, 0, 0, 0, 0, 1 }; return *this; } SkM44& SkM44::setRotate(SkV3 axis, SkScalar radians) { SkScalar len = axis.length(); if (len > 0 && SkIsFinite(len)) { this->setRotateUnit(axis * (SK_Scalar1 / len), radians); } else { this->setIdentity(); } return *this; } /////////////////////////////////////////////////////////////////////////////// void SkM44::dump() const { SkDebugf("|%g %g %g %g|\n" "|%g %g %g %g|\n" "|%g %g %g %g|\n" "|%g %g %g %g|\n", fMat[0], fMat[4], fMat[8], fMat[12], fMat[1], fMat[5], fMat[9], fMat[13], fMat[2], fMat[6], fMat[10], fMat[14], fMat[3], fMat[7], fMat[11], fMat[15]); } /////////////////////////////////////////////////////////////////////////////// SkM44 SkM44::RectToRect(const SkRect& src, const SkRect& dst) { if (src.isEmpty()) { return SkM44(); } else if (dst.isEmpty()) { return SkM44::Scale(0.f, 0.f, 0.f); } float sx = dst.width() / src.width(); float sy = dst.height() / src.height(); float tx = dst.fLeft - sx * src.fLeft; float ty = dst.fTop - sy * src.fTop; return SkM44{sx, 0.f, 0.f, tx, 0.f, sy, 0.f, ty, 0.f, 0.f, 1.f, 0.f, 0.f, 0.f, 0.f, 1.f}; } static SkV3 normalize(SkV3 v) { const auto vlen = v.length(); return SkScalarNearlyZero(vlen) ? v : v * (1.0f / vlen); } static SkV4 v4(SkV3 v, SkScalar w) { return {v.x, v.y, v.z, w}; } SkM44 SkM44::LookAt(const SkV3& eye, const SkV3& center, const SkV3& up) { SkV3 f = normalize(center - eye); SkV3 u = normalize(up); SkV3 s = normalize(f.cross(u)); SkM44 m(SkM44::kUninitialized_Constructor); if (!SkM44::Cols(v4(s, 0), v4(s.cross(f), 0), v4(-f, 0), v4(eye, 1)).invert(&m)) { m.setIdentity(); } return m; } SkM44 SkM44::Perspective(float near, float far, float angle) { SkASSERT(far > near); float denomInv = sk_ieee_float_divide(1, far - near); float halfAngle = angle * 0.5f; SkASSERT(halfAngle != 0); float cot = sk_ieee_float_divide(1, std::tan(halfAngle)); SkM44 m; m.setRC(0, 0, cot); m.setRC(1, 1, cot); m.setRC(2, 2, (far + near) * denomInv); m.setRC(2, 3, 2 * far * near * denomInv); m.setRC(3, 2, -1); return m; }