/* * Copyright 2023 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkTypes.h" #ifndef SK_USE_DRAWING_MIPMAP_DOWNSAMPLER #include "include/private/SkColorData.h" #include "src/base/SkHalf.h" #include "src/base/SkVx.h" #include "src/core/SkMipmap.h" namespace { struct ColorTypeFilter_8888 { typedef uint32_t Type; static skvx::Vec<4, uint16_t> Expand(uint32_t x) { return skvx::cast(skvx::byte4::Load(&x)); } static uint32_t Compact(const skvx::Vec<4, uint16_t>& x) { uint32_t r; skvx::cast(x).store(&r); return r; } }; struct ColorTypeFilter_565 { typedef uint16_t Type; static uint32_t Expand(uint16_t x) { return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16); } static uint16_t Compact(uint32_t x) { return ((x & ~SK_G16_MASK_IN_PLACE) & 0xFFFF) | ((x >> 16) & SK_G16_MASK_IN_PLACE); } }; struct ColorTypeFilter_4444 { typedef uint16_t Type; static uint32_t Expand(uint16_t x) { return (x & 0xF0F) | ((x & ~0xF0F) << 12); } static uint16_t Compact(uint32_t x) { return (x & 0xF0F) | ((x >> 12) & ~0xF0F); } }; struct ColorTypeFilter_8 { typedef uint8_t Type; static unsigned Expand(unsigned x) { return x; } static uint8_t Compact(unsigned x) { return (uint8_t)x; } }; struct ColorTypeFilter_Alpha_F16 { typedef uint16_t Type; static skvx::float4 Expand(uint16_t x) { uint64_t x4 = (uint64_t)x; // add 0s out to four lanes (0,0,0,x) return from_half(skvx::half4::Load(&x4)); } static uint16_t Compact(const skvx::float4& x) { uint64_t r; to_half(x).store(&r); return r & 0xFFFF; // but ignore the extra 3 here } }; struct ColorTypeFilter_RGBA_F16 { typedef uint64_t Type; // SkHalf x4 static skvx::float4 Expand(uint64_t x) { return from_half(skvx::half4::Load(&x)); } static uint64_t Compact(const skvx::float4& x) { uint64_t r; to_half(x).store(&r); return r; } }; struct ColorTypeFilter_88 { typedef uint16_t Type; static uint32_t Expand(uint16_t x) { return (x & 0xFF) | ((x & ~0xFF) << 8); } static uint16_t Compact(uint32_t x) { return (x & 0xFF) | ((x >> 8) & ~0xFF); } }; struct ColorTypeFilter_1616 { typedef uint32_t Type; static uint64_t Expand(uint32_t x) { return (x & 0xFFFF) | ((x & ~0xFFFF) << 16); } static uint16_t Compact(uint64_t x) { return (x & 0xFFFF) | ((x >> 16) & ~0xFFFF); } }; struct ColorTypeFilter_F16F16 { typedef uint32_t Type; static skvx::float4 Expand(uint32_t x) { uint64_t x4 = (uint64_t)x; // // add 0s out to four lanes (0,0,x,x) return from_half(skvx::half4::Load(&x4)); } static uint32_t Compact(const skvx::float4& x) { uint64_t r; to_half(x).store(&r); return (uint32_t) (r & 0xFFFFFFFF); // but ignore the extra 2 here } }; struct ColorTypeFilter_16161616 { typedef uint64_t Type; static skvx::Vec<4, uint32_t> Expand(uint64_t x) { return skvx::cast(skvx::Vec<4, uint16_t>::Load(&x)); } static uint64_t Compact(const skvx::Vec<4, uint32_t>& x) { uint64_t r; skvx::cast(x).store(&r); return r; } }; struct ColorTypeFilter_16 { typedef uint16_t Type; static uint32_t Expand(uint16_t x) { return x; } static uint16_t Compact(uint32_t x) { return (uint16_t) x; } }; struct ColorTypeFilter_1010102 { typedef uint32_t Type; static uint64_t Expand(uint64_t x) { return (((x ) & 0x3ff) ) | (((x >> 10) & 0x3ff) << 20) | (((x >> 20) & 0x3ff) << 40) | (((x >> 30) & 0x3 ) << 60); } static uint32_t Compact(uint64_t x) { return (((x ) & 0x3ff) ) | (((x >> 20) & 0x3ff) << 10) | (((x >> 40) & 0x3ff) << 20) | (((x >> 60) & 0x3 ) << 30); } }; template T add_121(const T& a, const T& b, const T& c) { return a + b + b + c; } template T shift_right(const T& x, int bits) { return x >> bits; } skvx::float4 shift_right(const skvx::float4& x, int bits) { return x * (1.0f / (1 << bits)); } template T shift_left(const T& x, int bits) { return x << bits; } skvx::float4 shift_left(const skvx::float4& x, int bits) { return x * (1 << bits); } // // To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50) // If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50) // In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings, // else for even cases, we just use a 2x box filter. // // This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of // src pixels we need to sample in each dimension to produce 1 dst pixel. // // OpenGL expects a full mipmap stack to contain anisotropic space as well. // This means a 100x1 image would continue down to a 50x1 image, 25x1 image... // Because of this, we need 4 more anisotropic filters: 1x2, 1x3, 2x1, 3x1. template void downsample_1_2(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast(src); auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); auto d = static_cast(dst); for (int i = 0; i < count; ++i) { auto c00 = F::Expand(p0[0]); auto c10 = F::Expand(p1[0]); auto c = c00 + c10; d[i] = F::Compact(shift_right(c, 1)); p0 += 2; p1 += 2; } } template void downsample_1_3(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast(src); auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); auto d = static_cast(dst); for (int i = 0; i < count; ++i) { auto c00 = F::Expand(p0[0]); auto c10 = F::Expand(p1[0]); auto c20 = F::Expand(p2[0]); auto c = add_121(c00, c10, c20); d[i] = F::Compact(shift_right(c, 2)); p0 += 2; p1 += 2; p2 += 2; } } template void downsample_2_1(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast(src); auto d = static_cast(dst); for (int i = 0; i < count; ++i) { auto c00 = F::Expand(p0[0]); auto c01 = F::Expand(p0[1]); auto c = c00 + c01; d[i] = F::Compact(shift_right(c, 1)); p0 += 2; } } template void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast(src); auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); auto d = static_cast(dst); for (int i = 0; i < count; ++i) { auto c00 = F::Expand(p0[0]); auto c01 = F::Expand(p0[1]); auto c10 = F::Expand(p1[0]); auto c11 = F::Expand(p1[1]); auto c = c00 + c10 + c01 + c11; d[i] = F::Compact(shift_right(c, 2)); p0 += 2; p1 += 2; } } template void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast(src); auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); auto d = static_cast(dst); for (int i = 0; i < count; ++i) { auto c00 = F::Expand(p0[0]); auto c01 = F::Expand(p0[1]); auto c10 = F::Expand(p1[0]); auto c11 = F::Expand(p1[1]); auto c20 = F::Expand(p2[0]); auto c21 = F::Expand(p2[1]); auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21); d[i] = F::Compact(shift_right(c, 3)); p0 += 2; p1 += 2; p2 += 2; } } template void downsample_3_1(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast(src); auto d = static_cast(dst); auto c02 = F::Expand(p0[0]); for (int i = 0; i < count; ++i) { auto c00 = c02; auto c01 = F::Expand(p0[1]); c02 = F::Expand(p0[2]); auto c = add_121(c00, c01, c02); d[i] = F::Compact(shift_right(c, 2)); p0 += 2; } } template void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast(src); auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); auto d = static_cast(dst); // Given pixels: // a0 b0 c0 d0 e0 ... // a1 b1 c1 d1 e1 ... // We want: // (a0 + 2*b0 + c0 + a1 + 2*b1 + c1) / 8 // (c0 + 2*d0 + e0 + c1 + 2*d1 + e1) / 8 // ... auto c0 = F::Expand(p0[0]); auto c1 = F::Expand(p1[0]); auto c = c0 + c1; for (int i = 0; i < count; ++i) { auto a = c; auto b0 = F::Expand(p0[1]); auto b1 = F::Expand(p1[1]); auto b = b0 + b0 + b1 + b1; c0 = F::Expand(p0[2]); c1 = F::Expand(p1[2]); c = c0 + c1; auto sum = a + b + c; d[i] = F::Compact(shift_right(sum, 3)); p0 += 2; p1 += 2; } } template void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast(src); auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); auto d = static_cast(dst); // Given pixels: // a0 b0 c0 d0 e0 ... // a1 b1 c1 d1 e1 ... // a2 b2 c2 d2 e2 ... // We want: // (a0 + 2*b0 + c0 + 2*a1 + 4*b1 + 2*c1 + a2 + 2*b2 + c2) / 16 // (c0 + 2*d0 + e0 + 2*c1 + 4*d1 + 2*e1 + c2 + 2*d2 + e2) / 16 // ... auto c0 = F::Expand(p0[0]); auto c1 = F::Expand(p1[0]); auto c2 = F::Expand(p2[0]); auto c = add_121(c0, c1, c2); for (int i = 0; i < count; ++i) { auto a = c; auto b0 = F::Expand(p0[1]); auto b1 = F::Expand(p1[1]); auto b2 = F::Expand(p2[1]); auto b = shift_left(add_121(b0, b1, b2), 1); c0 = F::Expand(p0[2]); c1 = F::Expand(p1[2]); c2 = F::Expand(p2[2]); c = add_121(c0, c1, c2); auto sum = a + b + c; d[i] = F::Compact(shift_right(sum, 4)); p0 += 2; p1 += 2; p2 += 2; } } typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count); struct HQDownSampler : SkMipmapDownSampler { FilterProc* proc_1_2 = nullptr; FilterProc* proc_1_3 = nullptr; FilterProc* proc_2_1 = nullptr; FilterProc* proc_2_2 = nullptr; FilterProc* proc_2_3 = nullptr; FilterProc* proc_3_1 = nullptr; FilterProc* proc_3_2 = nullptr; FilterProc* proc_3_3 = nullptr; void buildLevel(const SkPixmap& dst, const SkPixmap& src) override; }; void HQDownSampler::buildLevel(const SkPixmap& dst, const SkPixmap& src) { const int width = src.width(); const int height = src.height(); FilterProc* proc; if (height & 1) { if (height == 1) { // src-height is 1 if (width & 1) { // src-width is 3 proc = proc_3_1; } else { // src-width is 2 proc = proc_2_1; } } else { // src-height is 3 if (width & 1) { if (width == 1) { // src-width is 1 proc = proc_1_3; } else { // src-width is 3 proc = proc_3_3; } } else { // src-width is 2 proc = proc_2_3; } } } else { // src-height is 2 if (width & 1) { if (width == 1) { // src-width is 1 proc = proc_1_2; } else { // src-width is 3 proc = proc_3_2; } } else { // src-width is 2 proc = proc_2_2; } } const void* srcBasePtr = src.addr(); const size_t srcRB = src.rowBytes(); void* dstBasePtr = dst.writable_addr(); for (int y = 0; y < dst.height(); y++) { proc(dstBasePtr, srcBasePtr, srcRB, dst.width()); srcBasePtr = (const char*)srcBasePtr + srcRB * 2; // jump two rows dstBasePtr = ( char*)dstBasePtr + dst.rowBytes(); } } } // namespace std::unique_ptr SkMipmap::MakeDownSampler(const SkPixmap& root) { FilterProc* proc_1_2 = nullptr; FilterProc* proc_1_3 = nullptr; FilterProc* proc_2_1 = nullptr; FilterProc* proc_2_2 = nullptr; FilterProc* proc_2_3 = nullptr; FilterProc* proc_3_1 = nullptr; FilterProc* proc_3_2 = nullptr; FilterProc* proc_3_3 = nullptr; switch (root.colorType()) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: proc_1_2 = downsample_1_2; proc_1_3 = downsample_1_3; proc_2_1 = downsample_2_1; proc_2_2 = downsample_2_2; proc_2_3 = downsample_2_3; proc_3_1 = downsample_3_1; proc_3_2 = downsample_3_2; proc_3_3 = downsample_3_3; break; case kRGB_565_SkColorType: proc_1_2 = downsample_1_2; proc_1_3 = downsample_1_3; proc_2_1 = downsample_2_1; proc_2_2 = downsample_2_2; proc_2_3 = downsample_2_3; proc_3_1 = downsample_3_1; proc_3_2 = downsample_3_2; proc_3_3 = downsample_3_3; break; case kARGB_4444_SkColorType: proc_1_2 = downsample_1_2; proc_1_3 = downsample_1_3; proc_2_1 = downsample_2_1; proc_2_2 = downsample_2_2; proc_2_3 = downsample_2_3; proc_3_1 = downsample_3_1; proc_3_2 = downsample_3_2; proc_3_3 = downsample_3_3; break; case kAlpha_8_SkColorType: case kGray_8_SkColorType: case kR8_unorm_SkColorType: proc_1_2 = downsample_1_2; proc_1_3 = downsample_1_3; proc_2_1 = downsample_2_1; proc_2_2 = downsample_2_2; proc_2_3 = downsample_2_3; proc_3_1 = downsample_3_1; proc_3_2 = downsample_3_2; proc_3_3 = downsample_3_3; break; case kRGBA_F16Norm_SkColorType: case kRGBA_F16_SkColorType: proc_1_2 = downsample_1_2; proc_1_3 = downsample_1_3; proc_2_1 = downsample_2_1; proc_2_2 = downsample_2_2; proc_2_3 = downsample_2_3; proc_3_1 = downsample_3_1; proc_3_2 = downsample_3_2; proc_3_3 = downsample_3_3; break; case kR8G8_unorm_SkColorType: proc_1_2 = downsample_1_2; proc_1_3 = downsample_1_3; proc_2_1 = downsample_2_1; proc_2_2 = downsample_2_2; proc_2_3 = downsample_2_3; proc_3_1 = downsample_3_1; proc_3_2 = downsample_3_2; proc_3_3 = downsample_3_3; break; case kR16G16_unorm_SkColorType: proc_1_2 = downsample_1_2; proc_1_3 = downsample_1_3; proc_2_1 = downsample_2_1; proc_2_2 = downsample_2_2; proc_2_3 = downsample_2_3; proc_3_1 = downsample_3_1; proc_3_2 = downsample_3_2; proc_3_3 = downsample_3_3; break; case kA16_unorm_SkColorType: proc_1_2 = downsample_1_2; proc_1_3 = downsample_1_3; proc_2_1 = downsample_2_1; proc_2_2 = downsample_2_2; proc_2_3 = downsample_2_3; proc_3_1 = downsample_3_1; proc_3_2 = downsample_3_2; proc_3_3 = downsample_3_3; break; case kRGBA_1010102_SkColorType: case kBGRA_1010102_SkColorType: proc_1_2 = downsample_1_2; proc_1_3 = downsample_1_3; proc_2_1 = downsample_2_1; proc_2_2 = downsample_2_2; proc_2_3 = downsample_2_3; proc_3_1 = downsample_3_1; proc_3_2 = downsample_3_2; proc_3_3 = downsample_3_3; break; case kA16_float_SkColorType: proc_1_2 = downsample_1_2; proc_1_3 = downsample_1_3; proc_2_1 = downsample_2_1; proc_2_2 = downsample_2_2; proc_2_3 = downsample_2_3; proc_3_1 = downsample_3_1; proc_3_2 = downsample_3_2; proc_3_3 = downsample_3_3; break; case kR16G16_float_SkColorType: proc_1_2 = downsample_1_2; proc_1_3 = downsample_1_3; proc_2_1 = downsample_2_1; proc_2_2 = downsample_2_2; proc_2_3 = downsample_2_3; proc_3_1 = downsample_3_1; proc_3_2 = downsample_3_2; proc_3_3 = downsample_3_3; break; case kR16G16B16A16_unorm_SkColorType: proc_1_2 = downsample_1_2; proc_1_3 = downsample_1_3; proc_2_1 = downsample_2_1; proc_2_2 = downsample_2_2; proc_2_3 = downsample_2_3; proc_3_1 = downsample_3_1; proc_3_2 = downsample_3_2; proc_3_3 = downsample_3_3; break; case kUnknown_SkColorType: case kRGB_888x_SkColorType: // TODO: use 8888? case kRGB_101010x_SkColorType: // TODO: use 1010102? case kBGR_101010x_SkColorType: // TODO: use 1010102? case kBGR_101010x_XR_SkColorType: // TODO: use 1010102? case kRGB_F16F16F16x_SkColorType: // TODO: use F16? case kBGRA_10101010_XR_SkColorType: case kRGBA_10x6_SkColorType: case kRGBA_F32_SkColorType: return nullptr; case kSRGBA_8888_SkColorType: // TODO: needs careful handling return nullptr; } auto sampler = std::make_unique(); sampler->proc_1_2 = proc_1_2; sampler->proc_1_3 = proc_1_3; sampler->proc_2_1 = proc_2_1; sampler->proc_2_2 = proc_2_2; sampler->proc_2_3 = proc_2_3; sampler->proc_3_1 = proc_3_1; sampler->proc_3_2 = proc_3_2; sampler->proc_3_3 = proc_3_3; return sampler; } #endif