/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkRect.h" #include "include/core/SkM44.h" #include "include/private/base/SkDebug.h" #include "include/private/base/SkTPin.h" #include "src/core/SkRectPriv.h" class SkMatrix; bool SkIRect::intersect(const SkIRect& a, const SkIRect& b) { SkIRect tmp = { std::max(a.fLeft, b.fLeft), std::max(a.fTop, b.fTop), std::min(a.fRight, b.fRight), std::min(a.fBottom, b.fBottom) }; if (tmp.isEmpty()) { return false; } *this = tmp; return true; } void SkIRect::join(const SkIRect& r) { // do nothing if the params are empty if (r.fLeft >= r.fRight || r.fTop >= r.fBottom) { return; } // if we are empty, just assign if (fLeft >= fRight || fTop >= fBottom) { *this = r; } else { if (r.fLeft < fLeft) fLeft = r.fLeft; if (r.fTop < fTop) fTop = r.fTop; if (r.fRight > fRight) fRight = r.fRight; if (r.fBottom > fBottom) fBottom = r.fBottom; } } ///////////////////////////////////////////////////////////////////////////// void SkRect::toQuad(SkPoint quad[4]) const { SkASSERT(quad); quad[0].set(fLeft, fTop); quad[1].set(fRight, fTop); quad[2].set(fRight, fBottom); quad[3].set(fLeft, fBottom); } #include "src/base/SkVx.h" bool SkRect::setBoundsCheck(const SkPoint pts[], int count) { SkASSERT((pts && count > 0) || count == 0); if (count <= 0) { this->setEmpty(); return true; } skvx::float4 min, max; if (count & 1) { min = max = skvx::float2::Load(pts).xyxy(); pts += 1; count -= 1; } else { min = max = skvx::float4::Load(pts); pts += 2; count -= 2; } skvx::float4 accum = min * 0; while (count) { skvx::float4 xy = skvx::float4::Load(pts); accum = accum * xy; min = skvx::min(min, xy); max = skvx::max(max, xy); pts += 2; count -= 2; } const bool all_finite = all(accum * 0 == 0); if (all_finite) { this->setLTRB(std::min(min[0], min[2]), std::min(min[1], min[3]), std::max(max[0], max[2]), std::max(max[1], max[3])); } else { this->setEmpty(); } return all_finite; } void SkRect::setBoundsNoCheck(const SkPoint pts[], int count) { if (!this->setBoundsCheck(pts, count)) { this->setLTRB(SK_FloatNaN, SK_FloatNaN, SK_FloatNaN, SK_FloatNaN); } } #define CHECK_INTERSECT(al, at, ar, ab, bl, bt, br, bb) \ float L = std::max(al, bl); \ float R = std::min(ar, br); \ float T = std::max(at, bt); \ float B = std::min(ab, bb); \ do { if (!(L < R && T < B)) return false; } while (0) // do the !(opposite) check so we return false if either arg is NaN bool SkRect::intersect(const SkRect& r) { CHECK_INTERSECT(r.fLeft, r.fTop, r.fRight, r.fBottom, fLeft, fTop, fRight, fBottom); this->setLTRB(L, T, R, B); return true; } bool SkRect::intersect(const SkRect& a, const SkRect& b) { CHECK_INTERSECT(a.fLeft, a.fTop, a.fRight, a.fBottom, b.fLeft, b.fTop, b.fRight, b.fBottom); this->setLTRB(L, T, R, B); return true; } void SkRect::join(const SkRect& r) { if (r.isEmpty()) { return; } if (this->isEmpty()) { *this = r; } else { fLeft = std::min(fLeft, r.fLeft); fTop = std::min(fTop, r.fTop); fRight = std::max(fRight, r.fRight); fBottom = std::max(fBottom, r.fBottom); } } //////////////////////////////////////////////////////////////////////////////////////////////// #include "include/core/SkString.h" #include "src/core/SkStringUtils.h" static const char* set_scalar(SkString* storage, float value, SkScalarAsStringType asType) { storage->reset(); SkAppendScalar(storage, value, asType); return storage->c_str(); } SkString SkRect::dumpToString(bool asHex) const { SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType; SkString line; if (asHex) { SkString tmp; line.printf( "SkRect::MakeLTRB(%s, /* %f */\n", set_scalar(&tmp, fLeft, asType), fLeft); line.appendf(" %s, /* %f */\n", set_scalar(&tmp, fTop, asType), fTop); line.appendf(" %s, /* %f */\n", set_scalar(&tmp, fRight, asType), fRight); line.appendf(" %s /* %f */);", set_scalar(&tmp, fBottom, asType), fBottom); } else { SkString strL, strT, strR, strB; SkAppendScalarDec(&strL, fLeft); SkAppendScalarDec(&strT, fTop); SkAppendScalarDec(&strR, fRight); SkAppendScalarDec(&strB, fBottom); line.printf("SkRect::MakeLTRB(%s, %s, %s, %s);", strL.c_str(), strT.c_str(), strR.c_str(), strB.c_str()); } return line; } void SkRect::dump(bool asHex) const { SkDebugf("%s\n", this->dumpToString(asHex).c_str()); } //////////////////////////////////////////////////////////////////////////////////////////////// template static bool subtract(const R& a, const R& b, R* out) { if (a.isEmpty() || b.isEmpty() || !R::Intersects(a, b)) { // Either already empty, or subtracting the empty rect, or there's no intersection, so // in all cases the answer is A. *out = a; return true; } // 4 rectangles to consider. If the edge in A is contained in B, the resulting difference can // be represented exactly as a rectangle. Otherwise the difference is the largest subrectangle // that is disjoint from B: // 1. Left part of A: (A.left, A.top, B.left, A.bottom) // 2. Right part of A: (B.right, A.top, A.right, A.bottom) // 3. Top part of A: (A.left, A.top, A.right, B.top) // 4. Bottom part of A: (A.left, B.bottom, A.right, A.bottom) // // Depending on how B intersects A, there will be 1 to 4 positive areas: // - 4 occur when A contains B // - 3 occur when B intersects a single edge // - 2 occur when B intersects at a corner, or spans two opposing edges // - 1 occurs when B spans two opposing edges and contains a 3rd, resulting in an exact rect // - 0 occurs when B contains A, resulting in the empty rect // // Compute the relative areas of the 4 rects described above. Since each subrectangle shares // either the width or height of A, we only have to divide by the other dimension, which avoids // overflow on int32 types, and even if the float relative areas overflow to infinity, the // comparisons work out correctly and (one of) the infinitely large subrects will be chosen. float aHeight = (float) a.height(); float aWidth = (float) a.width(); float leftArea = 0.f, rightArea = 0.f, topArea = 0.f, bottomArea = 0.f; int positiveCount = 0; if (b.fLeft > a.fLeft) { leftArea = (b.fLeft - a.fLeft) / aWidth; positiveCount++; } if (a.fRight > b.fRight) { rightArea = (a.fRight - b.fRight) / aWidth; positiveCount++; } if (b.fTop > a.fTop) { topArea = (b.fTop - a.fTop) / aHeight; positiveCount++; } if (a.fBottom > b.fBottom) { bottomArea = (a.fBottom - b.fBottom) / aHeight; positiveCount++; } if (positiveCount == 0) { SkASSERT(b.contains(a)); *out = R::MakeEmpty(); return true; } *out = a; if (leftArea > rightArea && leftArea > topArea && leftArea > bottomArea) { // Left chunk of A, so the new right edge is B's left edge out->fRight = b.fLeft; } else if (rightArea > topArea && rightArea > bottomArea) { // Right chunk of A, so the new left edge is B's right edge out->fLeft = b.fRight; } else if (topArea > bottomArea) { // Top chunk of A, so the new bottom edge is B's top edge out->fBottom = b.fTop; } else { // Bottom chunk of A, so the new top edge is B's bottom edge SkASSERT(bottomArea > 0.f); out->fTop = b.fBottom; } // If we have 1 valid area, the disjoint shape is representable as a rectangle. SkASSERT(!R::Intersects(*out, b)); return positiveCount == 1; } bool SkRectPriv::Subtract(const SkRect& a, const SkRect& b, SkRect* out) { return subtract(a, b, out); } bool SkRectPriv::Subtract(const SkIRect& a, const SkIRect& b, SkIRect* out) { return subtract(a, b, out); } bool SkRectPriv::QuadContainsRect(const SkMatrix& m, const SkIRect& a, const SkIRect& b, float tol) { return QuadContainsRect(SkM44(m), SkRect::Make(a), SkRect::Make(b), tol); } bool SkRectPriv::QuadContainsRect(const SkM44& m, const SkRect& a, const SkRect& b, float tol) { return all(QuadContainsRectMask(m, a, b, tol)); } skvx::int4 SkRectPriv::QuadContainsRectMask(const SkM44& m, const SkRect& a, const SkRect& b, float tol) { SkDEBUGCODE(SkM44 inverse;) SkASSERT(m.invert(&inverse)); // With empty rectangles, the calculated edges could give surprising results. If 'a' were not // sorted, its normals would point outside the sorted rectangle, so lots of potential rects // would be seen as "contained". If 'a' is all 0s, its edge equations are also (0,0,0) so every // point has a distance of 0, and would be interpreted as inside. if (a.isEmpty()) { return skvx::int4(0); // all "false" } // However, 'b' is only used to define its 4 corners to check against the transformed edges. // This is valid regardless of b's emptiness or sortedness. // Calculate the 4 homogenous coordinates of 'a' transformed by 'm' where Z=0 and W=1. auto ax = skvx::float4{a.fLeft, a.fRight, a.fRight, a.fLeft}; auto ay = skvx::float4{a.fTop, a.fTop, a.fBottom, a.fBottom}; auto max = m.rc(0,0)*ax + m.rc(0,1)*ay + m.rc(0,3); auto may = m.rc(1,0)*ax + m.rc(1,1)*ay + m.rc(1,3); auto maw = m.rc(3,0)*ax + m.rc(3,1)*ay + m.rc(3,3); if (all(maw < 0.f)) { // If all points of A are mapped to w < 0, then the edge equations end up representing the // convex hull of projected points when A should in fact be considered empty. return skvx::int4(0); // all "false" } // Cross product of adjacent vertices provides homogenous lines for the 4 sides of the quad auto lA = may*skvx::shuffle<1,2,3,0>(maw) - maw*skvx::shuffle<1,2,3,0>(may); auto lB = maw*skvx::shuffle<1,2,3,0>(max) - max*skvx::shuffle<1,2,3,0>(maw); auto lC = max*skvx::shuffle<1,2,3,0>(may) - may*skvx::shuffle<1,2,3,0>(max); // Before transforming, the corners of 'a' were in CW order, but afterwards they may become CCW, // so the sign corrects the direction of the edge normals to point inwards. float sign = (lA[0]*lB[1] - lB[0]*lA[1]) < 0 ? -1.f : 1.f; // Calculate distance from 'b' to each edge. Since 'b' has presumably been transformed by 'm' // *and* projected, this assumes W = 1. SkRect bInset = b.makeInset(tol, tol); auto d0 = sign * (lA*bInset.fLeft + lB*bInset.fTop + lC); auto d1 = sign * (lA*bInset.fRight + lB*bInset.fTop + lC); auto d2 = sign * (lA*bInset.fRight + lB*bInset.fBottom + lC); auto d3 = sign * (lA*bInset.fLeft + lB*bInset.fBottom + lC); // 'b' is contained in the mapped rectangle if all distances are >= 0 return (d0 >= 0.f) & (d1 >= 0.f) & (d2 >= 0.f) & (d3 >= 0.f); } SkIRect SkRectPriv::ClosestDisjointEdge(const SkIRect& src, const SkIRect& dst) { if (src.isEmpty() || dst.isEmpty()) { return SkIRect::MakeEmpty(); } int l = src.fLeft; int r = src.fRight; if (r <= dst.fLeft) { // Select right column of pixels in crop l = r - 1; } else if (l >= dst.fRight) { // Left column of 'crop' r = l + 1; } else { // Regular intersection along X axis. l = SkTPin(l, dst.fLeft, dst.fRight); r = SkTPin(r, dst.fLeft, dst.fRight); } int t = src.fTop; int b = src.fBottom; if (b <= dst.fTop) { // Select bottom row of pixels in crop t = b - 1; } else if (t >= dst.fBottom) { // Top row of 'crop' b = t + 1; } else { t = SkTPin(t, dst.fTop, dst.fBottom); b = SkTPin(b, dst.fTop, dst.fBottom); } return SkIRect::MakeLTRB(l,t,r,b); }