/* * Copyright 2020 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/ganesh/ClipStack.h" #include "include/core/SkAlphaType.h" #include "include/core/SkBlendMode.h" #include "include/core/SkClipOp.h" #include "include/core/SkColorSpace.h" #include "include/core/SkMatrix.h" #include "include/core/SkPath.h" #include "include/core/SkRRect.h" #include "include/core/SkRegion.h" #include "include/core/SkSamplingOptions.h" #include "include/core/SkScalar.h" #include "include/gpu/GpuTypes.h" #include "include/gpu/ganesh/GrBackendSurface.h" #include "include/gpu/ganesh/GrDirectContext.h" #include "include/gpu/ganesh/GrRecordingContext.h" #include "include/gpu/ganesh/GrTypes.h" #include "include/private/base/SkPoint_impl.h" #include "include/private/base/SkTArray.h" #include "include/private/base/SkTo.h" #include "include/private/gpu/ganesh/GrTypesPriv.h" #include "src/base/SkVx.h" #include "src/core/SkPathPriv.h" #include "src/core/SkRRectPriv.h" #include "src/core/SkRectPriv.h" #include "src/core/SkTaskGroup.h" #include "src/core/SkTraceEvent.h" #include "src/gpu/SkBackingFit.h" #include "src/gpu/Swizzle.h" #include "src/gpu/ganesh/GrAppliedClip.h" #include "src/gpu/ganesh/GrCaps.h" #include "src/gpu/ganesh/GrClip.h" #include "src/gpu/ganesh/GrColorInfo.h" #include "src/gpu/ganesh/GrDeferredProxyUploader.h" #include "src/gpu/ganesh/GrDirectContextPriv.h" #include "src/gpu/ganesh/GrDrawingManager.h" #include "src/gpu/ganesh/GrFPArgs.h" #include "src/gpu/ganesh/GrFragmentProcessor.h" #include "src/gpu/ganesh/GrFragmentProcessors.h" #include "src/gpu/ganesh/GrProxyProvider.h" #include "src/gpu/ganesh/GrRecordingContextPriv.h" #include "src/gpu/ganesh/GrRenderTargetProxy.h" #include "src/gpu/ganesh/GrSWMaskHelper.h" #include "src/gpu/ganesh/GrSamplerState.h" #include "src/gpu/ganesh/GrSurfaceProxy.h" #include "src/gpu/ganesh/GrSurfaceProxyView.h" #include "src/gpu/ganesh/GrTextureProxy.h" #include "src/gpu/ganesh/GrTextureProxyPriv.h" #include "src/gpu/ganesh/GrWindowRectangles.h" #include "src/gpu/ganesh/GrWindowRectsState.h" #include "src/gpu/ganesh/StencilMaskHelper.h" #include "src/gpu/ganesh/SurfaceDrawContext.h" #include "src/gpu/ganesh/effects/GrBlendFragmentProcessor.h" #include "src/gpu/ganesh/effects/GrConvexPolyEffect.h" #include "src/gpu/ganesh/effects/GrRRectEffect.h" #include "src/gpu/ganesh/effects/GrTextureEffect.h" #include "src/gpu/ganesh/geometry/GrQuad.h" #include "src/gpu/ganesh/geometry/GrQuadUtils.h" #include "src/gpu/ganesh/ops/AtlasPathRenderer.h" #include "src/gpu/ganesh/ops/GrDrawOp.h" #include #include #include #include #include class GrOp; struct GrShaderCaps; using namespace skia_private; namespace { // This captures which of the two elements in (A op B) would be required when they are combined, // where op is intersect or difference. enum class ClipGeometry { kEmpty, kAOnly, kBOnly, kBoth }; // A and B can be Element, SaveRecord, or Draw. Supported combinations are, order not mattering, // (Element, Element), (Element, SaveRecord), (Element, Draw), and (SaveRecord, Draw). template ClipGeometry get_clip_geometry(const A& a, const B& b) { // NOTE: SkIRect::Intersects() returns false when two rectangles touch at an edge (so the result // is empty). This behavior is desired for the following clip effect policies. if (a.op() == SkClipOp::kIntersect) { if (b.op() == SkClipOp::kIntersect) { // Intersect (A) + Intersect (B) if (!SkIRect::Intersects(a.outerBounds(), b.outerBounds())) { // Regions with non-zero coverage are disjoint, so intersection = empty return ClipGeometry::kEmpty; } else if (b.contains(a)) { // B's full coverage region contains entirety of A, so intersection = A return ClipGeometry::kAOnly; } else if (a.contains(b)) { // A's full coverage region contains entirety of B, so intersection = B return ClipGeometry::kBOnly; } else { // The shapes intersect in some non-trivial manner return ClipGeometry::kBoth; } } else { SkASSERT(b.op() == SkClipOp::kDifference); // Intersect (A) + Difference (B) if (!SkIRect::Intersects(a.outerBounds(), b.outerBounds())) { // A only intersects B's full coverage region, so intersection = A return ClipGeometry::kAOnly; } else if (b.contains(a)) { // B's zero coverage region completely contains A, so intersection = empty return ClipGeometry::kEmpty; } else { // Intersection cannot be simplified. Note that the combination of a intersect // and difference op in this order cannot produce kBOnly return ClipGeometry::kBoth; } } } else { SkASSERT(a.op() == SkClipOp::kDifference); if (b.op() == SkClipOp::kIntersect) { // Difference (A) + Intersect (B) - the mirror of Intersect(A) + Difference(B), // but combining is commutative so this is equivalent barring naming. if (!SkIRect::Intersects(b.outerBounds(), a.outerBounds())) { // B only intersects A's full coverage region, so intersection = B return ClipGeometry::kBOnly; } else if (a.contains(b)) { // A's zero coverage region completely contains B, so intersection = empty return ClipGeometry::kEmpty; } else { // Cannot be simplified return ClipGeometry::kBoth; } } else { SkASSERT(b.op() == SkClipOp::kDifference); // Difference (A) + Difference (B) if (a.contains(b)) { // A's zero coverage region contains B, so B doesn't remove any extra // coverage from their intersection. return ClipGeometry::kAOnly; } else if (b.contains(a)) { // Mirror of the above case, intersection = B instead return ClipGeometry::kBOnly; } else { // Intersection of the two differences cannot be simplified. Note that for // this op combination it is not possible to produce kEmpty. return ClipGeometry::kBoth; } } } } // a.contains(b) where a's local space is defined by 'aToDevice', and b's possibly separate local // space is defined by 'bToDevice'. 'a' and 'b' geometry are provided in their local spaces. // Automatically takes into account if the anti-aliasing policies differ. When the policies match, // we assume that coverage AA or GPU's non-AA rasterization will apply to A and B equivalently, so // we can compare the original shapes. When the modes are mixed, we outset B in device space first. bool shape_contains_rect(const GrShape& a, const SkMatrix& aToDevice, const SkMatrix& deviceToA, const SkRect& b, const SkMatrix& bToDevice, bool mixedAAMode) { if (!a.convex()) { return false; } if (!mixedAAMode && aToDevice == bToDevice) { // A and B are in the same coordinate space, so don't bother mapping return a.conservativeContains(b); } else if (bToDevice.isIdentity() && aToDevice.preservesAxisAlignment()) { // Optimize the common case of draws (B, with identity matrix) and axis-aligned shapes, // instead of checking the four corners separately. SkRect bInA = b; if (mixedAAMode) { bInA.outset(0.5f, 0.5f); } SkAssertResult(deviceToA.mapRect(&bInA)); return a.conservativeContains(bInA); } // Test each corner for contains; since a is convex, if all 4 corners of b's bounds are // contained, then the entirety of b is within a. GrQuad deviceQuad = GrQuad::MakeFromRect(b, bToDevice); if (mixedAAMode) { // Outset it so its edges are 1/2px out, giving us a buffer to avoid cases where a non-AA // clip or draw would snap outside an aa element. GrQuadUtils::Outset({0.5f, 0.5f, 0.5f, 0.5f}, &deviceQuad); } if (any(deviceQuad.w4f() < SkPathPriv::kW0PlaneDistance)) { // Something in B actually projects behind the W = 0 plane and would be clipped to infinity, // so it's extremely unlikely that A can contain B. return false; } for (int i = 0; i < 4; ++i) { SkPoint cornerInA = deviceQuad.point(i); deviceToA.mapPoints(&cornerInA, 1); if (!a.conservativeContains(cornerInA)) { return false; } } return true; } SkIRect subtract(const SkIRect& a, const SkIRect& b, bool exact) { SkIRect diff; if (SkRectPriv::Subtract(a, b, &diff) || !exact) { // Either A-B is exactly the rectangle stored in diff, or we don't need an exact answer // and can settle for the subrect of A excluded from B (which is also 'diff') return diff; } else { // For our purposes, we want the original A when A-B cannot be exactly represented return a; } } GrClipEdgeType get_clip_edge_type(SkClipOp op, GrAA aa) { if (op == SkClipOp::kIntersect) { return aa == GrAA::kYes ? GrClipEdgeType::kFillAA : GrClipEdgeType::kFillBW; } else { return aa == GrAA::kYes ? GrClipEdgeType::kInverseFillAA : GrClipEdgeType::kInverseFillBW; } } static uint32_t kInvalidGenID = 0; static uint32_t kEmptyGenID = 1; static uint32_t kWideOpenGenID = 2; uint32_t next_gen_id() { // 0-2 are reserved for invalid, empty & wide-open static const uint32_t kFirstUnreservedGenID = 3; static std::atomic nextID{kFirstUnreservedGenID}; uint32_t id; do { id = nextID.fetch_add(1, std::memory_order_relaxed); } while (id < kFirstUnreservedGenID); return id; } // Functions for rendering / applying clip shapes in various ways // The general strategy is: // - Represent the clip element as an analytic FP that tests sk_FragCoord vs. its device shape // - Render the clip element to the stencil, if stencil is allowed and supports the AA, and the // size of the element indicates stenciling will be worth it, vs. making a mask. // - Try to put the individual element into a clip atlas, which is then sampled during the draw // - Render the element into a SW mask and upload it. If possible, the SW rasterization happens // in parallel. static constexpr GrSurfaceOrigin kMaskOrigin = kTopLeft_GrSurfaceOrigin; GrFPResult analytic_clip_fp(const skgpu::ganesh::ClipStack::Element& e, const GrShaderCaps& caps, std::unique_ptr fp) { // All analytic clip shape FPs need to be in device space GrClipEdgeType edgeType = get_clip_edge_type(e.fOp, e.fAA); if (e.fLocalToDevice.isIdentity()) { if (e.fShape.isRect()) { return GrFPSuccess(GrFragmentProcessor::Rect(std::move(fp), edgeType, e.fShape.rect())); } else if (e.fShape.isRRect()) { return GrRRectEffect::Make(std::move(fp), edgeType, e.fShape.rrect(), caps); } } // A convex hull can be transformed into device space (this will handle rect shapes with a // non-identity transform). if (e.fShape.segmentMask() == SkPath::kLine_SegmentMask && e.fShape.convex()) { SkPath devicePath; e.fShape.asPath(&devicePath); devicePath.transform(e.fLocalToDevice); return GrConvexPolyEffect::Make(std::move(fp), edgeType, devicePath); } return GrFPFailure(std::move(fp)); } // TODO: Currently this only works with tessellation because the tessellation path renderer owns and // manages the atlas. The high-level concept could be generalized to support any path renderer going // into a shared atlas. GrFPResult clip_atlas_fp(const skgpu::ganesh::SurfaceDrawContext* sdc, const GrOp* opBeingClipped, skgpu::ganesh::AtlasPathRenderer* atlasPathRenderer, const SkIRect& scissorBounds, const skgpu::ganesh::ClipStack::Element& e, std::unique_ptr inputFP) { if (e.fAA != GrAA::kYes) { return GrFPFailure(std::move(inputFP)); } SkPath path; e.fShape.asPath(&path); SkASSERT(!path.isInverseFillType()); if (e.fOp == SkClipOp::kDifference) { // Toggling fill type does not affect the path's "generationID" key. path.toggleInverseFillType(); } return atlasPathRenderer->makeAtlasClipEffect(sdc, opBeingClipped, std::move(inputFP), scissorBounds, e.fLocalToDevice, path); } void draw_to_sw_mask(GrSWMaskHelper* helper, const skgpu::ganesh::ClipStack::Element& e, bool clearMask) { // If the first element to draw is an intersect, we clear to 0 and will draw it directly with // coverage 1 (subsequent intersect elements will be inverse-filled and draw 0 outside). // If the first element to draw is a difference, we clear to 1, and in all cases we draw the // difference element directly with coverage 0. if (clearMask) { helper->clear(e.fOp == SkClipOp::kIntersect ? 0x00 : 0xFF); } uint8_t alpha; bool invert; if (e.fOp == SkClipOp::kIntersect) { // Intersect modifies pixels outside of its geometry. If this isn't the first op, we // draw the inverse-filled shape with 0 coverage to erase everything outside the element // But if we are the first element, we can draw directly with coverage 1 since we // cleared to 0. if (clearMask) { alpha = 0xFF; invert = false; } else { alpha = 0x00; invert = true; } } else { // For difference ops, can always just subtract the shape directly by drawing 0 coverage SkASSERT(e.fOp == SkClipOp::kDifference); alpha = 0x00; invert = false; } // Draw the shape; based on how we've initialized the buffer and chosen alpha+invert, // every element is drawn with the kReplace_Op if (invert) { // Must invert the path SkASSERT(!e.fShape.inverted()); // TODO: this is an extra copy effectively, just so we can toggle inversion; would be // better perhaps to just call a drawPath() since we know it'll use path rendering w/ // the inverse fill type. GrShape inverted(e.fShape); inverted.setInverted(true); helper->drawShape(inverted, e.fLocalToDevice, e.fAA, alpha); } else { helper->drawShape(e.fShape, e.fLocalToDevice, e.fAA, alpha); } } GrSurfaceProxyView render_sw_mask(GrRecordingContext* context, const SkIRect& bounds, const skgpu::ganesh::ClipStack::Element** elements, int count) { SkASSERT(count > 0); SkTaskGroup* taskGroup = nullptr; if (auto direct = context->asDirectContext()) { taskGroup = direct->priv().getTaskGroup(); } if (taskGroup) { const GrCaps* caps = context->priv().caps(); GrProxyProvider* proxyProvider = context->priv().proxyProvider(); // Create our texture proxy GrBackendFormat format = caps->getDefaultBackendFormat(GrColorType::kAlpha_8, GrRenderable::kNo); skgpu::Swizzle swizzle = context->priv().caps()->getReadSwizzle(format, GrColorType::kAlpha_8); auto proxy = proxyProvider->createProxy(format, bounds.size(), GrRenderable::kNo, 1, skgpu::Mipmapped::kNo, SkBackingFit::kApprox, skgpu::Budgeted::kYes, GrProtected::kNo, /*label=*/"ClipStack_RenderSwMask"); // Since this will be rendered on another thread, make a copy of the elements in case // the clip stack is modified on the main thread using Uploader = GrTDeferredProxyUploader>; std::unique_ptr uploader = std::make_unique(count); for (int i = 0; i < count; ++i) { uploader->data().push_back(*(elements[i])); } Uploader* uploaderRaw = uploader.get(); auto drawAndUploadMask = [uploaderRaw, bounds] { TRACE_EVENT0("skia.gpu", "Threaded SW Clip Mask Render"); GrSWMaskHelper helper(uploaderRaw->getPixels()); if (helper.init(bounds)) { for (int i = 0; i < uploaderRaw->data().size(); ++i) { draw_to_sw_mask(&helper, uploaderRaw->data()[i], i == 0); } } else { SkDEBUGFAIL("Unable to allocate SW clip mask."); } uploaderRaw->signalAndFreeData(); }; taskGroup->add(std::move(drawAndUploadMask)); proxy->texPriv().setDeferredUploader(std::move(uploader)); return {std::move(proxy), kMaskOrigin, swizzle}; } else { GrSWMaskHelper helper; if (!helper.init(bounds)) { return {}; } for (int i = 0; i < count; ++i) { draw_to_sw_mask(&helper,*(elements[i]), i == 0); } return helper.toTextureView(context, SkBackingFit::kApprox); } } void render_stencil_mask(GrRecordingContext* rContext, skgpu::ganesh::SurfaceDrawContext* sdc, uint32_t genID, const SkIRect& bounds, const skgpu::ganesh::ClipStack::Element** elements, int count, GrAppliedClip* out) { skgpu::ganesh::StencilMaskHelper helper(rContext, sdc); if (helper.init(bounds, genID, out->windowRectsState().windows(), 0)) { // This follows the same logic as in draw_sw_mask bool startInside = elements[0]->fOp == SkClipOp::kDifference; helper.clear(startInside); for (int i = 0; i < count; ++i) { const skgpu::ganesh::ClipStack::Element& e = *(elements[i]); SkRegion::Op op; if (e.fOp == SkClipOp::kIntersect) { op = (i == 0) ? SkRegion::kReplace_Op : SkRegion::kIntersect_Op; } else { op = SkRegion::kDifference_Op; } helper.drawShape(e.fShape, e.fLocalToDevice, op, e.fAA); } helper.finish(); } out->hardClip().addStencilClip(genID); } } // anonymous namespace namespace skgpu::ganesh { class ClipStack::Draw { public: Draw(const SkRect& drawBounds, GrAA aa) : fBounds(GrClip::GetPixelIBounds(drawBounds, aa, BoundsType::kExterior)) , fAA(aa) { // Be slightly more forgiving on whether or not a draw is inside a clip element. fOriginalBounds = drawBounds.makeInset(GrClip::kBoundsTolerance, GrClip::kBoundsTolerance); if (fOriginalBounds.isEmpty()) { fOriginalBounds = drawBounds; } } // Common clip type interface SkClipOp op() const { return SkClipOp::kIntersect; } const SkIRect& outerBounds() const { return fBounds; } // Draw does not have inner bounds so cannot contain anything. bool contains(const RawElement& e) const { return false; } bool contains(const SaveRecord& s) const { return false; } bool applyDeviceBounds(const SkIRect& deviceBounds) { return fBounds.intersect(deviceBounds); } const SkRect& bounds() const { return fOriginalBounds; } GrAA aa() const { return fAA; } private: SkRect fOriginalBounds; SkIRect fBounds; GrAA fAA; }; /////////////////////////////////////////////////////////////////////////////// // ClipStack::Element ClipStack::RawElement::RawElement(const SkMatrix& localToDevice, const GrShape& shape, GrAA aa, SkClipOp op) : Element{shape, localToDevice, op, aa} , fInnerBounds(SkIRect::MakeEmpty()) , fOuterBounds(SkIRect::MakeEmpty()) , fInvalidatedByIndex(-1) { if (!localToDevice.invert(&fDeviceToLocal)) { // If the transform can't be inverted, it means that two dimensions are collapsed to 0 or // 1 dimension, making the device-space geometry effectively empty. fShape.reset(); } } void ClipStack::RawElement::markInvalid(const SaveRecord& current) { SkASSERT(!this->isInvalid()); fInvalidatedByIndex = current.firstActiveElementIndex(); } void ClipStack::RawElement::restoreValid(const SaveRecord& current) { if (current.firstActiveElementIndex() < fInvalidatedByIndex) { fInvalidatedByIndex = -1; } } bool ClipStack::RawElement::contains(const Draw& d) const { if (fInnerBounds.contains(d.outerBounds())) { return true; } else { // If the draw is non-AA, use the already computed outer bounds so we don't need to use // device-space outsetting inside shape_contains_rect. SkRect queryBounds = d.aa() == GrAA::kYes ? d.bounds() : SkRect::Make(d.outerBounds()); return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal, queryBounds, SkMatrix::I(), /* mixed-aa */ false); } } bool ClipStack::RawElement::contains(const SaveRecord& s) const { if (fInnerBounds.contains(s.outerBounds())) { return true; } else { // This is very similar to contains(Draw) but we just have outerBounds to work with. SkRect queryBounds = SkRect::Make(s.outerBounds()); return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal, queryBounds, SkMatrix::I(), /* mixed-aa */ false); } } bool ClipStack::RawElement::contains(const RawElement& e) const { // This is similar to how RawElement checks containment for a Draw, except that both the tester // and testee have a transform that needs to be considered. if (fInnerBounds.contains(e.fOuterBounds)) { return true; } bool mixedAA = fAA != e.fAA; if (!mixedAA && fLocalToDevice == e.fLocalToDevice) { // Test the shapes directly against each other, with a special check for a rrect+rrect // containment (a intersect b == a implies b contains a) and paths (same gen ID, or same // path for small paths means they contain each other). static constexpr int kMaxPathComparePoints = 16; if (fShape.isRRect() && e.fShape.isRRect()) { return SkRRectPriv::ConservativeIntersect(fShape.rrect(), e.fShape.rrect()) == e.fShape.rrect(); } else if (fShape.isPath() && e.fShape.isPath()) { return fShape.path().getGenerationID() == e.fShape.path().getGenerationID() || (fShape.path().getPoints(nullptr, 0) <= kMaxPathComparePoints && fShape.path() == e.fShape.path()); } // else fall through to shape_contains_rect } return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal, e.fShape.bounds(), e.fLocalToDevice, mixedAA); } void ClipStack::RawElement::simplify(const SkIRect& deviceBounds, bool forceAA) { // Make sure the shape is not inverted. An inverted shape is equivalent to a non-inverted shape // with the clip op toggled. if (fShape.inverted()) { fOp = fOp == SkClipOp::kIntersect ? SkClipOp::kDifference : SkClipOp::kIntersect; fShape.setInverted(false); } // Then simplify the base shape, if it becomes empty, no need to update the bounds fShape.simplify(); SkASSERT(!fShape.inverted()); if (fShape.isEmpty()) { return; } // Lines and points should have been turned into empty since we assume everything is filled SkASSERT(!fShape.isPoint() && !fShape.isLine()); // Validity check, we have no public API to create an arc at the moment SkASSERT(!fShape.isArc()); SkRect outer = fLocalToDevice.mapRect(fShape.bounds()); if (!outer.intersect(SkRect::Make(deviceBounds))) { // A non-empty shape is offscreen, so treat it as empty fShape.reset(); return; } // Except for axis-aligned clip rects, upgrade to AA when forced. We skip axis-aligned clip // rects because a non-AA axis aligned rect can always be set as just a scissor test or window // rect, avoiding an expensive stencil mask generation. if (forceAA && !(fShape.isRect() && fLocalToDevice.preservesAxisAlignment())) { fAA = GrAA::kYes; } // Except for non-AA axis-aligned rects, the outer bounds is the rounded-out device-space // mapped bounds of the shape. fOuterBounds = GrClip::GetPixelIBounds(outer, fAA, BoundsType::kExterior); if (fLocalToDevice.preservesAxisAlignment()) { if (fShape.isRect()) { // The actual geometry can be updated to the device-intersected bounds and we can // know the inner bounds fShape.rect() = outer; fLocalToDevice.setIdentity(); fDeviceToLocal.setIdentity(); if (fAA == GrAA::kNo && outer.width() >= 1.f && outer.height() >= 1.f) { // NOTE: Legacy behavior to avoid performance regressions. For non-aa axis-aligned // clip rects we always just round so that they can be scissor-only (avoiding the // uncertainty in how a GPU might actually round an edge on fractional coords). fOuterBounds = outer.round(); fInnerBounds = fOuterBounds; } else { fInnerBounds = GrClip::GetPixelIBounds(outer, fAA, BoundsType::kInterior); SkASSERT(fOuterBounds.contains(fInnerBounds) || fInnerBounds.isEmpty()); } } else if (fShape.isRRect()) { // Can't transform in place and must still check transform result since some very // ill-formed scale+translate matrices can cause invalid rrect radii. SkRRect src; if (fShape.rrect().transform(fLocalToDevice, &src)) { fShape.rrect() = src; fLocalToDevice.setIdentity(); fDeviceToLocal.setIdentity(); SkRect inner = SkRRectPriv::InnerBounds(fShape.rrect()); fInnerBounds = GrClip::GetPixelIBounds(inner, fAA, BoundsType::kInterior); if (!fInnerBounds.intersect(deviceBounds)) { fInnerBounds = SkIRect::MakeEmpty(); } } } } if (fOuterBounds.isEmpty()) { // This can happen if we have non-AA shapes smaller than a pixel that do not cover a pixel // center. We could round out, but rasterization would still result in an empty clip. fShape.reset(); } // Post-conditions on inner and outer bounds SkASSERT(fShape.isEmpty() || (!fOuterBounds.isEmpty() && deviceBounds.contains(fOuterBounds))); SkASSERT(fShape.isEmpty() || fInnerBounds.isEmpty() || fOuterBounds.contains(fInnerBounds)); } bool ClipStack::RawElement::combine(const RawElement& other, const SaveRecord& current) { // To reduce the number of possibilities, only consider intersect+intersect. Difference and // mixed op cases could be analyzed to simplify one of the shapes, but that is a rare // occurrence and the math is much more complicated. if (other.fOp != SkClipOp::kIntersect || fOp != SkClipOp::kIntersect) { return false; } // At the moment, only rect+rect or rrect+rrect are supported (although rect+rrect is // treated as a degenerate case of rrect+rrect). bool shapeUpdated = false; if (fShape.isRect() && other.fShape.isRect()) { bool aaMatch = fAA == other.fAA; if (fLocalToDevice.isIdentity() && other.fLocalToDevice.isIdentity() && !aaMatch) { if (GrClip::IsPixelAligned(fShape.rect())) { // Our AA type doesn't really matter, take other's since its edges may not be // pixel aligned, so after intersection clip behavior should respect its aa type. fAA = other.fAA; } else if (!GrClip::IsPixelAligned(other.fShape.rect())) { // Neither shape is pixel aligned and AA types don't match so can't combine return false; } // Either we've updated this->fAA to actually match, or other->fAA doesn't matter so // this can be set to true. We just can't modify other to set it's aa to this->fAA. // But since 'this' becomes the combo of the two, other will be deleted so that's fine. aaMatch = true; } if (aaMatch && fLocalToDevice == other.fLocalToDevice) { if (!fShape.rect().intersect(other.fShape.rect())) { // By floating point, it turns out the combination should be empty this->fShape.reset(); this->markInvalid(current); return true; } shapeUpdated = true; } } else if ((fShape.isRect() || fShape.isRRect()) && (other.fShape.isRect() || other.fShape.isRRect())) { // No such pixel-aligned disregard for AA for round rects if (fAA == other.fAA && fLocalToDevice == other.fLocalToDevice) { // Treat rrect+rect intersections as rrect+rrect SkRRect a = fShape.isRect() ? SkRRect::MakeRect(fShape.rect()) : fShape.rrect(); SkRRect b = other.fShape.isRect() ? SkRRect::MakeRect(other.fShape.rect()) : other.fShape.rrect(); SkRRect joined = SkRRectPriv::ConservativeIntersect(a, b); if (!joined.isEmpty()) { // Can reduce to a single element if (joined.isRect()) { // And with a simplified type fShape.setRect(joined.rect()); } else { fShape.setRRect(joined); } shapeUpdated = true; } else if (!a.getBounds().intersects(b.getBounds())) { // Like the rect+rect combination, the intersection is actually empty fShape.reset(); this->markInvalid(current); return true; } } } if (shapeUpdated) { // This logic works under the assumption that both combined elements were intersect, so we // don't do the full bounds computations like in simplify(). SkASSERT(fOp == SkClipOp::kIntersect && other.fOp == SkClipOp::kIntersect); SkAssertResult(fOuterBounds.intersect(other.fOuterBounds)); if (!fInnerBounds.intersect(other.fInnerBounds)) { fInnerBounds = SkIRect::MakeEmpty(); } return true; } else { return false; } } void ClipStack::RawElement::updateForElement(RawElement* added, const SaveRecord& current) { if (this->isInvalid()) { // Already doesn't do anything, so skip this element return; } // 'A' refers to this element, 'B' refers to 'added'. switch (get_clip_geometry(*this, *added)) { case ClipGeometry::kEmpty: // Mark both elements as invalid to signal that the clip is fully empty this->markInvalid(current); added->markInvalid(current); break; case ClipGeometry::kAOnly: // This element already clips more than 'added', so mark 'added' is invalid to skip it added->markInvalid(current); break; case ClipGeometry::kBOnly: // 'added' clips more than this element, so mark this as invalid this->markInvalid(current); break; case ClipGeometry::kBoth: // Else the bounds checks think we need to keep both, but depending on the combination // of the ops and shape kinds, we may be able to do better. if (added->combine(*this, current)) { // 'added' now fully represents the combination of the two elements this->markInvalid(current); } break; } } ClipStack::ClipState ClipStack::RawElement::clipType() const { // Map from the internal shape kind to the clip state enum switch (fShape.type()) { case GrShape::Type::kEmpty: return ClipState::kEmpty; case GrShape::Type::kRect: return fOp == SkClipOp::kIntersect && fLocalToDevice.isIdentity() ? ClipState::kDeviceRect : ClipState::kComplex; case GrShape::Type::kRRect: return fOp == SkClipOp::kIntersect && fLocalToDevice.isIdentity() ? ClipState::kDeviceRRect : ClipState::kComplex; case GrShape::Type::kArc: case GrShape::Type::kLine: case GrShape::Type::kPoint: // These types should never become RawElements SkASSERT(false); [[fallthrough]]; case GrShape::Type::kPath: return ClipState::kComplex; } SkUNREACHABLE; } /////////////////////////////////////////////////////////////////////////////// // ClipStack::Mask ClipStack::Mask::Mask(const SaveRecord& current, const SkIRect& drawBounds) : fBounds(drawBounds) , fGenID(current.genID()) { static const UniqueKey::Domain kDomain = UniqueKey::GenerateDomain(); // The gen ID should not be invalid, empty, or wide open, since those do not require masks SkASSERT(fGenID != kInvalidGenID && fGenID != kEmptyGenID && fGenID != kWideOpenGenID); UniqueKey::Builder builder(&fKey, kDomain, 5, "clip_mask"); builder[0] = fGenID; builder[1] = drawBounds.fLeft; builder[2] = drawBounds.fRight; builder[3] = drawBounds.fTop; builder[4] = drawBounds.fBottom; SkASSERT(fKey.isValid()); SkDEBUGCODE(fOwner = ¤t;) } bool ClipStack::Mask::appliesToDraw(const SaveRecord& current, const SkIRect& drawBounds) const { // For the same save record, a larger mask will have the same or more elements // baked into it, so it can be reused to clip the smaller draw. SkASSERT(fGenID != current.genID() || ¤t == fOwner); return fGenID == current.genID() && fBounds.contains(drawBounds); } void ClipStack::Mask::invalidate(GrProxyProvider* proxyProvider) { SkASSERT(proxyProvider); SkASSERT(fKey.isValid()); // Should only be invalidated once proxyProvider->processInvalidUniqueKey( fKey, nullptr, GrProxyProvider::InvalidateGPUResource::kYes); fKey.reset(); } /////////////////////////////////////////////////////////////////////////////// // ClipStack::SaveRecord ClipStack::SaveRecord::SaveRecord(const SkIRect& deviceBounds) : fInnerBounds(deviceBounds) , fOuterBounds(deviceBounds) , fShader(nullptr) , fStartingMaskIndex(0) , fStartingElementIndex(0) , fOldestValidIndex(0) , fDeferredSaveCount(0) , fStackOp(SkClipOp::kIntersect) , fState(ClipState::kWideOpen) , fGenID(kInvalidGenID) {} ClipStack::SaveRecord::SaveRecord(const SaveRecord& prior, int startingMaskIndex, int startingElementIndex) : fInnerBounds(prior.fInnerBounds) , fOuterBounds(prior.fOuterBounds) , fShader(prior.fShader) , fStartingMaskIndex(startingMaskIndex) , fStartingElementIndex(startingElementIndex) , fOldestValidIndex(prior.fOldestValidIndex) , fDeferredSaveCount(0) , fStackOp(prior.fStackOp) , fState(prior.fState) , fGenID(kInvalidGenID) { // If the prior record never needed a mask, this one will insert into the same index // (that's okay since we'll remove it when this record is popped off the stack). SkASSERT(startingMaskIndex >= prior.fStartingMaskIndex); // The same goes for elements (the prior could have been wide open). SkASSERT(startingElementIndex >= prior.fStartingElementIndex); } uint32_t ClipStack::SaveRecord::genID() const { if (fState == ClipState::kEmpty) { return kEmptyGenID; } else if (fState == ClipState::kWideOpen) { return kWideOpenGenID; } else { // The gen ID shouldn't be empty or wide open, since they are reserved for the above // if-cases. It may be kInvalid if the record hasn't had any elements added to it yet. SkASSERT(fGenID != kEmptyGenID && fGenID != kWideOpenGenID); return fGenID; } } ClipStack::ClipState ClipStack::SaveRecord::state() const { if (fShader && fState != ClipState::kEmpty) { return ClipState::kComplex; } else { return fState; } } bool ClipStack::SaveRecord::contains(const ClipStack::Draw& draw) const { return fInnerBounds.contains(draw.outerBounds()); } bool ClipStack::SaveRecord::contains(const ClipStack::RawElement& element) const { return fInnerBounds.contains(element.outerBounds()); } void ClipStack::SaveRecord::removeElements(RawElement::Stack* elements) { while (elements->count() > fStartingElementIndex) { elements->pop_back(); } } void ClipStack::SaveRecord::restoreElements(RawElement::Stack* elements) { // Presumably this SaveRecord is the new top of the stack, and so it owns the elements // from its starting index to restoreCount - 1. Elements from the old save record have // been destroyed already, so their indices would have been >= restoreCount, and any // still-present element can be un-invalidated based on that. int i = elements->count() - 1; for (RawElement& e : elements->ritems()) { if (i < fOldestValidIndex) { break; } e.restoreValid(*this); --i; } } void ClipStack::SaveRecord::invalidateMasks(GrProxyProvider* proxyProvider, Mask::Stack* masks) { // Must explicitly invalidate the key before removing the mask object from the stack while (masks->count() > fStartingMaskIndex) { SkASSERT(masks->back().owner() == this && proxyProvider); masks->back().invalidate(proxyProvider); masks->pop_back(); } SkASSERT(masks->empty() || masks->back().genID() != fGenID); } void ClipStack::SaveRecord::reset(const SkIRect& bounds) { SkASSERT(this->canBeUpdated()); fOldestValidIndex = fStartingElementIndex; fOuterBounds = bounds; fInnerBounds = bounds; fStackOp = SkClipOp::kIntersect; fState = ClipState::kWideOpen; fShader = nullptr; } void ClipStack::SaveRecord::addShader(sk_sp shader) { SkASSERT(shader); SkASSERT(this->canBeUpdated()); if (!fShader) { fShader = std::move(shader); } else { // The total coverage is computed by multiplying the coverage from each element (shape or // shader), but since multiplication is associative, we can use kSrcIn blending to make // a new shader that represents 'shader' * 'fShader' fShader = SkShaders::Blend(SkBlendMode::kSrcIn, std::move(shader), fShader); } } bool ClipStack::SaveRecord::addElement(RawElement&& toAdd, RawElement::Stack* elements) { // Validity check the element's state first; if the shape class isn't empty, the outer bounds // shouldn't be empty; if the inner bounds are not empty, they must be contained in outer. SkASSERT((toAdd.shape().isEmpty() || !toAdd.outerBounds().isEmpty()) && (toAdd.innerBounds().isEmpty() || toAdd.outerBounds().contains(toAdd.innerBounds()))); // And we shouldn't be adding an element if we have a deferred save SkASSERT(this->canBeUpdated()); if (fState == ClipState::kEmpty) { // The clip is already empty, and we only shrink, so there's no need to record this element. return false; } else if (toAdd.shape().isEmpty()) { // An empty difference op should have been detected earlier, since it's a no-op SkASSERT(toAdd.op() == SkClipOp::kIntersect); fState = ClipState::kEmpty; return true; } // In this invocation, 'A' refers to the existing stack's bounds and 'B' refers to the new // element. switch (get_clip_geometry(*this, toAdd)) { case ClipGeometry::kEmpty: // The combination results in an empty clip fState = ClipState::kEmpty; return true; case ClipGeometry::kAOnly: // The combination would not be any different than the existing clip return false; case ClipGeometry::kBOnly: // The combination would invalidate the entire existing stack and can be replaced with // just the new element. this->replaceWithElement(std::move(toAdd), elements); return true; case ClipGeometry::kBoth: // The new element combines in a complex manner, so update the stack's bounds based on // the combination of its and the new element's ops (handled below) break; } if (fState == ClipState::kWideOpen) { // When the stack was wide open and the clip effect was kBoth, the "complex" manner is // simply to keep the element and update the stack bounds to be the element's intersected // with the device. this->replaceWithElement(std::move(toAdd), elements); return true; } // Some form of actual clip element(s) to combine with. if (fStackOp == SkClipOp::kIntersect) { if (toAdd.op() == SkClipOp::kIntersect) { // Intersect (stack) + Intersect (toAdd) // - Bounds updates is simply the paired intersections of outer and inner. SkAssertResult(fOuterBounds.intersect(toAdd.outerBounds())); if (!fInnerBounds.intersect(toAdd.innerBounds())) { // NOTE: this does the right thing if either rect is empty, since we set the // inner bounds to empty here fInnerBounds = SkIRect::MakeEmpty(); } } else { // Intersect (stack) + Difference (toAdd) // - Shrink the stack's outer bounds if the difference op's inner bounds completely // cuts off an edge. // - Shrink the stack's inner bounds to completely exclude the op's outer bounds. fOuterBounds = subtract(fOuterBounds, toAdd.innerBounds(), /* exact */ true); fInnerBounds = subtract(fInnerBounds, toAdd.outerBounds(), /* exact */ false); } } else { if (toAdd.op() == SkClipOp::kIntersect) { // Difference (stack) + Intersect (toAdd) // - Bounds updates are just the mirror of Intersect(stack) + Difference(toAdd) SkIRect oldOuter = fOuterBounds; fOuterBounds = subtract(toAdd.outerBounds(), fInnerBounds, /* exact */ true); fInnerBounds = subtract(toAdd.innerBounds(), oldOuter, /* exact */ false); } else { // Difference (stack) + Difference (toAdd) // - The updated outer bounds is the union of outer bounds and the inner becomes the // largest of the two possible inner bounds fOuterBounds.join(toAdd.outerBounds()); if (toAdd.innerBounds().width() * toAdd.innerBounds().height() > fInnerBounds.width() * fInnerBounds.height()) { fInnerBounds = toAdd.innerBounds(); } } } // If we get here, we're keeping the new element and the stack's bounds have been updated. // We ought to have caught the cases where the stack bounds resemble an empty or wide open // clip, so assert that's the case. SkASSERT(!fOuterBounds.isEmpty() && (fInnerBounds.isEmpty() || fOuterBounds.contains(fInnerBounds))); return this->appendElement(std::move(toAdd), elements); } bool ClipStack::SaveRecord::appendElement(RawElement&& toAdd, RawElement::Stack* elements) { // Update past elements to account for the new element int i = elements->count() - 1; // After the loop, elements between [max(youngestValid, startingIndex)+1, count-1] can be // removed from the stack (these are the active elements that have been invalidated by the // newest element; since it's the active part of the stack, no restore() can bring them back). int youngestValid = fStartingElementIndex - 1; // After the loop, elements between [0, oldestValid-1] are all invalid. The value of oldestValid // becomes the save record's new fLastValidIndex value. int oldestValid = elements->count(); // After the loop, this is the earliest active element that was invalidated. It may be // older in the stack than earliestValid, so cannot be popped off, but can be used to store // the new element instead of allocating more. RawElement* oldestActiveInvalid = nullptr; int oldestActiveInvalidIndex = elements->count(); for (RawElement& existing : elements->ritems()) { if (i < fOldestValidIndex) { break; } // We don't need to pass the actual index that toAdd will be saved to; just the minimum // index of this save record, since that will result in the same restoration behavior later. existing.updateForElement(&toAdd, *this); if (toAdd.isInvalid()) { if (existing.isInvalid()) { // Both new and old invalid implies the entire clip becomes empty fState = ClipState::kEmpty; return true; } else { // The new element doesn't change the clip beyond what the old element already does return false; } } else if (existing.isInvalid()) { // The new element cancels out the old element. The new element may have been modified // to account for the old element's geometry. if (i >= fStartingElementIndex) { // Still active, so the invalidated index could be used to store the new element oldestActiveInvalid = &existing; oldestActiveInvalidIndex = i; } } else { // Keep both new and old elements oldestValid = i; if (i > youngestValid) { youngestValid = i; } } --i; } // Post-iteration validity check SkASSERT(oldestValid == elements->count() || (oldestValid >= fOldestValidIndex && oldestValid < elements->count())); SkASSERT(youngestValid == fStartingElementIndex - 1 || (youngestValid >= fStartingElementIndex && youngestValid < elements->count())); SkASSERT((oldestActiveInvalid && oldestActiveInvalidIndex >= fStartingElementIndex && oldestActiveInvalidIndex < elements->count()) || !oldestActiveInvalid); // Update final state SkASSERT(oldestValid >= fOldestValidIndex); fOldestValidIndex = std::min(oldestValid, oldestActiveInvalidIndex); fState = oldestValid == elements->count() ? toAdd.clipType() : ClipState::kComplex; if (fStackOp == SkClipOp::kDifference && toAdd.op() == SkClipOp::kIntersect) { // The stack remains in difference mode only as long as all elements are difference fStackOp = SkClipOp::kIntersect; } int targetCount = youngestValid + 1; if (!oldestActiveInvalid || oldestActiveInvalidIndex >= targetCount) { // toAdd will be stored right after youngestValid targetCount++; oldestActiveInvalid = nullptr; } while (elements->count() > targetCount) { SkASSERT(oldestActiveInvalid != &elements->back()); // shouldn't delete what we'll reuse elements->pop_back(); } if (oldestActiveInvalid) { *oldestActiveInvalid = std::move(toAdd); } else if (elements->count() < targetCount) { elements->push_back(std::move(toAdd)); } else { elements->back() = std::move(toAdd); } // Changing this will prompt ClipStack to invalidate any masks associated with this record. fGenID = next_gen_id(); return true; } void ClipStack::SaveRecord::replaceWithElement(RawElement&& toAdd, RawElement::Stack* elements) { // The aggregate state of the save record mirrors the element fInnerBounds = toAdd.innerBounds(); fOuterBounds = toAdd.outerBounds(); fStackOp = toAdd.op(); fState = toAdd.clipType(); // All prior active element can be removed from the stack: [startingIndex, count - 1] int targetCount = fStartingElementIndex + 1; while (elements->count() > targetCount) { elements->pop_back(); } if (elements->count() < targetCount) { elements->push_back(std::move(toAdd)); } else { elements->back() = std::move(toAdd); } SkASSERT(elements->count() == fStartingElementIndex + 1); // This invalidates all older elements that are owned by save records lower in the clip stack. fOldestValidIndex = fStartingElementIndex; fGenID = next_gen_id(); } /////////////////////////////////////////////////////////////////////////////// // ClipStack // NOTE: Based on draw calls in all GMs, SKPs, and SVGs as of 08/20, 98% use a clip stack with // one Element and up to two SaveRecords, thus the inline size for RawElement::Stack and // SaveRecord::Stack (this conveniently keeps the size of ClipStack manageable). The max // encountered element stack depth was 5 and the max save depth was 6. Using an increment of 8 for // these stacks means that clip management will incur a single allocation for the remaining 2% // of the draws, with extra head room for more complex clips encountered in the wild. // // The mask stack increment size was chosen to be smaller since only 0.2% of the evaluated draw call // set ever used a mask (which includes stencil masks), or up to 0.3% when the atlas is disabled. static constexpr int kElementStackIncrement = 8; static constexpr int kSaveStackIncrement = 8; static constexpr int kMaskStackIncrement = 4; // And from this same draw call set, the most complex clip could only use 5 analytic coverage FPs. // Historically we limited it to 4 based on Blink's call pattern, so we keep the limit as-is since // it's so close to the empirically encountered max. static constexpr int kMaxAnalyticFPs = 4; // The number of stack-allocated mask pointers to store before extending the arrays. // Stack size determined empirically, the maximum number of elements put in a SW mask was 4 // across our set of GMs, SKPs, and SVGs used for testing. static constexpr int kNumStackMasks = 4; ClipStack::ClipStack(const SkIRect& deviceBounds, const SkMatrix* ctm, bool forceAA) : fElements(kElementStackIncrement) , fSaves(kSaveStackIncrement) , fMasks(kMaskStackIncrement) , fProxyProvider(nullptr) , fDeviceBounds(deviceBounds) , fCTM(ctm) , fForceAA(forceAA) { // Start with a save record that is wide open fSaves.emplace_back(deviceBounds); } ClipStack::~ClipStack() { // Invalidate all mask keys that remain. Since we're tearing the clip stack down, we don't need // to go through SaveRecord. SkASSERT(fProxyProvider || fMasks.empty()); if (fProxyProvider) { for (Mask& m : fMasks.ritems()) { m.invalidate(fProxyProvider); } } } void ClipStack::save() { SkASSERT(!fSaves.empty()); fSaves.back().pushSave(); } void ClipStack::restore() { SkASSERT(!fSaves.empty()); SaveRecord& current = fSaves.back(); if (current.popSave()) { // This was just a deferred save being undone, so the record doesn't need to be removed yet return; } // When we remove a save record, we delete all elements >= its starting index and any masks // that were rasterized for it. current.removeElements(&fElements); SkASSERT(fProxyProvider || fMasks.empty()); if (fProxyProvider) { current.invalidateMasks(fProxyProvider, &fMasks); } fSaves.pop_back(); // Restore any remaining elements that were only invalidated by the now-removed save record. fSaves.back().restoreElements(&fElements); } SkIRect ClipStack::getConservativeBounds() const { const SaveRecord& current = this->currentSaveRecord(); if (current.state() == ClipState::kEmpty) { return SkIRect::MakeEmpty(); } else if (current.state() == ClipState::kWideOpen) { return fDeviceBounds; } else { if (current.op() == SkClipOp::kDifference) { // The outer/inner bounds represent what's cut out, so full bounds remains the device // bounds, minus any fully clipped content that spans the device edge. return subtract(fDeviceBounds, current.innerBounds(), /* exact */ true); } else { SkASSERT(fDeviceBounds.contains(current.outerBounds())); return current.outerBounds(); } } } GrClip::PreClipResult ClipStack::preApply(const SkRect& bounds, GrAA aa) const { Draw draw(bounds, fForceAA ? GrAA::kYes : aa); if (!draw.applyDeviceBounds(fDeviceBounds)) { return GrClip::Effect::kClippedOut; } const SaveRecord& cs = this->currentSaveRecord(); // Early out if we know a priori that the clip is full 0s or full 1s. if (cs.state() == ClipState::kEmpty) { return GrClip::Effect::kClippedOut; } else if (cs.state() == ClipState::kWideOpen) { SkASSERT(!cs.shader()); return GrClip::Effect::kUnclipped; } // Given argument order, 'A' == current clip, 'B' == draw switch (get_clip_geometry(cs, draw)) { case ClipGeometry::kEmpty: // Can ignore the shader since the geometry removed everything already return GrClip::Effect::kClippedOut; case ClipGeometry::kBOnly: // Geometrically, the draw is unclipped, but can't ignore a shader return cs.shader() ? GrClip::Effect::kClipped : GrClip::Effect::kUnclipped; case ClipGeometry::kAOnly: // Shouldn't happen since the inner bounds of a draw are unknown SkASSERT(false); // But if it did, it technically means the draw covered the clip and should be // considered kClipped or similar, which is what the next case handles. [[fallthrough]]; case ClipGeometry::kBoth: { SkASSERT(fElements.count() > 0); const RawElement& back = fElements.back(); if (cs.state() == ClipState::kDeviceRect) { SkASSERT(back.clipType() == ClipState::kDeviceRect); return {back.shape().rect(), back.aa()}; } else if (cs.state() == ClipState::kDeviceRRect) { SkASSERT(back.clipType() == ClipState::kDeviceRRect); return {back.shape().rrect(), back.aa()}; } else { // The clip stack has complex shapes, multiple elements, or a shader; we could // iterate per element like we would in apply(), but preApply() is meant to be // conservative and efficient. SkASSERT(cs.state() == ClipState::kComplex); return GrClip::Effect::kClipped; } } } SkUNREACHABLE; } GrClip::Effect ClipStack::apply(GrRecordingContext* rContext, SurfaceDrawContext* sdc, GrDrawOp* op, GrAAType aa, GrAppliedClip* out, SkRect* bounds) const { // TODO: Once we no longer store SW masks, we don't need to sneak the provider in like this if (!fProxyProvider) { fProxyProvider = rContext->priv().proxyProvider(); } SkASSERT(fProxyProvider == rContext->priv().proxyProvider()); const GrCaps* caps = rContext->priv().caps(); // Convert the bounds to a Draw and apply device bounds clipping, making our query as tight // as possible. Draw draw(*bounds, GrAA(fForceAA || aa != GrAAType::kNone)); if (!draw.applyDeviceBounds(fDeviceBounds)) { return Effect::kClippedOut; } SkAssertResult(bounds->intersect(SkRect::Make(fDeviceBounds))); const SaveRecord& cs = this->currentSaveRecord(); // Early out if we know a priori that the clip is full 0s or full 1s. if (cs.state() == ClipState::kEmpty) { return Effect::kClippedOut; } else if (cs.state() == ClipState::kWideOpen) { SkASSERT(!cs.shader()); return Effect::kUnclipped; } // Convert any clip shader first, since it's not geometrically related to the draw bounds std::unique_ptr clipFP = nullptr; if (cs.shader()) { static const GrColorInfo kCoverageColorInfo{GrColorType::kUnknown, kPremul_SkAlphaType, nullptr}; GrFPArgs args( rContext, &kCoverageColorInfo, sdc->surfaceProps(), GrFPArgs::Scope::kDefault); clipFP = GrFragmentProcessors::Make(cs.shader(), args, *fCTM); if (clipFP) { // The initial input is the coverage from the geometry processor, so this ensures it // is multiplied properly with the alpha of the clip shader. clipFP = GrFragmentProcessor::MulInputByChildAlpha(std::move(clipFP)); } } // A refers to the entire clip stack, B refers to the draw switch (get_clip_geometry(cs, draw)) { case ClipGeometry::kEmpty: return Effect::kClippedOut; case ClipGeometry::kBOnly: // Geometrically unclipped, but may need to add the shader as a coverage FP if (clipFP) { out->addCoverageFP(std::move(clipFP)); return Effect::kClipped; } else { return Effect::kUnclipped; } case ClipGeometry::kAOnly: // Shouldn't happen since draws don't report inner bounds SkASSERT(false); [[fallthrough]]; case ClipGeometry::kBoth: // The draw is combined with the saved clip elements; the below logic tries to skip // as many elements as possible. SkASSERT(cs.state() == ClipState::kDeviceRect || cs.state() == ClipState::kDeviceRRect || cs.state() == ClipState::kComplex); break; } // We can determine a scissor based on the draw and the overall stack bounds. SkIRect scissorBounds; if (cs.op() == SkClipOp::kIntersect) { // Initially we keep this as large as possible; if the clip is applied solely with coverage // FPs then using a loose scissor increases the chance we can batch the draws. // We tighten it later if any form of mask or atlas element is needed. scissorBounds = cs.outerBounds(); } else { scissorBounds = subtract(draw.outerBounds(), cs.innerBounds(), /* exact */ true); } // We mark this true once we have a coverage FP (since complex clipping is occurring), or we // have an element that wouldn't affect the scissored draw bounds, but does affect the regular // draw bounds. In that case, the scissor is sufficient for clipping and we can skip the // element but definitely cannot then drop the scissor. bool scissorIsNeeded = SkToBool(cs.shader()); SkDEBUGCODE(bool opClippedInternally = false;) int remainingAnalyticFPs = kMaxAnalyticFPs; // If window rectangles are supported, we can use them to exclude inner bounds of difference ops int maxWindowRectangles = sdc->maxWindowRectangles(); GrWindowRectangles windowRects; // Elements not represented as an analytic FP or skipped will be collected here and later // applied by using the stencil buffer or a cached SW mask. STArray elementsForMask; bool maskRequiresAA = false; auto atlasPathRenderer = rContext->priv().drawingManager()->getAtlasPathRenderer(); int i = fElements.count(); for (const RawElement& e : fElements.ritems()) { --i; if (i < cs.oldestElementIndex()) { // All earlier elements have been invalidated by elements already processed break; } else if (e.isInvalid()) { continue; } switch (get_clip_geometry(e, draw)) { case ClipGeometry::kEmpty: // This can happen for difference op elements that have a larger fInnerBounds than // can be preserved at the next level. return Effect::kClippedOut; case ClipGeometry::kBOnly: // We don't need to produce a coverage FP or mask for the element break; case ClipGeometry::kAOnly: // Shouldn't happen for draws, fall through to regular element processing SkASSERT(false); [[fallthrough]]; case ClipGeometry::kBoth: { // The element must apply coverage to the draw, enable the scissor to limit overdraw scissorIsNeeded = true; // First apply using HW methods (scissor and window rects). When the inner and outer // bounds match, nothing else needs to be done. bool fullyApplied = false; // First check if the op knows how to apply this clip internally. SkASSERT(!e.shape().inverted()); auto result = op->clipToShape(sdc, e.op(), e.localToDevice(), e.shape(), GrAA(e.aa() == GrAA::kYes || fForceAA)); if (result != GrDrawOp::ClipResult::kFail) { if (result == GrDrawOp::ClipResult::kClippedOut) { return Effect::kClippedOut; } if (result == GrDrawOp::ClipResult::kClippedGeometrically) { // The op clipped its own geometry. Tighten the draw bounds. bounds->intersect(SkRect::Make(e.outerBounds())); } fullyApplied = true; SkDEBUGCODE(opClippedInternally = true;) } if (!fullyApplied) { if (e.op() == SkClipOp::kIntersect) { // The second test allows clipped draws that are scissored by multiple // elements to remain scissor-only. fullyApplied = e.innerBounds() == e.outerBounds() || e.innerBounds().contains(scissorBounds); } else { if (!e.innerBounds().isEmpty() && windowRects.count() < maxWindowRectangles) { // TODO: If we have more difference ops than available window rects, we // should prioritize those with the largest inner bounds. windowRects.addWindow(e.innerBounds()); fullyApplied = e.innerBounds() == e.outerBounds(); } } } if (!fullyApplied && remainingAnalyticFPs > 0) { std::tie(fullyApplied, clipFP) = analytic_clip_fp(e.asElement(), *caps->shaderCaps(), std::move(clipFP)); if (!fullyApplied && atlasPathRenderer) { std::tie(fullyApplied, clipFP) = clip_atlas_fp(sdc, op, atlasPathRenderer, scissorBounds, e.asElement(), std::move(clipFP)); } if (fullyApplied) { remainingAnalyticFPs--; } } if (!fullyApplied) { elementsForMask.push_back(&e.asElement()); maskRequiresAA |= (e.aa() == GrAA::kYes); } break; } } } if (!scissorIsNeeded) { // More detailed analysis of the element shapes determined no clip is needed SkASSERT(elementsForMask.empty() && !clipFP); return Effect::kUnclipped; } // Fill out the GrAppliedClip with what we know so far, possibly with a tightened scissor if (cs.op() == SkClipOp::kIntersect && !elementsForMask.empty()) { SkAssertResult(scissorBounds.intersect(draw.outerBounds())); } if (!GrClip::IsInsideClip(scissorBounds, *bounds, draw.aa())) { out->hardClip().addScissor(scissorBounds, bounds); } if (!windowRects.empty()) { out->hardClip().addWindowRectangles(windowRects, GrWindowRectsState::Mode::kExclusive); } // Now rasterize any remaining elements, either to the stencil or a SW mask. All elements are // flattened into a single mask. if (!elementsForMask.empty()) { bool stencilUnavailable = !sdc->asRenderTargetProxy()->canUseStencil(*rContext->priv().caps()); bool hasSWMask = false; if ((sdc->numSamples() <= 1 && !sdc->canUseDynamicMSAA() && maskRequiresAA) || stencilUnavailable) { // Must use a texture mask to represent the combined clip elements since the stencil // cannot be used, or cannot handle smooth clips. std::tie(hasSWMask, clipFP) = GetSWMaskFP( rContext, &fMasks, cs, scissorBounds, elementsForMask.begin(), elementsForMask.size(), std::move(clipFP)); } if (!hasSWMask) { if (stencilUnavailable) { SkDebugf("WARNING: Clip mask requires stencil, but stencil unavailable. " "Draw will be ignored.\n"); return Effect::kClippedOut; } else { // Rasterize the remaining elements to the stencil buffer render_stencil_mask(rContext, sdc, cs.genID(), scissorBounds, elementsForMask.begin(), elementsForMask.size(), out); } } } if (clipFP) { // This will include all analytic FPs, all atlas FPs, and a SW mask FP. out->addCoverageFP(std::move(clipFP)); } SkASSERT(out->doesClip() || opClippedInternally); return Effect::kClipped; } ClipStack::SaveRecord& ClipStack::writableSaveRecord(bool* wasDeferred) { SaveRecord& current = fSaves.back(); if (current.canBeUpdated()) { // Current record is still open, so it can be modified directly *wasDeferred = false; return current; } else { // Must undefer the save to get a new record. SkAssertResult(current.popSave()); *wasDeferred = true; return fSaves.emplace_back(current, fMasks.count(), fElements.count()); } } void ClipStack::clipShader(sk_sp shader) { // Shaders can't bring additional coverage if (this->currentSaveRecord().state() == ClipState::kEmpty) { return; } bool wasDeferred; this->writableSaveRecord(&wasDeferred).addShader(std::move(shader)); // Masks and geometry elements are not invalidated by updating the clip shader } void ClipStack::replaceClip(const SkIRect& rect) { bool wasDeferred; SaveRecord& save = this->writableSaveRecord(&wasDeferred); if (!wasDeferred) { save.removeElements(&fElements); save.invalidateMasks(fProxyProvider, &fMasks); } save.reset(fDeviceBounds); if (rect != fDeviceBounds) { this->clipRect(SkMatrix::I(), SkRect::Make(rect), GrAA::kNo, SkClipOp::kIntersect); } } void ClipStack::clip(RawElement&& element) { if (this->currentSaveRecord().state() == ClipState::kEmpty) { return; } // Reduce the path to anything simpler, will apply the transform if it's a scale+translate // and ensures the element's bounds are clipped to the device (NOT the conservative clip bounds, // since those are based on the net effect of all elements while device bounds clipping happens // implicitly. During addElement, we may still be able to invalidate some older elements). element.simplify(fDeviceBounds, fForceAA); SkASSERT(!element.shape().inverted()); // An empty op means do nothing (for difference), or close the save record, so we try and detect // that early before doing additional unnecessary save record allocation. if (element.shape().isEmpty()) { if (element.op() == SkClipOp::kDifference) { // If the shape is empty and we're subtracting, this has no effect on the clip return; } // else we will make the clip empty, but we need a new save record to record that change // in the clip state; fall through to below and updateForElement() will handle it. } bool wasDeferred; SaveRecord& save = this->writableSaveRecord(&wasDeferred); SkDEBUGCODE(uint32_t oldGenID = save.genID();) SkDEBUGCODE(int elementCount = fElements.count();) if (!save.addElement(std::move(element), &fElements)) { if (wasDeferred) { // We made a new save record, but ended up not adding an element to the stack. // So instead of keeping an empty save record around, pop it off and restore the counter SkASSERT(elementCount == fElements.count()); fSaves.pop_back(); fSaves.back().pushSave(); } else { // Should not have changed gen ID if the element and save were not modified SkASSERT(oldGenID == save.genID()); } } else { // The gen ID should be new, and should not be invalid SkASSERT(oldGenID != save.genID() && save.genID() != kInvalidGenID); if (fProxyProvider && !wasDeferred) { // We modified an active save record so any old masks it had can be invalidated save.invalidateMasks(fProxyProvider, &fMasks); } } } GrFPResult ClipStack::GetSWMaskFP(GrRecordingContext* context, Mask::Stack* masks, const SaveRecord& current, const SkIRect& bounds, const Element** elements, int count, std::unique_ptr clipFP) { GrProxyProvider* proxyProvider = context->priv().proxyProvider(); GrSurfaceProxyView maskProxy; SkIRect maskBounds; // may not be 'bounds' if we reuse a large clip mask // Check the existing masks from this save record for compatibility for (const Mask& m : masks->ritems()) { if (m.genID() != current.genID()) { break; } if (m.appliesToDraw(current, bounds)) { maskProxy = proxyProvider->findCachedProxyWithColorTypeFallback( m.key(), kMaskOrigin, GrColorType::kAlpha_8, 1); if (maskProxy) { maskBounds = m.bounds(); break; } } } if (!maskProxy) { // No existing mask was found, so need to render a new one maskProxy = render_sw_mask(context, bounds, elements, count); if (!maskProxy) { // If we still don't have one, there's nothing we can do return GrFPFailure(std::move(clipFP)); } // Register the mask for later invalidation Mask& mask = masks->emplace_back(current, bounds); proxyProvider->assignUniqueKeyToProxy(mask.key(), maskProxy.asTextureProxy()); maskBounds = bounds; } // Wrap the mask in an FP that samples it for coverage SkASSERT(maskProxy && maskProxy.origin() == kMaskOrigin); GrSamplerState samplerState(GrSamplerState::WrapMode::kClampToBorder, GrSamplerState::Filter::kNearest); // Maps the device coords passed to the texture effect to the top-left corner of the mask, and // make sure that the draw bounds are pre-mapped into the mask's space as well. auto m = SkMatrix::Translate(-maskBounds.fLeft, -maskBounds.fTop); auto subset = SkRect::Make(bounds); subset.offset(-maskBounds.fLeft, -maskBounds.fTop); // We scissor to bounds. The mask's texel centers are aligned to device space // pixel centers. Hence this domain of texture coordinates. auto domain = subset.makeInset(0.5, 0.5); auto fp = GrTextureEffect::MakeSubset(std::move(maskProxy), kPremul_SkAlphaType, m, samplerState, subset, domain, *context->priv().caps()); fp = GrFragmentProcessor::DeviceSpace(std::move(fp)); // Must combine the coverage sampled from the texture effect with the previous coverage fp = GrBlendFragmentProcessor::Make(std::move(fp), std::move(clipFP)); return GrFPSuccess(std::move(fp)); } } // namespace skgpu::ganesh