/* * Copyright 2019 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/ganesh/GrDataUtils.h" #include "include/core/SkAlphaType.h" #include "include/core/SkColorSpace.h" #include "include/core/SkColorType.h" #include "include/core/SkPixmap.h" #include "include/core/SkSize.h" #include "include/private/base/SkAssert.h" #include "include/private/base/SkMath.h" #include "include/private/base/SkTemplates.h" #include "include/private/base/SkTo.h" #include "include/private/gpu/ganesh/GrTypesPriv.h" #include "modules/skcms/skcms.h" #include "src/base/SkArenaAlloc.h" #include "src/base/SkRectMemcpy.h" #include "src/base/SkTLazy.h" #include "src/core/SkColorSpaceXformSteps.h" #include "src/core/SkRasterPipeline.h" #include "src/core/SkRasterPipelineOpContexts.h" #include "src/core/SkRasterPipelineOpList.h" #include "src/core/SkTraceEvent.h" #include "src/gpu/Swizzle.h" #include "src/gpu/ganesh/GrImageInfo.h" #include "src/gpu/ganesh/GrPixmap.h" #include #include #include #include using namespace skia_private; #if defined(GPU_TEST_UTILS) // The following four helpers are copied from src/gpu/DataUtils.cpp to support the test only // GrTwoColorBC1Compress function. Ideally we would copy the test function into DataUtils.cpp // instead, but we're currently trying to avoid using the GPU_TEST_UTILS define in src/gpu. static int num_4x4_blocks(int size) { return ((size + 3) & ~3) >> 2; } struct BC1Block { uint16_t fColor0; uint16_t fColor1; uint32_t fIndices; }; static uint16_t to565(SkColor col) { int r5 = SkMulDiv255Round(31, SkColorGetR(col)); int g6 = SkMulDiv255Round(63, SkColorGetG(col)); int b5 = SkMulDiv255Round(31, SkColorGetB(col)); return (r5 << 11) | (g6 << 5) | b5; } // Create a BC1 compressed block that has two colors but is initialized to 'col0' static void create_BC1_block(SkColor col0, SkColor col1, BC1Block* block) { block->fColor0 = to565(col0); block->fColor1 = to565(col1); SkASSERT(block->fColor0 <= block->fColor1); // we always assume transparent blocks if (col0 == SK_ColorTRANSPARENT) { // This sets all 16 pixels to just use color3 (under the assumption // that this is a kBC1_RGBA8_UNORM texture. Note that in this case // fColor0 will be opaque black. block->fIndices = 0xFFFFFFFF; } else { // This sets all 16 pixels to just use 'fColor0' block->fIndices = 0; } } // Fill in 'dstPixels' with BC1 blocks derived from the 'pixmap'. void GrTwoColorBC1Compress(const SkPixmap& pixmap, SkColor otherColor, char* dstPixels) { BC1Block* dstBlocks = reinterpret_cast(dstPixels); SkASSERT(pixmap.colorType() == SkColorType::kRGBA_8888_SkColorType); BC1Block block; // black -> fColor0, otherColor -> fColor1 create_BC1_block(SK_ColorBLACK, otherColor, &block); int numXBlocks = num_4x4_blocks(pixmap.width()); int numYBlocks = num_4x4_blocks(pixmap.height()); for (int y = 0; y < numYBlocks; ++y) { for (int x = 0; x < numXBlocks; ++x) { int shift = 0; int offsetX = 4 * x, offsetY = 4 * y; block.fIndices = 0; // init all the pixels to color0 (i.e., opaque black) for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j, shift += 2) { if (offsetX + j >= pixmap.width() || offsetY + i >= pixmap.height()) { // This can happen for the topmost levels of a mipmap and for // non-multiple of 4 textures continue; } SkColor tmp = pixmap.getColor(offsetX + j, offsetY + i); if (tmp == SK_ColorTRANSPARENT) { // For RGBA BC1 images color3 is set to transparent black block.fIndices |= 3 << shift; } else if (tmp != SK_ColorBLACK) { block.fIndices |= 1 << shift; // color1 } } } dstBlocks[y*numXBlocks + x] = block; } } } #endif size_t GrComputeTightCombinedBufferSize(size_t bytesPerPixel, SkISize baseDimensions, TArray* individualMipOffsets, int mipLevelCount) { SkASSERT(individualMipOffsets && individualMipOffsets->empty()); SkASSERT(mipLevelCount >= 1); individualMipOffsets->push_back(0); size_t combinedBufferSize = baseDimensions.width() * bytesPerPixel * baseDimensions.height(); SkISize levelDimensions = baseDimensions; // The Vulkan spec for copying a buffer to an image requires that the alignment must be at // least 4 bytes and a multiple of the bytes per pixel of the image config. SkASSERT(bytesPerPixel == 1 || bytesPerPixel == 2 || bytesPerPixel == 3 || bytesPerPixel == 4 || bytesPerPixel == 8 || bytesPerPixel == 16); int desiredAlignment = (bytesPerPixel == 3) ? 12 : (bytesPerPixel > 4 ? bytesPerPixel : 4); for (int currentMipLevel = 1; currentMipLevel < mipLevelCount; ++currentMipLevel) { levelDimensions = {std::max(1, levelDimensions.width() /2), std::max(1, levelDimensions.height()/2)}; size_t trimmedSize = levelDimensions.area() * bytesPerPixel; const size_t alignmentDiff = combinedBufferSize % desiredAlignment; if (alignmentDiff != 0) { combinedBufferSize += desiredAlignment - alignmentDiff; } SkASSERT((0 == combinedBufferSize % 4) && (0 == combinedBufferSize % bytesPerPixel)); individualMipOffsets->push_back(combinedBufferSize); combinedBufferSize += trimmedSize; } SkASSERT(individualMipOffsets->size() == mipLevelCount); return combinedBufferSize; } static skgpu::Swizzle get_load_and_src_swizzle(GrColorType ct, SkRasterPipelineOp* load, bool* isNormalized, bool* isSRGB) { skgpu::Swizzle swizzle("rgba"); *isNormalized = true; *isSRGB = false; switch (ct) { case GrColorType::kAlpha_8: *load = SkRasterPipelineOp::load_a8; break; case GrColorType::kAlpha_16: *load = SkRasterPipelineOp::load_a16; break; case GrColorType::kBGR_565: *load = SkRasterPipelineOp::load_565; break; case GrColorType::kRGB_565: swizzle = skgpu::Swizzle("bgr1"); *load = SkRasterPipelineOp::load_565; break; case GrColorType::kABGR_4444: *load = SkRasterPipelineOp::load_4444; break; case GrColorType::kARGB_4444: swizzle = skgpu::Swizzle("bgra"); *load = SkRasterPipelineOp::load_4444; break; case GrColorType::kBGRA_4444: swizzle = skgpu::Swizzle("gbar"); *load = SkRasterPipelineOp::load_4444; break; case GrColorType::kRGBA_8888: *load = SkRasterPipelineOp::load_8888; break; case GrColorType::kRG_88: *load = SkRasterPipelineOp::load_rg88; break; case GrColorType::kRGBA_1010102: *load = SkRasterPipelineOp::load_1010102; break; case GrColorType::kBGRA_1010102: *load = SkRasterPipelineOp::load_1010102; swizzle = skgpu::Swizzle("bgra"); break; case GrColorType::kRGB_101010x: *load = SkRasterPipelineOp::load_1010102; swizzle = skgpu::Swizzle("rgb1"); break; case GrColorType::kRGBA_10x6: *load = SkRasterPipelineOp::load_10x6; break; case GrColorType::kAlpha_F16: *load = SkRasterPipelineOp::load_af16; break; case GrColorType::kRGBA_F16_Clamped: *load = SkRasterPipelineOp::load_f16; break; case GrColorType::kRG_1616: *load = SkRasterPipelineOp::load_rg1616; break; case GrColorType::kRGBA_16161616: *load = SkRasterPipelineOp::load_16161616; break; case GrColorType::kRGBA_8888_SRGB: *load = SkRasterPipelineOp::load_8888; *isSRGB = true; break; case GrColorType::kRG_F16: *load = SkRasterPipelineOp::load_rgf16; *isNormalized = false; break; case GrColorType::kRGBA_F16: *load = SkRasterPipelineOp::load_f16; *isNormalized = false; break; case GrColorType::kRGB_F16F16F16x: *load = SkRasterPipelineOp::load_f16; *isNormalized = false; swizzle = skgpu::Swizzle("rgb1"); break; case GrColorType::kRGBA_F32: *load = SkRasterPipelineOp::load_f32; *isNormalized = false; break; case GrColorType::kAlpha_8xxx: *load = SkRasterPipelineOp::load_8888; swizzle = skgpu::Swizzle("000r"); break; case GrColorType::kAlpha_F32xxx: *load = SkRasterPipelineOp::load_f32; swizzle = skgpu::Swizzle("000r"); break; case GrColorType::kGray_8xxx: *load = SkRasterPipelineOp::load_8888; swizzle = skgpu::Swizzle("rrr1"); break; case GrColorType::kGray_8: *load = SkRasterPipelineOp::load_a8; swizzle = skgpu::Swizzle("aaa1"); break; case GrColorType::kR_8xxx: *load = SkRasterPipelineOp::load_8888; swizzle = skgpu::Swizzle("r001"); break; case GrColorType::kR_8: *load = SkRasterPipelineOp::load_a8; swizzle = skgpu::Swizzle("a001"); break; case GrColorType::kGrayAlpha_88: *load = SkRasterPipelineOp::load_rg88; swizzle = skgpu::Swizzle("rrrg"); break; case GrColorType::kBGRA_8888: *load = SkRasterPipelineOp::load_8888; swizzle = skgpu::Swizzle("bgra"); break; case GrColorType::kRGB_888x: *load = SkRasterPipelineOp::load_8888; swizzle = skgpu::Swizzle("rgb1"); break; // These are color types we don't expect to ever have to load. case GrColorType::kRGB_888: case GrColorType::kR_16: case GrColorType::kR_F16: case GrColorType::kGray_F16: case GrColorType::kUnknown: SK_ABORT("unexpected CT"); } return swizzle; } enum class LumMode { kNone, kToRGB, kToAlpha }; static skgpu::Swizzle get_dst_swizzle_and_store(GrColorType ct, SkRasterPipelineOp* store, LumMode* lumMode, bool* isNormalized, bool* isSRGB) { skgpu::Swizzle swizzle("rgba"); *isNormalized = true; *isSRGB = false; *lumMode = LumMode::kNone; switch (ct) { case GrColorType::kAlpha_8: *store = SkRasterPipelineOp::store_a8; break; case GrColorType::kAlpha_16: *store = SkRasterPipelineOp::store_a16; break; case GrColorType::kBGR_565: *store = SkRasterPipelineOp::store_565; break; case GrColorType::kRGB_565: swizzle = skgpu::Swizzle("bgr1"); *store = SkRasterPipelineOp::store_565; break; case GrColorType::kABGR_4444: *store = SkRasterPipelineOp::store_4444; break; case GrColorType::kARGB_4444: swizzle = skgpu::Swizzle("bgra"); *store = SkRasterPipelineOp::store_4444; break; case GrColorType::kBGRA_4444: swizzle = skgpu::Swizzle("argb"); *store = SkRasterPipelineOp::store_4444; break; case GrColorType::kRGBA_8888: *store = SkRasterPipelineOp::store_8888; break; case GrColorType::kRG_88: *store = SkRasterPipelineOp::store_rg88; break; case GrColorType::kRGBA_1010102: *store = SkRasterPipelineOp::store_1010102; break; case GrColorType::kBGRA_1010102: swizzle = skgpu::Swizzle("bgra"); *store = SkRasterPipelineOp::store_1010102; break; case GrColorType::kRGB_101010x: swizzle = skgpu::Swizzle("rgb1"); *store = SkRasterPipelineOp::store_1010102; break; case GrColorType::kRGBA_10x6: *store = SkRasterPipelineOp::store_10x6; break; case GrColorType::kRGBA_F16_Clamped: *store = SkRasterPipelineOp::store_f16; break; case GrColorType::kRG_1616: *store = SkRasterPipelineOp::store_rg1616; break; case GrColorType::kRGBA_16161616: *store = SkRasterPipelineOp::store_16161616; break; case GrColorType::kRGBA_8888_SRGB: *store = SkRasterPipelineOp::store_8888; *isSRGB = true; break; case GrColorType::kRG_F16: *store = SkRasterPipelineOp::store_rgf16; *isNormalized = false; break; case GrColorType::kAlpha_F16: *store = SkRasterPipelineOp::store_af16; *isNormalized = false; break; case GrColorType::kRGBA_F16: *store = SkRasterPipelineOp::store_f16; *isNormalized = false; break; case GrColorType::kRGB_F16F16F16x: swizzle = skgpu::Swizzle("rgb1"); *store = SkRasterPipelineOp::store_f16; *isNormalized = false; break; case GrColorType::kRGBA_F32: *store = SkRasterPipelineOp::store_f32; *isNormalized = false; break; case GrColorType::kAlpha_8xxx: *store = SkRasterPipelineOp::store_8888; swizzle = skgpu::Swizzle("a000"); break; case GrColorType::kAlpha_F32xxx: *store = SkRasterPipelineOp::store_f32; swizzle = skgpu::Swizzle("a000"); break; case GrColorType::kBGRA_8888: swizzle = skgpu::Swizzle("bgra"); *store = SkRasterPipelineOp::store_8888; break; case GrColorType::kRGB_888x: swizzle = skgpu::Swizzle("rgb1"); *store = SkRasterPipelineOp::store_8888; break; case GrColorType::kR_8xxx: swizzle = skgpu::Swizzle("r001"); *store = SkRasterPipelineOp::store_8888; break; case GrColorType::kR_8: swizzle = skgpu::Swizzle("agbr"); *store = SkRasterPipelineOp::store_a8; break; case GrColorType::kR_16: swizzle = skgpu::Swizzle("agbr"); *store = SkRasterPipelineOp::store_a16; break; case GrColorType::kR_F16: swizzle = skgpu::Swizzle("agbr"); *store = SkRasterPipelineOp::store_af16; break; case GrColorType::kGray_F16: *lumMode = LumMode::kToAlpha; *store = SkRasterPipelineOp::store_af16; break; case GrColorType::kGray_8: *lumMode = LumMode::kToAlpha; *store = SkRasterPipelineOp::store_a8; break; case GrColorType::kGrayAlpha_88: *lumMode = LumMode::kToRGB; swizzle = skgpu::Swizzle("ragb"); *store = SkRasterPipelineOp::store_rg88; break; case GrColorType::kGray_8xxx: *lumMode = LumMode::kToRGB; *store = SkRasterPipelineOp::store_8888; swizzle = skgpu::Swizzle("r000"); break; // These are color types we don't expect to ever have to store. case GrColorType::kRGB_888: // This is handled specially in GrConvertPixels. case GrColorType::kUnknown: SK_ABORT("unexpected CT"); } return swizzle; } bool GrConvertPixels(const GrPixmap& dst, const GrCPixmap& src, bool flipY) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); if (src.dimensions().isEmpty() || dst.dimensions().isEmpty()) { return false; } if (src.colorType() == GrColorType::kUnknown || dst.colorType() == GrColorType::kUnknown) { return false; } if (!src.hasPixels() || !dst.hasPixels()) { return false; } if (dst.dimensions() != src.dimensions()) { return false; } if (dst.colorType() == GrColorType::kRGB_888) { // SkRasterPipeline doesn't handle writing to RGB_888. So we have it write to RGB_888x and // then do another conversion that does the 24bit packing. We could be cleverer and skip the // temp pixmap if this is the only conversion but this is rare so keeping it simple. GrPixmap temp = GrPixmap::Allocate(dst.info().makeColorType(GrColorType::kRGB_888x)); if (!GrConvertPixels(temp, src, flipY)) { return false; } auto* tRow = reinterpret_cast(temp.addr()); auto* dRow = reinterpret_cast(dst.addr()); for (int y = 0; y < dst.height(); ++y, tRow += temp.rowBytes(), dRow += dst.rowBytes()) { for (int x = 0; x < dst.width(); ++x) { auto t = tRow + x*sizeof(uint32_t); auto d = dRow + x*3; memcpy(d, t, 3); } } return true; } else if (src.colorType() == GrColorType::kRGB_888) { // SkRasterPipeline doesn't handle reading from RGB_888. So convert it to RGB_888x and then // do a recursive call if there is any remaining conversion. GrPixmap temp = GrPixmap::Allocate(src.info().makeColorType(GrColorType::kRGB_888x)); auto* sRow = reinterpret_cast(src.addr()); auto* tRow = reinterpret_cast(temp.addr()); for (int y = 0; y < src.height(); ++y, sRow += src.rowBytes(), tRow += temp.rowBytes()) { for (int x = 0; x < src.width(); ++x) { auto s = sRow + x*3; auto t = tRow + x*sizeof(uint32_t); memcpy(t, s, 3); t[3] = static_cast(0xFF); } } return GrConvertPixels(dst, temp, flipY); } size_t srcBpp = src.info().bpp(); size_t dstBpp = dst.info().bpp(); // SkRasterPipeline operates on row-pixels not row-bytes. SkASSERT(dst.rowBytes() % dstBpp == 0); SkASSERT(src.rowBytes() % srcBpp == 0); bool premul = src.alphaType() == kUnpremul_SkAlphaType && dst.alphaType() == kPremul_SkAlphaType; bool unpremul = src.alphaType() == kPremul_SkAlphaType && dst.alphaType() == kUnpremul_SkAlphaType; bool alphaOrCSConversion = premul || unpremul || !SkColorSpace::Equals(src.colorSpace(), dst.colorSpace()); if (src.colorType() == dst.colorType() && !alphaOrCSConversion) { size_t tightRB = dstBpp * dst.width(); if (flipY) { auto s = static_cast(src.addr()); auto d = SkTAddOffset(dst.addr(), dst.rowBytes()*(dst.height() - 1)); for (int y = 0; y < dst.height(); ++y, d -= dst.rowBytes(), s += src.rowBytes()) { memcpy(d, s, tightRB); } } else { SkRectMemcpy(dst.addr(), dst.rowBytes(), src.addr(), src.rowBytes(), tightRB, src.height()); } return true; } SkRasterPipelineOp load; bool srcIsNormalized; bool srcIsSRGB; auto loadSwizzle = get_load_and_src_swizzle(src.colorType(), &load, &srcIsNormalized, &srcIsSRGB); SkRasterPipelineOp store; LumMode lumMode; bool dstIsNormalized; bool dstIsSRGB; auto storeSwizzle = get_dst_swizzle_and_store(dst.colorType(), &store, &lumMode, &dstIsNormalized, &dstIsSRGB); SkTLazy steps; skgpu::Swizzle loadStoreSwizzle; if (alphaOrCSConversion) { steps.init(src.colorSpace(), src.alphaType(), dst.colorSpace(), dst.alphaType()); } else { loadStoreSwizzle = skgpu::Swizzle::Concat(loadSwizzle, storeSwizzle); } int cnt = 1; int height = src.height(); SkRasterPipeline_MemoryCtx srcCtx{const_cast(src.addr()), SkToInt(src.rowBytes()/srcBpp)}, dstCtx{ dst.addr(), SkToInt(dst.rowBytes()/dstBpp)}; if (flipY) { // It *almost* works to point the src at the last row and negate the stride and run the // whole rectangle. However, SkRasterPipeline::run()'s control loop uses size_t loop // variables so it winds up relying on unsigned overflow math. It works out in practice // but UBSAN says "no!" as it's technically undefined and in theory a compiler could emit // code that didn't do what is intended. So we go one row at a time. :( srcCtx.pixels = static_cast(srcCtx.pixels) + src.rowBytes()*(height - 1); std::swap(cnt, height); } bool hasConversion = alphaOrCSConversion || lumMode != LumMode::kNone; if (srcIsSRGB && dstIsSRGB && !hasConversion) { // No need to convert from srgb if we are just going to immediately convert it back. srcIsSRGB = dstIsSRGB = false; } hasConversion = hasConversion || srcIsSRGB || dstIsSRGB; SkRasterPipeline_<256> pipeline; pipeline.append(load, &srcCtx); if (hasConversion) { loadSwizzle.apply(&pipeline); if (srcIsSRGB) { pipeline.appendTransferFunction(*skcms_sRGB_TransferFunction()); } if (alphaOrCSConversion) { steps->apply(&pipeline); } switch (lumMode) { case LumMode::kNone: break; case LumMode::kToRGB: pipeline.append(SkRasterPipelineOp::bt709_luminance_or_luma_to_rgb); break; case LumMode::kToAlpha: pipeline.append(SkRasterPipelineOp::bt709_luminance_or_luma_to_alpha); // If we ever need to store srgb-encoded gray (e.g. GL_SLUMINANCE8) then we // should use ToRGB and then a swizzle stage rather than ToAlpha. The subsequent // transfer function stage ignores the alpha channel (where we just stashed the // gray). SkASSERT(!dstIsSRGB); break; } if (dstIsSRGB) { pipeline.appendTransferFunction(*skcms_sRGB_Inverse_TransferFunction()); } storeSwizzle.apply(&pipeline); } else { loadStoreSwizzle.apply(&pipeline); } pipeline.append(store, &dstCtx); auto pipelineFn = pipeline.compile(); for (int i = 0; i < cnt; ++i) { pipelineFn(0, 0, src.width(), height); srcCtx.pixels = static_cast(srcCtx.pixels) - src.rowBytes(); dstCtx.pixels = static_cast(dstCtx.pixels) + dst.rowBytes(); } return true; } bool GrClearImage(const GrImageInfo& dstInfo, void* dst, size_t dstRB, std::array color) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); if (!dstInfo.isValid()) { return false; } if (!dst) { return false; } if (dstRB < dstInfo.minRowBytes()) { return false; } if (dstInfo.colorType() == GrColorType::kRGB_888) { // SkRasterPipeline doesn't handle writing to RGB_888. So we handle that specially here. uint32_t rgba = SkColor4f{color[0], color[1], color[2], color[3]}.toBytes_RGBA(); for (int y = 0; y < dstInfo.height(); ++y) { char* d = static_cast(dst) + y * dstRB; for (int x = 0; x < dstInfo.width(); ++x, d += 3) { memcpy(d, &rgba, 3); } } return true; } LumMode lumMode; bool isNormalized; bool dstIsSRGB; SkRasterPipelineOp store; skgpu::Swizzle storeSwizzle = get_dst_swizzle_and_store(dstInfo.colorType(), &store, &lumMode, &isNormalized, &dstIsSRGB); char block[64]; SkArenaAlloc alloc(block, sizeof(block), 1024); SkRasterPipeline_<256> pipeline; pipeline.appendConstantColor(&alloc, color.data()); switch (lumMode) { case LumMode::kNone: break; case LumMode::kToRGB: pipeline.append(SkRasterPipelineOp::bt709_luminance_or_luma_to_rgb); break; case LumMode::kToAlpha: pipeline.append(SkRasterPipelineOp::bt709_luminance_or_luma_to_alpha); // If we ever need to store srgb-encoded gray (e.g. GL_SLUMINANCE8) then we should use // ToRGB and then a swizzle stage rather than ToAlpha. The subsequent transfer function // stage ignores the alpha channel (where we just stashed the gray). SkASSERT(!dstIsSRGB); break; } if (dstIsSRGB) { pipeline.appendTransferFunction(*skcms_sRGB_Inverse_TransferFunction()); } storeSwizzle.apply(&pipeline); SkRasterPipeline_MemoryCtx dstCtx{dst, SkToInt(dstRB/dstInfo.bpp())}; pipeline.append(store, &dstCtx); pipeline.run(0, 0, dstInfo.width(), dstInfo.height()); return true; }