/* * Copyright 2021 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/graphite/DrawPass.h" #include "include/gpu/graphite/GraphiteTypes.h" #include "include/gpu/graphite/Recorder.h" #include "include/private/base/SkAlign.h" #include "src/core/SkTraceEvent.h" #include "src/gpu/graphite/Buffer.h" #include "src/gpu/graphite/BufferManager.h" #include "src/gpu/graphite/Caps.h" #include "src/gpu/graphite/ContextPriv.h" #include "src/gpu/graphite/ContextUtils.h" #include "src/gpu/graphite/DrawContext.h" #include "src/gpu/graphite/DrawList.h" #include "src/gpu/graphite/DrawWriter.h" #include "src/gpu/graphite/GlobalCache.h" #include "src/gpu/graphite/GraphicsPipeline.h" #include "src/gpu/graphite/GraphicsPipelineDesc.h" #include "src/gpu/graphite/Log.h" #include "src/gpu/graphite/PaintParamsKey.h" #include "src/gpu/graphite/PipelineData.h" #include "src/gpu/graphite/RecorderPriv.h" #include "src/gpu/graphite/Renderer.h" #include "src/gpu/graphite/ResourceProvider.h" #include "src/gpu/graphite/Sampler.h" #include "src/gpu/graphite/Texture.h" #include "src/gpu/graphite/UniformManager.h" #include "src/gpu/graphite/geom/BoundsManager.h" #include "src/base/SkMathPriv.h" #include "src/base/SkTBlockList.h" #include using namespace skia_private; namespace skgpu::graphite { namespace { // Helper to manage packed fields within a uint64_t template struct Bitfield { static constexpr uint64_t kMask = ((uint64_t) 1 << Bits) - 1; static constexpr uint64_t kOffset = Offset; static constexpr uint64_t kBits = Bits; static uint32_t get(uint64_t v) { return static_cast((v >> kOffset) & kMask); } static uint64_t set(uint32_t v) { return (v & kMask) << kOffset; } }; // This class maps objects to a dense index which can then be used to look them up later template class DenseBiMap { public: using Index = uint32_t; // See note below in GeometryUniformField. This value can be round-tripped within the SortKey // packing for all fields but will not be produced when recording actual draw data. static constexpr Index kInvalidIndex{1 << SkNextLog2_portable(DrawList::kMaxRenderSteps)}; bool empty() const { return fIndexToData.empty(); } size_t size() const { return fIndexToData.size(); } Index insert(const T& data) { Index* index = fDataToIndex.find(data); if (!index) { SkASSERT(SkToU32(fIndexToData.size()) < kInvalidIndex); index = fDataToIndex.set(data, (Index) fIndexToData.size()); fIndexToData.push_back(C{data}); } return *index; } const V& lookup(Index index) { SkASSERT(index < kInvalidIndex); return fIndexToData[index]; } SkSpan data() { return {fIndexToData.data(), fIndexToData.size()}; } TArray&& detach() { return std::move(fIndexToData); } private: THashMap fDataToIndex; TArray fIndexToData; }; // NOTE: TextureBinding's use as a key type in DenseBiMap relies on the fact that the underlying // data has been de-duplicated by a PipelineDataCache earlier, so that the bit identity of the data // blocks (e.g. address+size) is equivalent to the content equality of the texture lists. // Tracks the combination of textures from the paint and from the RenderStep to describe the full // binding that needs to be in the command list. struct TextureBinding { TextureDataBlock fPaintTextures; TextureDataBlock fStepTextures; bool operator==(const TextureBinding& other) const { return fPaintTextures == other.fPaintTextures && fStepTextures == other.fStepTextures; } bool operator!=(const TextureBinding& other) const { return !(*this == other); } int numTextures() const { return (fPaintTextures ? fPaintTextures.numTextures() : 0) + (fStepTextures ? fStepTextures.numTextures() : 0); } }; using TextureBindingCache = DenseBiMap; using GraphicsPipelineCache = DenseBiMap; // Writes uniform data either to uniform buffers or to shared storage buffers, and tracks when // bindings need to change between draws. class UniformTracker { public: UniformTracker(bool useStorageBuffers) : fUseStorageBuffers(useStorageBuffers) {} bool writeUniforms(UniformDataCache& uniformCache, DrawBufferManager* bufferMgr, UniformDataCache::Index index) { if (index >= UniformDataCache::kInvalidIndex) { return false; } if (index == fLastIndex) { return false; } fLastIndex = index; UniformDataCache::Entry& uniformData = uniformCache.lookup(index); const size_t uniformDataSize = uniformData.fCpuData.size(); // Upload the uniform data if we haven't already. // Alternatively, re-upload the uniform data to avoid a rebind if we're using storage // buffers. This will result in more data uploaded, but the tradeoff seems worthwhile. if (!uniformData.fBufferBinding.fBuffer || (fUseStorageBuffers && uniformData.fBufferBinding.fBuffer != fLastBinding.fBuffer)) { UniformWriter writer; std::tie(writer, uniformData.fBufferBinding) = fUseStorageBuffers ? bufferMgr->getAlignedSsboWriter(1, uniformDataSize) : bufferMgr->getUniformWriter(1, uniformDataSize); // Early out if buffer mapping failed. if (!writer) { return {}; } writer.write(uniformData.fCpuData.data(), uniformDataSize); if (fUseStorageBuffers) { // When using storage buffers, store the SSBO index in the binding's offset field // and always use the entire buffer's size in the size field. SkASSERT(uniformData.fBufferBinding.fOffset % uniformDataSize == 0); uniformData.fBufferBinding.fOffset /= uniformDataSize; uniformData.fBufferBinding.fSize = uniformData.fBufferBinding.fBuffer->size(); } } const bool needsRebind = uniformData.fBufferBinding.fBuffer != fLastBinding.fBuffer || (!fUseStorageBuffers && uniformData.fBufferBinding.fOffset != fLastBinding.fOffset); fLastBinding = uniformData.fBufferBinding; return needsRebind; } void bindUniforms(UniformSlot slot, DrawPassCommands::List* commandList) { BindBufferInfo binding = fLastBinding; if (fUseStorageBuffers) { // Track the SSBO index in fLastBinding, but set offset = 0 in the actual used binding. binding.fOffset = 0; } commandList->bindUniformBuffer(binding, slot); } uint32_t ssboIndex() const { // The SSBO index for the last-bound storage buffer is stored in the binding's offset field. return fLastBinding.fOffset; } private: // Internally track the last binding returned, so that we know whether new uploads or rebindings // are necessary. If we're using SSBOs, this is treated specially -- the fOffset field holds the // index in the storage buffer of the last-written uniforms, and the offsets used for actual // bindings are always zero. BindBufferInfo fLastBinding; // This keeps track of the last index used for writing uniforms from a provided uniform cache. // If a provided index matches the last index, the uniforms are assumed to already be written // and no additional uploading is performed. This assumes a UniformTracker will always be // provided with the same uniform cache. UniformDataCache::Index fLastIndex = UniformDataCache::kInvalidIndex; const bool fUseStorageBuffers; }; // Automatically merges and manages texture bindings and uniform bindings sourced from either the // paint or the RenderStep. Tracks the bound state based on last-provided unique index to write // Bind commands to a CommandList when necessary. class TextureBindingTracker { public: TextureBindingCache::Index trackTextures(TextureDataBlock paintTextures, TextureDataBlock stepTextures) { if (!paintTextures && !stepTextures) { return TextureBindingCache::kInvalidIndex; } return fBindingCache.insert({paintTextures, stepTextures}); } bool setCurrentTextureBindings(TextureBindingCache::Index bindingIndex) { if (bindingIndex < TextureBindingCache::kInvalidIndex && fLastIndex != bindingIndex) { fLastIndex = bindingIndex; return true; } // No binding change return false; } void bindTextures(DrawPassCommands::List* commandList) { SkASSERT(fLastIndex < TextureBindingCache::kInvalidIndex); const TextureBinding& binding = fBindingCache.lookup(fLastIndex); auto [texIndices, samplerIndices] = commandList->bindDeferredTexturesAndSamplers(binding.numTextures()); if (binding.fPaintTextures) { for (int i = 0; i < binding.fPaintTextures.numTextures(); ++i) { auto [tex, sampler] = binding.fPaintTextures.texture(i); *texIndices++ = fProxyCache.insert(tex.get()); *samplerIndices++ = fSamplerCache.insert(sampler); } } if (binding.fStepTextures) { for (int i = 0; i < binding.fStepTextures.numTextures(); ++i) { auto [tex, sampler] = binding.fStepTextures.texture(i); *texIndices++ = fProxyCache.insert(tex.get()); *samplerIndices++ = fSamplerCache.insert(sampler); } } } TArray>&& detachTextures() { return fProxyCache.detach(); } TArray&& detachSamplers() { return fSamplerCache.detach(); } private: struct ProxyRef { const TextureProxy* fProxy; operator sk_sp() const { return sk_ref_sp(fProxy); } }; using TextureProxyCache = DenseBiMap, ProxyRef>; using SamplerDescCache = DenseBiMap; TextureBindingCache fBindingCache; TextureProxyCache fProxyCache; SamplerDescCache fSamplerCache; TextureBindingCache::Index fLastIndex = TextureBindingCache::kInvalidIndex; }; class GradientBufferTracker { public: bool writeData(SkSpan gradData, DrawBufferManager* bufferMgr) { if (gradData.empty()) { return true; } auto [writer, bufferInfo] = bufferMgr->getSsboWriter(gradData.size(), sizeof(float)); if (!writer) { return false; } writer.write(gradData.data(), gradData.size_bytes()); fBufferInfo = bufferInfo; fHasData = true; return true; } void bindIfNeeded(DrawPassCommands::List* commandList) const { if (fHasData) { commandList->bindUniformBuffer(fBufferInfo, UniformSlot::kGradient); } } private: BindBufferInfo fBufferInfo; bool fHasData = false; }; } // namespace /////////////////////////////////////////////////////////////////////////////////////////////////// /** * Each Draw in a DrawList might be processed by multiple RenderSteps (determined by the Draw's * Renderer), which can be sorted independently. Each (step, draw) pair produces its own SortKey. * * The goal of sorting draws for the DrawPass is to minimize pipeline transitions and dynamic binds * within a pipeline, while still respecting the overall painter's order. This decreases the number * of low-level draw commands in a command buffer and increases the size of those, allowing the GPU * to operate more efficiently and have fewer bubbles within its own instruction stream. * * The Draw's CompresssedPaintersOrder and DisjointStencilINdex represent the most significant bits * of the key, and are shared by all SortKeys produced by the same draw. Next, the pipeline * description is encoded in two steps: * 1. The index of the RenderStep packed in the high bits to ensure each step for a draw is * ordered correctly. * 2. An index into a cache of pipeline descriptions is used to encode the identity of the * pipeline (SortKeys that differ in the bits from #1 necessarily would have different * descriptions, but then the specific ordering of the RenderSteps isn't enforced). * Last, the SortKey encodes an index into the set of uniform bindings accumulated for a DrawPass. * This allows the SortKey to cluster draw steps that have both a compatible pipeline and do not * require rebinding uniform data or other state (e.g. scissor). Since the uniform data index and * the pipeline description index are packed into indices and not actual pointers, a given SortKey * is only valid for the a specific DrawList->DrawPass conversion. */ class DrawPass::SortKey { public: SortKey(const DrawList::Draw* draw, int renderStep, GraphicsPipelineCache::Index pipelineIndex, UniformDataCache::Index geomUniformIndex, UniformDataCache::Index shadingUniformIndex, TextureBindingCache::Index textureBindingIndex) : fPipelineKey(ColorDepthOrderField::set(draw->fDrawParams.order().paintOrder().bits()) | StencilIndexField::set(draw->fDrawParams.order().stencilIndex().bits()) | RenderStepField::set(static_cast(renderStep)) | PipelineField::set(pipelineIndex)) , fUniformKey(GeometryUniformField::set(geomUniformIndex) | ShadingUniformField::set(shadingUniformIndex) | TextureBindingsField::set(textureBindingIndex)) , fDraw(draw) { SkASSERT(pipelineIndex < GraphicsPipelineCache::kInvalidIndex); SkASSERT(renderStep <= draw->fRenderer->numRenderSteps()); } bool operator<(const SortKey& k) const { return fPipelineKey < k.fPipelineKey || (fPipelineKey == k.fPipelineKey && fUniformKey < k.fUniformKey); } const RenderStep& renderStep() const { return fDraw->fRenderer->step(RenderStepField::get(fPipelineKey)); } const DrawList::Draw& draw() const { return *fDraw; } GraphicsPipelineCache::Index pipelineIndex() const { return PipelineField::get(fPipelineKey); } UniformDataCache::Index geometryUniformIndex() const { return GeometryUniformField::get(fUniformKey); } UniformDataCache::Index shadingUniformIndex() const { return ShadingUniformField::get(fUniformKey); } TextureBindingCache::Index textureBindingIndex() const { return TextureBindingsField::get(fUniformKey); } private: // Fields are ordered from most-significant to least when sorting by 128-bit value. // NOTE: We don't use C++ bit fields because field ordering is implementation defined and we // need to sort consistently. using ColorDepthOrderField = Bitfield<16, 48>; // sizeof(CompressedPaintersOrder) using StencilIndexField = Bitfield<16, 32>; // sizeof(DisjointStencilIndex) using RenderStepField = Bitfield<2, 30>; // bits >= log2(Renderer::kMaxRenderSteps) using PipelineField = Bitfield<30, 0>; // bits >= log2(max total steps in draw list) uint64_t fPipelineKey; // The uniform/texture index fields need 1 extra bit to encode "no-data". Values that are // greater than or equal to 2^(bits-1) represent "no-data", while values between // [0, 2^(bits-1)-1] can access data arrays without extra logic. using GeometryUniformField = Bitfield<17, 47>; // bits >= 1+log2(max total steps) using ShadingUniformField = Bitfield<17, 30>; // bits >= 1+log2(max total steps) using TextureBindingsField = Bitfield<30, 0>; // bits >= 1+log2(max total steps) uint64_t fUniformKey; // Backpointer to the draw that produced the sort key const DrawList::Draw* fDraw; static_assert(ColorDepthOrderField::kBits >= sizeof(CompressedPaintersOrder)); static_assert(StencilIndexField::kBits >= sizeof(DisjointStencilIndex)); static_assert(RenderStepField::kBits >= SkNextLog2_portable(Renderer::kMaxRenderSteps)); static_assert(PipelineField::kBits >= SkNextLog2_portable(DrawList::kMaxRenderSteps)); static_assert(GeometryUniformField::kBits >= 1+SkNextLog2_portable(DrawList::kMaxRenderSteps)); static_assert(ShadingUniformField::kBits >= 1+SkNextLog2_portable(DrawList::kMaxRenderSteps)); static_assert(TextureBindingsField::kBits >= 1+SkNextLog2_portable(DrawList::kMaxRenderSteps)); }; /////////////////////////////////////////////////////////////////////////////////////////////////// DrawPass::DrawPass(sk_sp target, std::pair ops, std::array clearColor) : fTarget(std::move(target)) , fBounds(SkIRect::MakeEmpty()) , fOps(ops) , fClearColor(clearColor) {} DrawPass::~DrawPass() = default; std::unique_ptr DrawPass::Make(Recorder* recorder, std::unique_ptr draws, sk_sp target, const SkImageInfo& targetInfo, std::pair ops, std::array clearColor) { // NOTE: This assert is here to ensure SortKey is as tightly packed as possible. Any change to // its size should be done with care and good reason. The performance of sorting the keys is // heavily tied to the total size. // // At 24 bytes (current), sorting is about 30% slower than if SortKey could be packed into just // 16 bytes. There are several ways this could be done if necessary: // - Restricting the max draw count to 16k (14-bits) and only using a single index to refer to // the uniform data => 8 bytes of key, 8 bytes of pointer. // - Restrict the max draw count to 32k (15-bits), use a single uniform index, and steal the // 4 low bits from the Draw* pointer since it's 16 byte aligned. // - Compact the Draw* to an index into the original collection, although that has extra // indirection and does not work as well with SkTBlockList. // In pseudo tests, manipulating the pointer or having to mask out indices was about 15% slower // than an 8 byte key and unmodified pointer. static_assert(sizeof(DrawPass::SortKey) == SkAlignTo(16 + sizeof(void*), alignof(DrawPass::SortKey))); TRACE_EVENT1("skia.gpu", TRACE_FUNC, "draw count", draws->fDraws.count()); // The DrawList is converted directly into the DrawPass' data structures, but once the DrawPass // is returned from Make(), it is considered immutable. std::unique_ptr drawPass(new DrawPass(target, ops, clearColor)); Rect passBounds = Rect::InfiniteInverted(); UniformDataCache geometryUniformDataCache; UniformDataCache shadingUniformDataCache; TextureDataCache* textureDataCache = recorder->priv().textureDataCache(); DrawBufferManager* bufferMgr = recorder->priv().drawBufferManager(); if (bufferMgr->hasMappingFailed()) { SKGPU_LOG_W("Buffer mapping has already failed; dropping draw pass!"); return nullptr; } GraphicsPipelineCache pipelineCache; // Geometry uniforms are currently always UBO-backed. const bool useStorageBuffers = recorder->priv().caps()->storageBufferSupport(); const ResourceBindingRequirements& bindingReqs = recorder->priv().caps()->resourceBindingRequirements(); Layout uniformLayout = useStorageBuffers ? bindingReqs.fStorageBufferLayout : bindingReqs.fUniformBufferLayout; TextureBindingTracker textureBindingTracker; GradientBufferTracker gradientBufferTracker; ShaderCodeDictionary* dict = recorder->priv().shaderCodeDictionary(); PaintParamsKeyBuilder builder(dict); // The initial layout we pass here is not important as it will be re-assigned when writing // shading and geometry uniforms below. PipelineDataGatherer gatherer(uniformLayout); std::vector keys; keys.reserve(draws->renderStepCount()); for (const DrawList::Draw& draw : draws->fDraws.items()) { // If we have two different descriptors, such that the uniforms from the PaintParams can be // bound independently of those used by the rest of the RenderStep, then we can upload now // and remember the location for re-use on any RenderStep that does shading. UniquePaintParamsID shaderID; UniformDataCache::Index shadingUniformIndex = UniformDataCache::kInvalidIndex; TextureDataBlock paintTextures; if (draw.fPaintParams.has_value()) { shaderID = ExtractPaintData(recorder, &gatherer, &builder, uniformLayout, draw.fDrawParams.transform(), draw.fPaintParams.value(), draw.fDrawParams.geometry(), targetInfo.colorInfo()); if (shaderID.isValid()) { if (gatherer.hasUniforms()) { shadingUniformIndex = shadingUniformDataCache.insert(gatherer.finishUniformDataBlock()); } if (gatherer.hasTextures()) { paintTextures = textureDataCache->insert(gatherer.textureDataBlock()); } } } // else depth-only // Create a sort key for every render step in this draw, extracting out any // RenderStep-specific data. for (int stepIndex = 0; stepIndex < draw.fRenderer->numRenderSteps(); ++stepIndex) { const RenderStep* const step = draw.fRenderer->steps()[stepIndex]; const bool performsShading = draw.fPaintParams.has_value() && step->performsShading(); GraphicsPipelineCache::Index pipelineIndex = pipelineCache.insert( {step, performsShading ? shaderID : UniquePaintParamsID::InvalidID()}); gatherer.resetWithNewLayout(uniformLayout); step->writeUniformsAndTextures(draw.fDrawParams, &gatherer); UniformDataCache::Index geomUniformIndex = gatherer.hasUniforms() ? geometryUniformDataCache.insert(gatherer.finishUniformDataBlock()) : UniformDataCache::kInvalidIndex; TextureDataBlock stepTextures = gatherer.hasTextures() ? textureDataCache->insert(gatherer.textureDataBlock()) : TextureDataBlock(); TextureBindingCache::Index textureIndex = textureBindingTracker.trackTextures( performsShading ? paintTextures : TextureDataBlock(), stepTextures); keys.push_back({&draw, stepIndex, pipelineIndex, geomUniformIndex, shadingUniformIndex, textureIndex}); } passBounds.join(draw.fDrawParams.clip().drawBounds()); drawPass->fDepthStencilFlags |= draw.fRenderer->depthStencilFlags(); drawPass->fRequiresMSAA |= draw.fRenderer->requiresMSAA(); } if (!gradientBufferTracker.writeData(gatherer.gradientBufferData(), bufferMgr)) { // The necessary uniform data couldn't be written to the GPU, so the DrawPass is invalid. // Early out now since the next Recording snap will fail. return nullptr; } // TODO: Explore sorting algorithms; in all likelihood this will be mostly sorted already, so // algorithms that approach O(n) in that condition may be favorable. Alternatively, could // explore radix sort that is always O(n). Brief testing suggested std::sort was faster than // std::stable_sort and SkTQSort on my [ml]'s Windows desktop. Also worth considering in-place // vs. algorithms that require an extra O(n) storage. // TODO: It's not strictly necessary, but would a stable sort be useful or just end up hiding // bugs in the DrawOrder determination code? std::sort(keys.begin(), keys.end()); // Used to record vertex/instance data, buffer binds, and draw calls DrawWriter drawWriter(&drawPass->fCommandList, bufferMgr); GraphicsPipelineCache::Index lastPipeline = GraphicsPipelineCache::kInvalidIndex; SkIRect lastScissor = SkIRect::MakeSize(targetInfo.dimensions()); SkASSERT(drawPass->fTarget->isFullyLazy() || SkIRect::MakeSize(drawPass->fTarget->dimensions()).contains(lastScissor)); drawPass->fCommandList.setScissor(lastScissor); // All large gradients pack their data into a single buffer throughout the draw pass, // therefore the gradient buffer only needs to be bound once. gradientBufferTracker.bindIfNeeded(&drawPass->fCommandList); UniformTracker geometryUniformTracker(useStorageBuffers); UniformTracker shadingUniformTracker(useStorageBuffers); // TODO(b/372953722): Remove this forced binding command behavior once dst copies are always // bound separately from the rest of the textures. const bool rebindTexturesOnPipelineChange = recorder->priv().caps()->getDstReadRequirement() == DstReadRequirement::kTextureCopy; for (const SortKey& key : keys) { const DrawList::Draw& draw = key.draw(); const RenderStep& renderStep = key.renderStep(); const bool pipelineChange = key.pipelineIndex() != lastPipeline; const bool geomBindingChange = geometryUniformTracker.writeUniforms( geometryUniformDataCache, bufferMgr, key.geometryUniformIndex()); const bool shadingBindingChange = shadingUniformTracker.writeUniforms( shadingUniformDataCache, bufferMgr, key.shadingUniformIndex()); // TODO(b/372953722): The Dawn and Vulkan CommandBuffer implementations currently append any // dst copy to the texture bind group/descriptor set automatically when processing a // BindTexturesAndSamplers call because they use a single group to contain all textures. // However, from the DrawPass POV, we can run into the scenario where two pipelines have the // same textures+samplers except one requires a dst-copy and the other does not. In this // case we wouldn't necessarily insert a new command when the pipeline changed and then // end up with layout validation errors. const bool textureBindingsChange = textureBindingTracker.setCurrentTextureBindings( key.textureBindingIndex()) || (rebindTexturesOnPipelineChange && pipelineChange && key.textureBindingIndex() != TextureBindingCache::kInvalidIndex); const SkIRect* newScissor = draw.fDrawParams.clip().scissor() != lastScissor ? &draw.fDrawParams.clip().scissor() : nullptr; const bool stateChange = geomBindingChange || shadingBindingChange || textureBindingsChange || SkToBool(newScissor); // Update DrawWriter *before* we actually change any state so that accumulated draws from // the previous state use the proper state. if (pipelineChange) { drawWriter.newPipelineState(renderStep.primitiveType(), renderStep.vertexStride(), renderStep.instanceStride()); } else if (stateChange) { drawWriter.newDynamicState(); } // Make state changes before accumulating new draw data if (pipelineChange) { drawPass->fCommandList.bindGraphicsPipeline(key.pipelineIndex()); lastPipeline = key.pipelineIndex(); } if (stateChange) { if (geomBindingChange) { geometryUniformTracker.bindUniforms(UniformSlot::kRenderStep, &drawPass->fCommandList); } if (shadingBindingChange) { shadingUniformTracker.bindUniforms(UniformSlot::kPaint, &drawPass->fCommandList); } if (textureBindingsChange) { textureBindingTracker.bindTextures(&drawPass->fCommandList); } if (newScissor) { drawPass->fCommandList.setScissor(*newScissor); lastScissor = *newScissor; } } uint32_t geometrySsboIndex = useStorageBuffers ? geometryUniformTracker.ssboIndex() : 0; uint32_t shadingSsboIndex = useStorageBuffers ? shadingUniformTracker.ssboIndex() : 0; skvx::uint2 ssboIndices = {geometrySsboIndex, shadingSsboIndex}; renderStep.writeVertices(&drawWriter, draw.fDrawParams, ssboIndices); if (bufferMgr->hasMappingFailed()) { SKGPU_LOG_W("Failed to write necessary vertex/instance data for DrawPass, dropping!"); return nullptr; } } // Finish recording draw calls for any collected data at the end of the loop drawWriter.flush(); drawPass->fBounds = passBounds.roundOut().asSkIRect(); drawPass->fPipelineDescs = pipelineCache.detach(); drawPass->fSamplerDescs = textureBindingTracker.detachSamplers(); drawPass->fSampledTextures = textureBindingTracker.detachTextures(); TRACE_COUNTER1("skia.gpu", "# pipelines", drawPass->fPipelineDescs.size()); TRACE_COUNTER1("skia.gpu", "# textures", drawPass->fSampledTextures.size()); TRACE_COUNTER1("skia.gpu", "# commands", drawPass->fCommandList.count()); return drawPass; } bool DrawPass::prepareResources(ResourceProvider* resourceProvider, const RuntimeEffectDictionary* runtimeDict, const RenderPassDesc& renderPassDesc) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); fFullPipelines.reserve(fFullPipelines.size() + fPipelineDescs.size()); for (const GraphicsPipelineDesc& pipelineDesc : fPipelineDescs) { auto pipeline = resourceProvider->findOrCreateGraphicsPipeline(runtimeDict, pipelineDesc, renderPassDesc); if (!pipeline) { SKGPU_LOG_W("Failed to create GraphicsPipeline for draw in RenderPass. Dropping pass!"); return false; } fFullPipelines.push_back(std::move(pipeline)); } // The DrawPass may be long lived on a Recording and we no longer need the GraphicPipelineDescs // once we've created pipelines, so we drop the storage for them here. fPipelineDescs.clear(); #if defined(SK_DEBUG) for (int i = 0; i < fSampledTextures.size(); ++i) { // It should not have been possible to draw an Image that has an invalid texture info SkASSERT(fSampledTextures[i]->textureInfo().isValid()); // Tasks should have been ordered to instantiate any scratch textures already, or any // client-owned image will have been instantiated at creation. SkASSERTF(fSampledTextures[i]->isInstantiated() || fSampledTextures[i]->isLazy(), "proxy label = %s", fSampledTextures[i]->label()); } #endif fSamplers.reserve(fSamplers.size() + fSamplerDescs.size()); for (int i = 0; i < fSamplerDescs.size(); ++i) { sk_sp sampler = resourceProvider->findOrCreateCompatibleSampler(fSamplerDescs[i]); if (!sampler) { SKGPU_LOG_W("Failed to create sampler. Will not create renderpass!"); return false; } fSamplers.push_back(std::move(sampler)); } // The DrawPass may be long lived on a Recording and we no longer need the SamplerDescs // once we've created Samplers, so we drop the storage for them here. fSamplerDescs.clear(); return true; } void DrawPass::addResourceRefs(CommandBuffer* commandBuffer) const { for (int i = 0; i < fFullPipelines.size(); ++i) { commandBuffer->trackResource(fFullPipelines[i]); } for (int i = 0; i < fSampledTextures.size(); ++i) { commandBuffer->trackCommandBufferResource(fSampledTextures[i]->refTexture()); } for (int i = 0; i < fSamplers.size(); ++i) { commandBuffer->trackResource(fSamplers[i]); } } const Texture* DrawPass::getTexture(size_t index) const { SkASSERT(index < SkToSizeT(fSampledTextures.size())); SkASSERT(fSampledTextures[index]); SkASSERT(fSampledTextures[index]->texture()); return fSampledTextures[index]->texture(); } const Sampler* DrawPass::getSampler(size_t index) const { SkASSERT(index < SkToSizeT(fSamplers.size())); SkASSERT(fSamplers[index]); return fSamplers[index].get(); } } // namespace skgpu::graphite