/* * Copyright 2023 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/graphite/vk/VulkanGraphicsPipeline.h" #include "include/gpu/ShaderErrorHandler.h" #include "include/gpu/graphite/TextureInfo.h" #include "src/core/SkSLTypeShared.h" #include "src/core/SkTraceEvent.h" #include "src/gpu/SkSLToBackend.h" #include "src/gpu/graphite/Attribute.h" #include "src/gpu/graphite/ContextUtils.h" #include "src/gpu/graphite/GraphicsPipelineDesc.h" #include "src/gpu/graphite/Log.h" #include "src/gpu/graphite/RenderPassDesc.h" #include "src/gpu/graphite/RendererProvider.h" #include "src/gpu/graphite/ResourceTypes.h" #include "src/gpu/graphite/RuntimeEffectDictionary.h" #include "src/gpu/graphite/ShaderInfo.h" #include "src/gpu/graphite/vk/VulkanCaps.h" #include "src/gpu/graphite/vk/VulkanGraphicsPipeline.h" #include "src/gpu/graphite/vk/VulkanRenderPass.h" #include "src/gpu/graphite/vk/VulkanResourceProvider.h" #include "src/gpu/graphite/vk/VulkanSharedContext.h" #include "src/gpu/vk/VulkanUtilsPriv.h" #include "src/sksl/SkSLProgramKind.h" #include "src/sksl/SkSLProgramSettings.h" #include "src/sksl/ir/SkSLProgram.h" namespace skgpu::graphite { static inline VkFormat attrib_type_to_vkformat(VertexAttribType type) { switch (type) { case VertexAttribType::kFloat: return VK_FORMAT_R32_SFLOAT; case VertexAttribType::kFloat2: return VK_FORMAT_R32G32_SFLOAT; case VertexAttribType::kFloat3: return VK_FORMAT_R32G32B32_SFLOAT; case VertexAttribType::kFloat4: return VK_FORMAT_R32G32B32A32_SFLOAT; case VertexAttribType::kHalf: return VK_FORMAT_R16_SFLOAT; case VertexAttribType::kHalf2: return VK_FORMAT_R16G16_SFLOAT; case VertexAttribType::kHalf4: return VK_FORMAT_R16G16B16A16_SFLOAT; case VertexAttribType::kInt2: return VK_FORMAT_R32G32_SINT; case VertexAttribType::kInt3: return VK_FORMAT_R32G32B32_SINT; case VertexAttribType::kInt4: return VK_FORMAT_R32G32B32A32_SINT; case VertexAttribType::kUInt2: return VK_FORMAT_R32G32_UINT; case VertexAttribType::kByte: return VK_FORMAT_R8_SINT; case VertexAttribType::kByte2: return VK_FORMAT_R8G8_SINT; case VertexAttribType::kByte4: return VK_FORMAT_R8G8B8A8_SINT; case VertexAttribType::kUByte: return VK_FORMAT_R8_UINT; case VertexAttribType::kUByte2: return VK_FORMAT_R8G8_UINT; case VertexAttribType::kUByte4: return VK_FORMAT_R8G8B8A8_UINT; case VertexAttribType::kUByte_norm: return VK_FORMAT_R8_UNORM; case VertexAttribType::kUByte4_norm: return VK_FORMAT_R8G8B8A8_UNORM; case VertexAttribType::kShort2: return VK_FORMAT_R16G16_SINT; case VertexAttribType::kShort4: return VK_FORMAT_R16G16B16A16_SINT; case VertexAttribType::kUShort2: return VK_FORMAT_R16G16_UINT; case VertexAttribType::kUShort2_norm: return VK_FORMAT_R16G16_UNORM; case VertexAttribType::kInt: return VK_FORMAT_R32_SINT; case VertexAttribType::kUInt: return VK_FORMAT_R32_UINT; case VertexAttribType::kUShort_norm: return VK_FORMAT_R16_UNORM; case VertexAttribType::kUShort4_norm: return VK_FORMAT_R16G16B16A16_UNORM; } SK_ABORT("Unknown vertex attrib type"); } static void setup_vertex_input_state( const SkSpan& vertexAttrs, const SkSpan& instanceAttrs, VkPipelineVertexInputStateCreateInfo* vertexInputInfo, skia_private::STArray<2, VkVertexInputBindingDescription, true>* bindingDescs, skia_private::STArray<16, VkVertexInputAttributeDescription>* attributeDescs) { // Setup attribute & binding descriptions int attribIndex = 0; size_t vertexAttributeOffset = 0; for (auto attrib : vertexAttrs) { VkVertexInputAttributeDescription vkAttrib; vkAttrib.location = attribIndex++; vkAttrib.binding = VulkanGraphicsPipeline::kVertexBufferIndex; vkAttrib.format = attrib_type_to_vkformat(attrib.cpuType()); vkAttrib.offset = vertexAttributeOffset; vertexAttributeOffset += attrib.sizeAlign4(); attributeDescs->push_back(vkAttrib); } size_t instanceAttributeOffset = 0; for (auto attrib : instanceAttrs) { VkVertexInputAttributeDescription vkAttrib; vkAttrib.location = attribIndex++; vkAttrib.binding = VulkanGraphicsPipeline::kInstanceBufferIndex; vkAttrib.format = attrib_type_to_vkformat(attrib.cpuType()); vkAttrib.offset = instanceAttributeOffset; instanceAttributeOffset += attrib.sizeAlign4(); attributeDescs->push_back(vkAttrib); } if (bindingDescs && !vertexAttrs.empty()) { bindingDescs->push_back() = { VulkanGraphicsPipeline::kVertexBufferIndex, (uint32_t) vertexAttributeOffset, VK_VERTEX_INPUT_RATE_VERTEX }; } if (bindingDescs && !instanceAttrs.empty()) { bindingDescs->push_back() = { VulkanGraphicsPipeline::kInstanceBufferIndex, (uint32_t) instanceAttributeOffset, VK_VERTEX_INPUT_RATE_INSTANCE }; } memset(vertexInputInfo, 0, sizeof(VkPipelineVertexInputStateCreateInfo)); vertexInputInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vertexInputInfo->pNext = nullptr; vertexInputInfo->flags = 0; vertexInputInfo->vertexBindingDescriptionCount = bindingDescs ? bindingDescs->size() : 0; vertexInputInfo->pVertexBindingDescriptions = bindingDescs && !bindingDescs->empty() ? bindingDescs->begin() : VK_NULL_HANDLE; vertexInputInfo->vertexAttributeDescriptionCount = attributeDescs ? attributeDescs->size() : 0; vertexInputInfo->pVertexAttributeDescriptions = attributeDescs && !attributeDescs->empty() ? attributeDescs->begin() : VK_NULL_HANDLE; } static VkPrimitiveTopology primitive_type_to_vk_topology(PrimitiveType primitiveType) { switch (primitiveType) { case PrimitiveType::kTriangles: return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; case PrimitiveType::kTriangleStrip: return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP; case PrimitiveType::kPoints: return VK_PRIMITIVE_TOPOLOGY_POINT_LIST; } SkUNREACHABLE; } static void setup_input_assembly_state(PrimitiveType primitiveType, VkPipelineInputAssemblyStateCreateInfo* inputAssemblyInfo) { memset(inputAssemblyInfo, 0, sizeof(VkPipelineInputAssemblyStateCreateInfo)); inputAssemblyInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; inputAssemblyInfo->pNext = nullptr; inputAssemblyInfo->flags = 0; inputAssemblyInfo->primitiveRestartEnable = false; inputAssemblyInfo->topology = primitive_type_to_vk_topology(primitiveType); } static VkStencilOp stencil_op_to_vk_stencil_op(StencilOp op) { static const VkStencilOp gTable[] = { VK_STENCIL_OP_KEEP, // kKeep VK_STENCIL_OP_ZERO, // kZero VK_STENCIL_OP_REPLACE, // kReplace VK_STENCIL_OP_INVERT, // kInvert VK_STENCIL_OP_INCREMENT_AND_WRAP, // kIncWrap VK_STENCIL_OP_DECREMENT_AND_WRAP, // kDecWrap VK_STENCIL_OP_INCREMENT_AND_CLAMP, // kIncClamp VK_STENCIL_OP_DECREMENT_AND_CLAMP, // kDecClamp }; static_assert(std::size(gTable) == kStencilOpCount); static_assert(0 == (int)StencilOp::kKeep); static_assert(1 == (int)StencilOp::kZero); static_assert(2 == (int)StencilOp::kReplace); static_assert(3 == (int)StencilOp::kInvert); static_assert(4 == (int)StencilOp::kIncWrap); static_assert(5 == (int)StencilOp::kDecWrap); static_assert(6 == (int)StencilOp::kIncClamp); static_assert(7 == (int)StencilOp::kDecClamp); SkASSERT(op < (StencilOp)kStencilOpCount); return gTable[(int)op]; } static VkCompareOp compare_op_to_vk_compare_op(CompareOp op) { static const VkCompareOp gTable[] = { VK_COMPARE_OP_ALWAYS, // kAlways VK_COMPARE_OP_NEVER, // kNever VK_COMPARE_OP_GREATER, // kGreater VK_COMPARE_OP_GREATER_OR_EQUAL, // kGEqual VK_COMPARE_OP_LESS, // kLess VK_COMPARE_OP_LESS_OR_EQUAL, // kLEqual VK_COMPARE_OP_EQUAL, // kEqual VK_COMPARE_OP_NOT_EQUAL, // kNotEqual }; static_assert(std::size(gTable) == kCompareOpCount); static_assert(0 == (int)CompareOp::kAlways); static_assert(1 == (int)CompareOp::kNever); static_assert(2 == (int)CompareOp::kGreater); static_assert(3 == (int)CompareOp::kGEqual); static_assert(4 == (int)CompareOp::kLess); static_assert(5 == (int)CompareOp::kLEqual); static_assert(6 == (int)CompareOp::kEqual); static_assert(7 == (int)CompareOp::kNotEqual); SkASSERT(op < (CompareOp)kCompareOpCount); return gTable[(int)op]; } static void setup_stencil_op_state(VkStencilOpState* opState, const DepthStencilSettings::Face& face, uint32_t referenceValue) { opState->failOp = stencil_op_to_vk_stencil_op(face.fStencilFailOp); opState->passOp = stencil_op_to_vk_stencil_op(face.fDepthStencilPassOp); opState->depthFailOp = stencil_op_to_vk_stencil_op(face.fDepthFailOp); opState->compareOp = compare_op_to_vk_compare_op(face.fCompareOp); opState->compareMask = face.fReadMask; // TODO - check this. opState->writeMask = face.fWriteMask; opState->reference = referenceValue; } static void setup_depth_stencil_state(const DepthStencilSettings& stencilSettings, VkPipelineDepthStencilStateCreateInfo* stencilInfo) { SkASSERT(stencilSettings.fDepthTestEnabled || stencilSettings.fDepthCompareOp == CompareOp::kAlways); memset(stencilInfo, 0, sizeof(VkPipelineDepthStencilStateCreateInfo)); stencilInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; stencilInfo->pNext = nullptr; stencilInfo->flags = 0; stencilInfo->depthTestEnable = stencilSettings.fDepthTestEnabled; stencilInfo->depthWriteEnable = stencilSettings.fDepthWriteEnabled; stencilInfo->depthCompareOp = compare_op_to_vk_compare_op(stencilSettings.fDepthCompareOp); stencilInfo->depthBoundsTestEnable = VK_FALSE; // Default value TODO - Confirm stencilInfo->stencilTestEnable = stencilSettings.fStencilTestEnabled; if (stencilSettings.fStencilTestEnabled) { setup_stencil_op_state(&stencilInfo->front, stencilSettings.fFrontStencil, stencilSettings.fStencilReferenceValue); setup_stencil_op_state(&stencilInfo->back, stencilSettings.fBackStencil, stencilSettings.fStencilReferenceValue); } stencilInfo->minDepthBounds = 0.0f; stencilInfo->maxDepthBounds = 1.0f; } static void setup_viewport_scissor_state(VkPipelineViewportStateCreateInfo* viewportInfo) { memset(viewportInfo, 0, sizeof(VkPipelineViewportStateCreateInfo)); viewportInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewportInfo->pNext = nullptr; viewportInfo->flags = 0; viewportInfo->viewportCount = 1; viewportInfo->pViewports = nullptr; // This is set dynamically with a draw pass command viewportInfo->scissorCount = 1; viewportInfo->pScissors = nullptr; // This is set dynamically with a draw pass command SkASSERT(viewportInfo->viewportCount == viewportInfo->scissorCount); } static void setup_multisample_state(int numSamples, VkPipelineMultisampleStateCreateInfo* multisampleInfo) { memset(multisampleInfo, 0, sizeof(VkPipelineMultisampleStateCreateInfo)); multisampleInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; multisampleInfo->pNext = nullptr; multisampleInfo->flags = 0; SkAssertResult(skgpu::SampleCountToVkSampleCount(numSamples, &multisampleInfo->rasterizationSamples)); multisampleInfo->sampleShadingEnable = VK_FALSE; multisampleInfo->minSampleShading = 0.0f; multisampleInfo->pSampleMask = nullptr; multisampleInfo->alphaToCoverageEnable = VK_FALSE; multisampleInfo->alphaToOneEnable = VK_FALSE; } static VkBlendFactor blend_coeff_to_vk_blend(skgpu::BlendCoeff coeff) { switch (coeff) { case skgpu::BlendCoeff::kZero: return VK_BLEND_FACTOR_ZERO; case skgpu::BlendCoeff::kOne: return VK_BLEND_FACTOR_ONE; case skgpu::BlendCoeff::kSC: return VK_BLEND_FACTOR_SRC_COLOR; case skgpu::BlendCoeff::kISC: return VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR; case skgpu::BlendCoeff::kDC: return VK_BLEND_FACTOR_DST_COLOR; case skgpu::BlendCoeff::kIDC: return VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR; case skgpu::BlendCoeff::kSA: return VK_BLEND_FACTOR_SRC_ALPHA; case skgpu::BlendCoeff::kISA: return VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; case skgpu::BlendCoeff::kDA: return VK_BLEND_FACTOR_DST_ALPHA; case skgpu::BlendCoeff::kIDA: return VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA; case skgpu::BlendCoeff::kConstC: return VK_BLEND_FACTOR_CONSTANT_COLOR; case skgpu::BlendCoeff::kIConstC: return VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR; case skgpu::BlendCoeff::kS2C: return VK_BLEND_FACTOR_SRC1_COLOR; case skgpu::BlendCoeff::kIS2C: return VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR; case skgpu::BlendCoeff::kS2A: return VK_BLEND_FACTOR_SRC1_ALPHA; case skgpu::BlendCoeff::kIS2A: return VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA; case skgpu::BlendCoeff::kIllegal: return VK_BLEND_FACTOR_ZERO; } SkUNREACHABLE; } static VkBlendOp blend_equation_to_vk_blend_op(skgpu::BlendEquation equation) { static const VkBlendOp gTable[] = { // Basic blend ops VK_BLEND_OP_ADD, VK_BLEND_OP_SUBTRACT, VK_BLEND_OP_REVERSE_SUBTRACT, // Advanced blend ops VK_BLEND_OP_SCREEN_EXT, VK_BLEND_OP_OVERLAY_EXT, VK_BLEND_OP_DARKEN_EXT, VK_BLEND_OP_LIGHTEN_EXT, VK_BLEND_OP_COLORDODGE_EXT, VK_BLEND_OP_COLORBURN_EXT, VK_BLEND_OP_HARDLIGHT_EXT, VK_BLEND_OP_SOFTLIGHT_EXT, VK_BLEND_OP_DIFFERENCE_EXT, VK_BLEND_OP_EXCLUSION_EXT, VK_BLEND_OP_MULTIPLY_EXT, VK_BLEND_OP_HSL_HUE_EXT, VK_BLEND_OP_HSL_SATURATION_EXT, VK_BLEND_OP_HSL_COLOR_EXT, VK_BLEND_OP_HSL_LUMINOSITY_EXT, // Illegal. VK_BLEND_OP_ADD, }; static_assert(0 == (int)skgpu::BlendEquation::kAdd); static_assert(1 == (int)skgpu::BlendEquation::kSubtract); static_assert(2 == (int)skgpu::BlendEquation::kReverseSubtract); static_assert(3 == (int)skgpu::BlendEquation::kScreen); static_assert(4 == (int)skgpu::BlendEquation::kOverlay); static_assert(5 == (int)skgpu::BlendEquation::kDarken); static_assert(6 == (int)skgpu::BlendEquation::kLighten); static_assert(7 == (int)skgpu::BlendEquation::kColorDodge); static_assert(8 == (int)skgpu::BlendEquation::kColorBurn); static_assert(9 == (int)skgpu::BlendEquation::kHardLight); static_assert(10 == (int)skgpu::BlendEquation::kSoftLight); static_assert(11 == (int)skgpu::BlendEquation::kDifference); static_assert(12 == (int)skgpu::BlendEquation::kExclusion); static_assert(13 == (int)skgpu::BlendEquation::kMultiply); static_assert(14 == (int)skgpu::BlendEquation::kHSLHue); static_assert(15 == (int)skgpu::BlendEquation::kHSLSaturation); static_assert(16 == (int)skgpu::BlendEquation::kHSLColor); static_assert(17 == (int)skgpu::BlendEquation::kHSLLuminosity); static_assert(std::size(gTable) == skgpu::kBlendEquationCnt); SkASSERT((unsigned)equation < skgpu::kBlendEquationCnt); return gTable[(int)equation]; } static void setup_color_blend_state(const skgpu::BlendInfo& blendInfo, VkPipelineColorBlendStateCreateInfo* colorBlendInfo, VkPipelineColorBlendAttachmentState* attachmentState) { skgpu::BlendEquation equation = blendInfo.fEquation; skgpu::BlendCoeff srcCoeff = blendInfo.fSrcBlend; skgpu::BlendCoeff dstCoeff = blendInfo.fDstBlend; bool blendOff = skgpu::BlendShouldDisable(equation, srcCoeff, dstCoeff); memset(attachmentState, 0, sizeof(VkPipelineColorBlendAttachmentState)); attachmentState->blendEnable = !blendOff; if (!blendOff) { attachmentState->srcColorBlendFactor = blend_coeff_to_vk_blend(srcCoeff); attachmentState->dstColorBlendFactor = blend_coeff_to_vk_blend(dstCoeff); attachmentState->colorBlendOp = blend_equation_to_vk_blend_op(equation); attachmentState->srcAlphaBlendFactor = blend_coeff_to_vk_blend(srcCoeff); attachmentState->dstAlphaBlendFactor = blend_coeff_to_vk_blend(dstCoeff); attachmentState->alphaBlendOp = blend_equation_to_vk_blend_op(equation); } if (!blendInfo.fWritesColor) { attachmentState->colorWriteMask = 0; } else { attachmentState->colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; } memset(colorBlendInfo, 0, sizeof(VkPipelineColorBlendStateCreateInfo)); colorBlendInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; colorBlendInfo->pNext = nullptr; colorBlendInfo->flags = 0; colorBlendInfo->logicOpEnable = VK_FALSE; colorBlendInfo->attachmentCount = 1; colorBlendInfo->pAttachments = attachmentState; // colorBlendInfo->blendConstants is set dynamically } static void setup_raster_state(bool isWireframe, VkPipelineRasterizationStateCreateInfo* rasterInfo) { memset(rasterInfo, 0, sizeof(VkPipelineRasterizationStateCreateInfo)); rasterInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rasterInfo->pNext = nullptr; rasterInfo->flags = 0; rasterInfo->depthClampEnable = VK_FALSE; rasterInfo->rasterizerDiscardEnable = VK_FALSE; rasterInfo->polygonMode = isWireframe ? VK_POLYGON_MODE_LINE : VK_POLYGON_MODE_FILL; rasterInfo->cullMode = VK_CULL_MODE_NONE; rasterInfo->frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; rasterInfo->depthBiasEnable = VK_FALSE; rasterInfo->depthBiasConstantFactor = 0.0f; rasterInfo->depthBiasClamp = 0.0f; rasterInfo->depthBiasSlopeFactor = 0.0f; rasterInfo->lineWidth = 1.0f; } static void setup_shader_stage_info(VkShaderStageFlagBits stage, VkShaderModule shaderModule, VkPipelineShaderStageCreateInfo* shaderStageInfo) { memset(shaderStageInfo, 0, sizeof(VkPipelineShaderStageCreateInfo)); shaderStageInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; shaderStageInfo->pNext = nullptr; shaderStageInfo->flags = 0; shaderStageInfo->stage = stage; shaderStageInfo->module = shaderModule; shaderStageInfo->pName = "main"; shaderStageInfo->pSpecializationInfo = nullptr; } static VkDescriptorSetLayout descriptor_data_to_layout(const VulkanSharedContext* sharedContext, const SkSpan& descriptorData) { if (descriptorData.empty()) { return VK_NULL_HANDLE; } VkDescriptorSetLayout setLayout; DescriptorDataToVkDescSetLayout(sharedContext, descriptorData, &setLayout); if (setLayout == VK_NULL_HANDLE) { SKGPU_LOG_E("Failed to create descriptor set layout; pipeline creation will fail.\n"); return VK_NULL_HANDLE; } return setLayout; } static void destroy_desc_set_layouts(const VulkanSharedContext* sharedContext, skia_private::TArray& setLayouts) { for (int i = 0; i < setLayouts.size(); i++) { if (setLayouts[i] != VK_NULL_HANDLE) { VULKAN_CALL(sharedContext->interface(), DestroyDescriptorSetLayout(sharedContext->device(), setLayouts[i], nullptr)); } } } static VkPipelineLayout setup_pipeline_layout(const VulkanSharedContext* sharedContext, bool usesIntrinsicConstantUbo, bool useMSAALoadPushConstant, bool hasStepUniforms, bool hasPaintUniforms, bool hasGradientBuffer, int numTextureSamplers, int numInputAttachments, SkSpan> immutableSamplers) { SkASSERT(!useMSAALoadPushConstant || (!usesIntrinsicConstantUbo && !hasStepUniforms && !hasPaintUniforms)); // Determine descriptor set layouts for this pipeline based upon render pass information. skia_private::STArray<3, VkDescriptorSetLayout> setLayouts; // Determine uniform descriptor set layout skia_private::STArray uniformDescriptors; if (usesIntrinsicConstantUbo) { uniformDescriptors.push_back(VulkanGraphicsPipeline::kIntrinsicUniformBufferDescriptor); } DescriptorType uniformBufferType = sharedContext->caps()->storageBufferSupport() ? DescriptorType::kStorageBuffer : DescriptorType::kUniformBuffer; if (hasStepUniforms) { uniformDescriptors.push_back({ uniformBufferType, /*count=*/1, VulkanGraphicsPipeline::kRenderStepUniformBufferIndex, PipelineStageFlags::kVertexShader | PipelineStageFlags::kFragmentShader}); } if (hasPaintUniforms) { uniformDescriptors.push_back({ uniformBufferType, /*count=*/1, VulkanGraphicsPipeline::kPaintUniformBufferIndex, PipelineStageFlags::kFragmentShader}); } if (hasGradientBuffer) { uniformDescriptors.push_back({ DescriptorType::kStorageBuffer, /*count=*/1, VulkanGraphicsPipeline::kGradientBufferIndex, PipelineStageFlags::kFragmentShader}); } if (!uniformDescriptors.empty()) { VkDescriptorSetLayout uniformSetLayout = descriptor_data_to_layout(sharedContext, {uniformDescriptors}); if (uniformSetLayout == VK_NULL_HANDLE) { return VK_NULL_HANDLE; } setLayouts.push_back(uniformSetLayout); } // Determine input attachment descriptor set layout if (numInputAttachments > 0) { // For now, we only expect to have up to 1 input attachment. We also share that descriptor // set number with uniform descriptors for normal graphics pipeline usages, so verify that // we are not using any uniform descriptors to avoid conflicts. SkASSERT(numInputAttachments == 1 && uniformDescriptors.empty()); skia_private::TArray inputAttachmentDescriptors(numInputAttachments); inputAttachmentDescriptors.push_back(VulkanGraphicsPipeline::kInputAttachmentDescriptor); VkDescriptorSetLayout inputAttachmentDescSetLayout = descriptor_data_to_layout(sharedContext, {inputAttachmentDescriptors}); if (inputAttachmentDescSetLayout == VK_NULL_HANDLE) { destroy_desc_set_layouts(sharedContext, setLayouts); return VK_NULL_HANDLE; } setLayouts.push_back(inputAttachmentDescSetLayout); } // Determine texture/sampler descriptor set layout if (numTextureSamplers > 0) { skia_private::TArray textureSamplerDescs(numTextureSamplers); // The immutable sampler span size must be = the total number of texture/samplers such that // we can use the index of a sampler as its binding index (or we just have none, which // enables us to skip some of this logic entirely). SkASSERT(immutableSamplers.empty() || SkTo(immutableSamplers.size()) == numTextureSamplers); for (int i = 0; i < numTextureSamplers; i++) { Sampler* immutableSampler = nullptr; if (!immutableSamplers.empty() && immutableSamplers[i]) { immutableSampler = immutableSamplers[i].get(); } textureSamplerDescs.push_back({DescriptorType::kCombinedTextureSampler, /*count=*/1, /*bindingIdx=*/i, PipelineStageFlags::kFragmentShader, immutableSampler}); } VkDescriptorSetLayout textureSamplerDescSetLayout = descriptor_data_to_layout(sharedContext, {textureSamplerDescs}); if (textureSamplerDescSetLayout == VK_NULL_HANDLE) { destroy_desc_set_layouts(sharedContext, setLayouts); return VK_NULL_HANDLE; } setLayouts.push_back(textureSamplerDescSetLayout); } VkPushConstantRange pushConstantRange; if (useMSAALoadPushConstant) { pushConstantRange.offset = 0; pushConstantRange.size = 32; pushConstantRange.stageFlags = VK_SHADER_STAGE_VERTEX_BIT; } // Generate a pipeline layout using the now-populated descriptor set layout array VkPipelineLayoutCreateInfo layoutCreateInfo; memset(&layoutCreateInfo, 0, sizeof(VkPipelineLayoutCreateFlags)); layoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; layoutCreateInfo.pNext = nullptr; layoutCreateInfo.flags = 0; layoutCreateInfo.setLayoutCount = setLayouts.size(); layoutCreateInfo.pSetLayouts = setLayouts.begin(); // TODO: Add support for push constants. layoutCreateInfo.pushConstantRangeCount = useMSAALoadPushConstant ? 1 : 0; layoutCreateInfo.pPushConstantRanges = useMSAALoadPushConstant ? &pushConstantRange : nullptr; VkResult result; VkPipelineLayout layout; VULKAN_CALL_RESULT(sharedContext, result, CreatePipelineLayout(sharedContext->device(), &layoutCreateInfo, /*const VkAllocationCallbacks*=*/nullptr, &layout)); // DescriptorSetLayouts can be deleted after the pipeline layout is created. destroy_desc_set_layouts(sharedContext, setLayouts); return result == VK_SUCCESS ? layout : VK_NULL_HANDLE; } static void destroy_shader_modules(const VulkanSharedContext* sharedContext, VkShaderModule vsModule, VkShaderModule fsModule) { if (vsModule != VK_NULL_HANDLE) { VULKAN_CALL(sharedContext->interface(), DestroyShaderModule(sharedContext->device(), vsModule, nullptr)); } if (fsModule != VK_NULL_HANDLE) { VULKAN_CALL(sharedContext->interface(), DestroyShaderModule(sharedContext->device(), fsModule, nullptr)); } } static void setup_dynamic_state(VkPipelineDynamicStateCreateInfo* dynamicInfo, VkDynamicState* dynamicStates) { memset(dynamicInfo, 0, sizeof(VkPipelineDynamicStateCreateInfo)); dynamicInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamicInfo->pNext = VK_NULL_HANDLE; dynamicInfo->flags = 0; dynamicStates[0] = VK_DYNAMIC_STATE_VIEWPORT; dynamicStates[1] = VK_DYNAMIC_STATE_SCISSOR; dynamicStates[2] = VK_DYNAMIC_STATE_BLEND_CONSTANTS; dynamicInfo->dynamicStateCount = 3; dynamicInfo->pDynamicStates = dynamicStates; } sk_sp VulkanGraphicsPipeline::Make( VulkanResourceProvider* rsrcProvider, const RuntimeEffectDictionary* runtimeDict, const GraphicsPipelineDesc& pipelineDesc, const RenderPassDesc& renderPassDesc, SkEnumBitMask pipelineCreationFlags) { SkASSERT(rsrcProvider); SkSL::Program::Interface vsInterface, fsInterface; SkSL::ProgramSettings settings; settings.fSharpenTextures = true; settings.fForceNoRTFlip = true; // TODO: Confirm const VulkanSharedContext* sharedContext = rsrcProvider->vulkanSharedContext(); ShaderErrorHandler* errorHandler = sharedContext->caps()->shaderErrorHandler(); const RenderStep* step = sharedContext->rendererProvider()->lookup(pipelineDesc.renderStepID()); const bool useStorageBuffers = sharedContext->caps()->storageBufferSupport(); if (step->vertexAttributes().size() + step->instanceAttributes().size() > sharedContext->vulkanCaps().maxVertexAttributes()) { SKGPU_LOG_W("Requested more than the supported number of vertex attributes"); return nullptr; } skia_private::TArray descContainer {}; std::unique_ptr shaderInfo = ShaderInfo::Make(sharedContext->caps(), sharedContext->shaderCodeDictionary(), runtimeDict, step, pipelineDesc.paintParamsID(), useStorageBuffers, renderPassDesc.fWriteSwizzle, &descContainer); // Populate an array of sampler ptrs where a sampler's index within the array indicates their // binding index within the descriptor set. Initialize all values to nullptr, which represents a // "regular", dynamic sampler at that index. skia_private::TArray> immutableSamplers; immutableSamplers.push_back_n(shaderInfo->numFragmentTexturesAndSamplers()); SkASSERT(rsrcProvider); // This logic relies upon Vulkan using combined texture/sampler bindings, which is necessary for // ycbcr samplers per the Vulkan spec. SkASSERT(!sharedContext->caps()->resourceBindingRequirements().fSeparateTextureAndSamplerBinding && shaderInfo->numFragmentTexturesAndSamplers() == descContainer.size()); for (int i = 0; i < descContainer.size(); i++) { // If a SamplerDesc is not equivalent to the default-initialized SamplerDesc, that indicates // the usage of an immutable sampler. That sampler desc should then be used to obtain an // actual immutable sampler from the resource provider and added at the proper index within // immutableSamplers for inclusion in the pipeline layout. if (descContainer.at(i) != SamplerDesc()) { sk_sp immutableSampler = rsrcProvider->findOrCreateCompatibleSampler(descContainer.at(i)); sk_sp vulkanSampler = sk_ref_sp(static_cast(immutableSampler.get())); SkASSERT(vulkanSampler); immutableSamplers[i] = std::move(vulkanSampler); } } const std::string& fsSkSL = shaderInfo->fragmentSkSL(); const bool hasFragmentSkSL = !fsSkSL.empty(); std::string vsSPIRV, fsSPIRV; VkShaderModule fsModule = VK_NULL_HANDLE, vsModule = VK_NULL_HANDLE; if (hasFragmentSkSL) { if (!skgpu::SkSLToSPIRV(sharedContext->caps()->shaderCaps(), fsSkSL, SkSL::ProgramKind::kGraphiteFragment, settings, &fsSPIRV, &fsInterface, errorHandler)) { return nullptr; } fsModule = createVulkanShaderModule(sharedContext, fsSPIRV, VK_SHADER_STAGE_FRAGMENT_BIT); if (!fsModule) { return nullptr; } } const std::string& vsSkSL = shaderInfo->vertexSkSL(); if (!skgpu::SkSLToSPIRV(sharedContext->caps()->shaderCaps(), vsSkSL, SkSL::ProgramKind::kGraphiteVertex, settings, &vsSPIRV, &vsInterface, errorHandler)) { return nullptr; } vsModule = createVulkanShaderModule(sharedContext, vsSPIRV, VK_SHADER_STAGE_VERTEX_BIT); if (!vsModule) { // Clean up the other shader module before returning. destroy_shader_modules(sharedContext, VK_NULL_HANDLE, fsModule); return nullptr; } VkPipelineVertexInputStateCreateInfo vertexInputInfo; skia_private::STArray<2, VkVertexInputBindingDescription, true> bindingDescs; skia_private::STArray<16, VkVertexInputAttributeDescription> attributeDescs; setup_vertex_input_state(step->vertexAttributes(), step->instanceAttributes(), &vertexInputInfo, &bindingDescs, &attributeDescs); VkPipelineInputAssemblyStateCreateInfo inputAssemblyInfo; setup_input_assembly_state(step->primitiveType(), &inputAssemblyInfo); VkPipelineDepthStencilStateCreateInfo depthStencilInfo; setup_depth_stencil_state(step->depthStencilSettings(), &depthStencilInfo); VkPipelineViewportStateCreateInfo viewportInfo; setup_viewport_scissor_state(&viewportInfo); VkPipelineMultisampleStateCreateInfo multisampleInfo; setup_multisample_state(renderPassDesc.fColorAttachment.fTextureInfo.numSamples(), &multisampleInfo); // We will only have one color blend attachment per pipeline. VkPipelineColorBlendAttachmentState attachmentStates[1]; VkPipelineColorBlendStateCreateInfo colorBlendInfo; setup_color_blend_state(shaderInfo->blendInfo(), &colorBlendInfo, attachmentStates); VkPipelineRasterizationStateCreateInfo rasterInfo; // TODO: Check for wire frame mode once that is an available context option within graphite. setup_raster_state(/*isWireframe=*/false, &rasterInfo); VkPipelineShaderStageCreateInfo pipelineShaderStages[2]; setup_shader_stage_info(VK_SHADER_STAGE_VERTEX_BIT, vsModule, &pipelineShaderStages[0]); if (hasFragmentSkSL) { setup_shader_stage_info(VK_SHADER_STAGE_FRAGMENT_BIT, fsModule, &pipelineShaderStages[1]); } // TODO: Query RenderPassDesc for input attachment information. For now, we only use one for // loading MSAA from resolve so we can simply pass in 0 when not doing that. VkPipelineLayout pipelineLayout = setup_pipeline_layout(sharedContext, /*usesIntrinsicConstantUbo=*/true, /*useMSAALoadPushConstant=*/false, !step->uniforms().empty(), shaderInfo->hasPaintUniforms(), shaderInfo->hasGradientBuffer(), shaderInfo->numFragmentTexturesAndSamplers(), /*numInputAttachments=*/0, SkSpan>(immutableSamplers)); if (pipelineLayout == VK_NULL_HANDLE) { destroy_shader_modules(sharedContext, vsModule, fsModule); return nullptr; } VkDynamicState dynamicStates[3]; VkPipelineDynamicStateCreateInfo dynamicInfo; setup_dynamic_state(&dynamicInfo, dynamicStates); bool loadMsaaFromResolve = renderPassDesc.fColorResolveAttachment.fTextureInfo.isValid() && renderPassDesc.fColorResolveAttachment.fLoadOp == LoadOp::kLoad; sk_sp compatibleRenderPass = rsrcProvider->findOrCreateRenderPass(renderPassDesc, /*compatibleOnly=*/true); VkGraphicsPipelineCreateInfo pipelineCreateInfo; memset(&pipelineCreateInfo, 0, sizeof(VkGraphicsPipelineCreateInfo)); pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipelineCreateInfo.pNext = nullptr; pipelineCreateInfo.flags = 0; pipelineCreateInfo.stageCount = hasFragmentSkSL ? 2 : 1; pipelineCreateInfo.pStages = &pipelineShaderStages[0]; pipelineCreateInfo.pVertexInputState = &vertexInputInfo; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyInfo; pipelineCreateInfo.pTessellationState = nullptr; pipelineCreateInfo.pViewportState = &viewportInfo; pipelineCreateInfo.pRasterizationState = &rasterInfo; pipelineCreateInfo.pMultisampleState = &multisampleInfo; pipelineCreateInfo.pDepthStencilState = &depthStencilInfo; pipelineCreateInfo.pColorBlendState = &colorBlendInfo; pipelineCreateInfo.pDynamicState = &dynamicInfo; pipelineCreateInfo.layout = pipelineLayout; pipelineCreateInfo.renderPass = compatibleRenderPass->renderPass(); pipelineCreateInfo.subpass = loadMsaaFromResolve ? 1 : 0; pipelineCreateInfo.basePipelineHandle = VK_NULL_HANDLE; pipelineCreateInfo.basePipelineIndex = -1; VkPipeline vkPipeline; VkResult result; { TRACE_EVENT0_ALWAYS("skia.shaders", "VkCreateGraphicsPipeline"); VULKAN_CALL_RESULT(sharedContext, result, CreateGraphicsPipelines(sharedContext->device(), rsrcProvider->pipelineCache(), /*createInfoCount=*/1, &pipelineCreateInfo, /*pAllocator=*/nullptr, &vkPipeline)); } if (result != VK_SUCCESS) { SkDebugf("Failed to create pipeline. Error: %d\n", result); return nullptr; } // After creating the pipeline object, we can clean up the VkShaderModule(s). destroy_shader_modules(sharedContext, vsModule, fsModule); PipelineInfo pipelineInfo{*shaderInfo, pipelineCreationFlags}; #if defined(GPU_TEST_UTILS) pipelineInfo.fNativeVertexShader = "SPIR-V disassembly not available"; pipelineInfo.fNativeFragmentShader = "SPIR-V disassmebly not available"; #endif return sk_sp( new VulkanGraphicsPipeline(sharedContext, pipelineInfo, pipelineLayout, vkPipeline, /*ownsPipelineLayout=*/true, std::move(immutableSamplers))); } bool VulkanGraphicsPipeline::InitializeMSAALoadPipelineStructs( const VulkanSharedContext* sharedContext, VkShaderModule* outVertexShaderModule, VkShaderModule* outFragShaderModule, VkPipelineShaderStageCreateInfo* outShaderStageInfo, VkPipelineLayout* outPipelineLayout) { SkSL::Program::Interface vsInterface, fsInterface; SkSL::ProgramSettings settings; settings.fForceNoRTFlip = true; std::string vsSPIRV, fsSPIRV; ShaderErrorHandler* errorHandler = sharedContext->caps()->shaderErrorHandler(); std::string vertShaderText; vertShaderText.append( "layout(vulkan, push_constant) uniform vertexUniformBuffer {" "half4 uPosXform;" "};" "// MSAA Load Program VS\n" "void main() {" "float2 position = float2(sk_VertexID >> 1, sk_VertexID & 1);" "sk_Position.xy = position * uPosXform.xy + uPosXform.zw;" "sk_Position.zw = half2(0, 1);" "}"); std::string fragShaderText; fragShaderText.append( "layout(vulkan, input_attachment_index=0, set=0, binding=0) subpassInput uInput;" "// MSAA Load Program FS\n" "void main() {" "sk_FragColor = subpassLoad(uInput);" "}"); if (!skgpu::SkSLToSPIRV(sharedContext->caps()->shaderCaps(), vertShaderText, SkSL::ProgramKind::kGraphiteVertex, settings, &vsSPIRV, &vsInterface, errorHandler)) { return false; } if (!skgpu::SkSLToSPIRV(sharedContext->caps()->shaderCaps(), fragShaderText, SkSL::ProgramKind::kGraphiteFragment, settings, &fsSPIRV, &fsInterface, errorHandler)) { return false; } *outFragShaderModule = createVulkanShaderModule(sharedContext, fsSPIRV, VK_SHADER_STAGE_FRAGMENT_BIT); if (*outFragShaderModule == VK_NULL_HANDLE) { return false; } *outVertexShaderModule = createVulkanShaderModule(sharedContext, vsSPIRV, VK_SHADER_STAGE_VERTEX_BIT); if (*outVertexShaderModule == VK_NULL_HANDLE) { destroy_shader_modules(sharedContext, VK_NULL_HANDLE, *outFragShaderModule); return false; } setup_shader_stage_info(VK_SHADER_STAGE_VERTEX_BIT, *outVertexShaderModule, &outShaderStageInfo[0]); setup_shader_stage_info(VK_SHADER_STAGE_FRAGMENT_BIT, *outFragShaderModule, &outShaderStageInfo[1]); // The load msaa pipeline takes no step or paint uniforms and no instance attributes. It only // references one input attachment texture (which does not require a sampler) and one vertex // attribute (NDC position) skia_private::TArray inputAttachmentDescriptors(1); inputAttachmentDescriptors.push_back(VulkanGraphicsPipeline::kInputAttachmentDescriptor); // TODO: Do we need to consider the potential usage of immutable YCbCr samplers here? *outPipelineLayout = setup_pipeline_layout(sharedContext, /*usesIntrinsicConstantUbo=*/false, /*useMSAALoadPushConstant=*/true, /*hasStepUniforms=*/false, /*hasPaintUniforms=*/false, /*hasGradientBuffer=*/false, /*numTextureSamplers=*/0, /*numInputAttachments=*/1, /*immutableSamplers=*/{}); if (*outPipelineLayout == VK_NULL_HANDLE) { destroy_shader_modules(sharedContext, *outVertexShaderModule, *outFragShaderModule); return false; } return true; } sk_sp VulkanGraphicsPipeline::MakeLoadMSAAPipeline( const VulkanSharedContext* sharedContext, VkShaderModule vsModule, VkShaderModule fsModule, VkPipelineShaderStageCreateInfo* pipelineShaderStages, VkPipelineLayout pipelineLayout, sk_sp compatibleRenderPass, VkPipelineCache pipelineCache, const TextureInfo& dstColorAttachmentTexInfo) { int numSamples = dstColorAttachmentTexInfo.numSamples(); // Create vertex attribute list SkSpan loadMSAAVertexAttribs = {}; VkPipelineVertexInputStateCreateInfo vertexInputInfo; skia_private::STArray<2, VkVertexInputBindingDescription, true> bindingDescs; skia_private::STArray<16, VkVertexInputAttributeDescription> attributeDescs; setup_vertex_input_state(loadMSAAVertexAttribs, /*instanceAttrs=*/{}, // Load msaa pipeline takes no instance attribs &vertexInputInfo, &bindingDescs, &attributeDescs); VkPipelineInputAssemblyStateCreateInfo inputAssemblyInfo; setup_input_assembly_state(PrimitiveType::kTriangleStrip, &inputAssemblyInfo); VkPipelineDepthStencilStateCreateInfo depthStencilInfo; setup_depth_stencil_state(/*stencilSettings=*/{}, &depthStencilInfo); VkPipelineViewportStateCreateInfo viewportInfo; setup_viewport_scissor_state(&viewportInfo); VkPipelineMultisampleStateCreateInfo multisampleInfo; setup_multisample_state(numSamples, &multisampleInfo); // We will only have one color blend attachment per pipeline. VkPipelineColorBlendAttachmentState attachmentStates[1]; VkPipelineColorBlendStateCreateInfo colorBlendInfo; setup_color_blend_state({}, &colorBlendInfo, attachmentStates); VkPipelineRasterizationStateCreateInfo rasterInfo; // TODO: Check for wire frame mode once that is an available context option within graphite. setup_raster_state(/*isWireframe=*/false, &rasterInfo); VkDynamicState dynamicStates[3]; VkPipelineDynamicStateCreateInfo dynamicInfo; setup_dynamic_state(&dynamicInfo, dynamicStates); VkGraphicsPipelineCreateInfo pipelineCreateInfo; memset(&pipelineCreateInfo, 0, sizeof(VkGraphicsPipelineCreateInfo)); pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipelineCreateInfo.pNext = nullptr; pipelineCreateInfo.flags = 0; pipelineCreateInfo.stageCount = 2; pipelineCreateInfo.pStages = pipelineShaderStages; pipelineCreateInfo.pVertexInputState = &vertexInputInfo; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyInfo; pipelineCreateInfo.pTessellationState = nullptr; pipelineCreateInfo.pViewportState = &viewportInfo; pipelineCreateInfo.pRasterizationState = &rasterInfo; pipelineCreateInfo.pMultisampleState = &multisampleInfo; pipelineCreateInfo.pDepthStencilState = &depthStencilInfo; pipelineCreateInfo.pColorBlendState = &colorBlendInfo; pipelineCreateInfo.pDynamicState = &dynamicInfo; pipelineCreateInfo.layout = pipelineLayout; pipelineCreateInfo.renderPass = compatibleRenderPass->renderPass(); VkPipeline vkPipeline; VkResult result; { TRACE_EVENT0_ALWAYS("skia.shaders", "CreateGraphicsPipeline"); SkASSERT(pipelineCache != VK_NULL_HANDLE); VULKAN_CALL_RESULT(sharedContext, result, CreateGraphicsPipelines(sharedContext->device(), pipelineCache, /*createInfoCount=*/1, &pipelineCreateInfo, /*pAllocator=*/nullptr, &vkPipeline)); } if (result != VK_SUCCESS) { SkDebugf("Failed to create pipeline. Error: %d\n", result); return nullptr; } // This is an internal shader, so don't bother filling in the shader code metadata PipelineInfo pipelineInfo{}; return sk_sp( new VulkanGraphicsPipeline(sharedContext, pipelineInfo, pipelineLayout, vkPipeline, /*ownsPipelineLayout=*/false, /*immutableSamplers=*/{})); } VulkanGraphicsPipeline::VulkanGraphicsPipeline( const VulkanSharedContext* sharedContext, const PipelineInfo& pipelineInfo, VkPipelineLayout pipelineLayout, VkPipeline pipeline, bool ownsPipelineLayout, skia_private::TArray> immutableSamplers) : GraphicsPipeline(sharedContext, pipelineInfo) , fPipelineLayout(pipelineLayout) , fPipeline(pipeline) , fOwnsPipelineLayout(ownsPipelineLayout) , fImmutableSamplers(std::move(immutableSamplers)) {} void VulkanGraphicsPipeline::freeGpuData() { auto sharedCtxt = static_cast(this->sharedContext()); if (fPipeline != VK_NULL_HANDLE) { VULKAN_CALL(sharedCtxt->interface(), DestroyPipeline(sharedCtxt->device(), fPipeline, nullptr)); } if (fOwnsPipelineLayout && fPipelineLayout != VK_NULL_HANDLE) { VULKAN_CALL(sharedCtxt->interface(), DestroyPipelineLayout(sharedCtxt->device(), fPipelineLayout, nullptr)); } } } // namespace skgpu::graphite