/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/shaders/SkImageShader.h" #include "include/core/SkAlphaType.h" #include "include/core/SkBitmap.h" #include "include/core/SkBlendMode.h" #include "include/core/SkColorType.h" #include "include/core/SkMatrix.h" #include "include/core/SkPaint.h" #include "include/core/SkPixmap.h" #include "include/core/SkScalar.h" #include "include/core/SkShader.h" #include "include/core/SkTileMode.h" #include "include/private/base/SkMath.h" #include "modules/skcms/skcms.h" #include "src/base/SkArenaAlloc.h" #include "src/core/SkBitmapProcState.h" #include "src/core/SkColorSpaceXformSteps.h" #include "src/core/SkEffectPriv.h" #include "src/core/SkImageInfoPriv.h" #include "src/core/SkImagePriv.h" #include "src/core/SkMipmapAccessor.h" #include "src/core/SkPicturePriv.h" #include "src/core/SkRasterPipeline.h" #include "src/core/SkRasterPipelineOpContexts.h" #include "src/core/SkRasterPipelineOpList.h" #include "src/core/SkReadBuffer.h" #include "src/core/SkSamplingPriv.h" #include "src/core/SkWriteBuffer.h" #include "src/image/SkImage_Base.h" #ifdef SK_ENABLE_LEGACY_SHADERCONTEXT #include "src/shaders/SkBitmapProcShader.h" #endif #include #include #include class SkColorSpace; SkM44 SkImageShader::CubicResamplerMatrix(float B, float C) { #if 0 constexpr SkM44 kMitchell = SkM44( 1.f/18.f, -9.f/18.f, 15.f/18.f, -7.f/18.f, 16.f/18.f, 0.f/18.f, -36.f/18.f, 21.f/18.f, 1.f/18.f, 9.f/18.f, 27.f/18.f, -21.f/18.f, 0.f/18.f, 0.f/18.f, -6.f/18.f, 7.f/18.f); constexpr SkM44 kCatmull = SkM44(0.0f, -0.5f, 1.0f, -0.5f, 1.0f, 0.0f, -2.5f, 1.5f, 0.0f, 0.5f, 2.0f, -1.5f, 0.0f, 0.0f, -0.5f, 0.5f); if (B == 1.0f/3 && C == 1.0f/3) { return kMitchell; } if (B == 0 && C == 0.5f) { return kCatmull; } #endif return SkM44( (1.f/6)*B, -(3.f/6)*B - C, (3.f/6)*B + 2*C, - (1.f/6)*B - C, 1 - (2.f/6)*B, 0, -3 + (12.f/6)*B + C, 2 - (9.f/6)*B - C, (1.f/6)*B, (3.f/6)*B + C, 3 - (15.f/6)*B - 2*C, -2 + (9.f/6)*B + C, 0, 0, -C, (1.f/6)*B + C); } /** * We are faster in clamp, so always use that tiling when we can. */ static SkTileMode optimize(SkTileMode tm, int dimension) { SkASSERT(dimension > 0); #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK // need to update frameworks/base/libs/hwui/tests/unit/SkiaBehaviorTests.cpp:55 to allow // for transforming to clamp. return tm; #else // mirror and repeat on a 1px axis are the same as clamping, but decal will still transition to // transparent black. return (tm != SkTileMode::kDecal && dimension == 1) ? SkTileMode::kClamp : tm; #endif } #if defined(SK_DEBUG) static bool needs_subset(SkImage* img, const SkRect& subset) { return subset != SkRect::Make(img->dimensions()); } #endif SkImageShader::SkImageShader(sk_sp img, const SkRect& subset, SkTileMode tmx, SkTileMode tmy, const SkSamplingOptions& sampling, bool raw, bool clampAsIfUnpremul) : fImage(std::move(img)) , fSampling(sampling) , fTileModeX(optimize(tmx, fImage->width())) , fTileModeY(optimize(tmy, fImage->height())) , fSubset(subset) , fRaw(raw) , fClampAsIfUnpremul(clampAsIfUnpremul) { // These options should never appear together: SkASSERT(!fRaw || !fClampAsIfUnpremul); // Bicubic filtering of raw image shaders would add a surprising clamp - so we don't support it SkASSERT(!fRaw || !fSampling.useCubic); } // just used for legacy-unflattening enum class LegacyFilterEnum { kNone, kLow, kMedium, kHigh, // this is the special value for backward compatibility kInheritFromPaint, // this signals we should use the new SkFilterOptions kUseFilterOptions, // use cubic and ignore FilterOptions kUseCubicResampler, kLast = kUseCubicResampler, }; // fClampAsIfUnpremul is always false when constructed through public APIs, // so there's no need to read or write it here. sk_sp SkImageShader::CreateProc(SkReadBuffer& buffer) { auto tmx = buffer.read32LE(SkTileMode::kLastTileMode); auto tmy = buffer.read32LE(SkTileMode::kLastTileMode); SkSamplingOptions sampling; bool readSampling = true; if (buffer.isVersionLT(SkPicturePriv::kNoFilterQualityShaders_Version) && !buffer.readBool() /* legacy has_sampling */) { readSampling = false; // we just default to Nearest in sampling } if (readSampling) { sampling = buffer.readSampling(); } SkMatrix localMatrix; if (buffer.isVersionLT(SkPicturePriv::Version::kNoShaderLocalMatrix)) { buffer.readMatrix(&localMatrix); } sk_sp img = buffer.readImage(); if (!img) { return nullptr; } bool raw = buffer.isVersionLT(SkPicturePriv::Version::kRawImageShaders) ? false : buffer.readBool(); // TODO(skbug.com/12784): Subset is not serialized yet; it's only used by special images so it // will never be written to an SKP. return raw ? SkImageShader::MakeRaw(std::move(img), tmx, tmy, sampling, &localMatrix) : SkImageShader::Make(std::move(img), tmx, tmy, sampling, &localMatrix); } void SkImageShader::flatten(SkWriteBuffer& buffer) const { buffer.writeUInt((unsigned)fTileModeX); buffer.writeUInt((unsigned)fTileModeY); buffer.writeSampling(fSampling); buffer.writeImage(fImage.get()); SkASSERT(fClampAsIfUnpremul == false); // TODO(skbug.com/12784): Subset is not serialized yet; it's only used by special images so it // will never be written to an SKP. SkASSERT(!needs_subset(fImage.get(), fSubset)); buffer.writeBool(fRaw); } bool SkImageShader::isOpaque() const { return fImage->isOpaque() && fTileModeX != SkTileMode::kDecal && fTileModeY != SkTileMode::kDecal; } #ifdef SK_ENABLE_LEGACY_SHADERCONTEXT static bool legacy_shader_can_handle(const SkMatrix& inv) { SkASSERT(!inv.hasPerspective()); // Scale+translate methods are always present, but affine might not be. if (!SkOpts::S32_alpha_D32_filter_DXDY && !inv.isScaleTranslate()) { return false; } // legacy code uses SkFixed 32.32, so ensure the inverse doesn't map device coordinates // out of range. const SkScalar max_dev_coord = 32767.0f; const SkRect src = inv.mapRect(SkRect::MakeWH(max_dev_coord, max_dev_coord)); // take 1/4 of max signed 32bits so we have room to subtract local values const SkScalar max_fixed32dot32 = float(SK_MaxS32) * 0.25f; if (!SkRect::MakeLTRB(-max_fixed32dot32, -max_fixed32dot32, +max_fixed32dot32, +max_fixed32dot32).contains(src)) { return false; } // legacy shader impl should be able to handle these matrices return true; } SkShaderBase::Context* SkImageShader::onMakeContext(const ContextRec& rec, SkArenaAlloc* alloc) const { SkASSERT(!needs_subset(fImage.get(), fSubset)); // TODO(skbug.com/12784) if (fImage->alphaType() == kUnpremul_SkAlphaType) { return nullptr; } if (fImage->colorType() != kN32_SkColorType) { return nullptr; } if (fTileModeX != fTileModeY) { return nullptr; } if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) { return nullptr; } SkSamplingOptions sampling = fSampling; if (sampling.isAniso()) { sampling = SkSamplingPriv::AnisoFallback(fImage->hasMipmaps()); } auto supported = [](const SkSamplingOptions& sampling) { const std::tuple supported[] = { {SkFilterMode::kNearest, SkMipmapMode::kNone}, // legacy None {SkFilterMode::kLinear, SkMipmapMode::kNone}, // legacy Low {SkFilterMode::kLinear, SkMipmapMode::kNearest}, // legacy Medium }; for (auto [f, m] : supported) { if (sampling.filter == f && sampling.mipmap == m) { return true; } } return false; }; if (sampling.useCubic || !supported(sampling)) { return nullptr; } // SkBitmapProcShader stores bitmap coordinates in a 16bit buffer, // so it can't handle bitmaps larger than 65535. // // We back off another bit to 32767 to make small amounts of // intermediate math safe, e.g. in // // SkFixed fx = ...; // fx = tile(fx + SK_Fixed1); // // we want to make sure (fx + SK_Fixed1) never overflows. if (fImage-> width() > 32767 || fImage->height() > 32767) { return nullptr; } SkMatrix inv; if (!rec.fMatrixRec.totalInverse(&inv) || !legacy_shader_can_handle(inv)) { return nullptr; } if (!rec.isLegacyCompatible(fImage->colorSpace())) { return nullptr; } return SkBitmapProcLegacyShader::MakeContext(*this, fTileModeX, fTileModeY, sampling, as_IB(fImage.get()), rec, alloc); } #endif SkImage* SkImageShader::onIsAImage(SkMatrix* texM, SkTileMode xy[]) const { if (texM) { *texM = SkMatrix::I(); } if (xy) { xy[0] = fTileModeX; xy[1] = fTileModeY; } return const_cast(fImage.get()); } sk_sp SkImageShader::Make(sk_sp image, SkTileMode tmx, SkTileMode tmy, const SkSamplingOptions& options, const SkMatrix* localMatrix, bool clampAsIfUnpremul) { SkRect subset = image ? SkRect::Make(image->dimensions()) : SkRect::MakeEmpty(); return MakeSubset(std::move(image), subset, tmx, tmy, options, localMatrix, clampAsIfUnpremul); } sk_sp SkImageShader::MakeRaw(sk_sp image, SkTileMode tmx, SkTileMode tmy, const SkSamplingOptions& options, const SkMatrix* localMatrix) { if (options.useCubic) { return nullptr; } if (!image) { return SkShaders::Empty(); } auto subset = SkRect::Make(image->dimensions()); sk_sp s = sk_make_sp(image, subset, tmx, tmy, options, /*raw=*/true, /*clampAsIfUnpremul=*/false); return s->makeWithLocalMatrix(localMatrix ? *localMatrix : SkMatrix::I()); } sk_sp SkImageShader::MakeSubset(sk_sp image, const SkRect& subset, SkTileMode tmx, SkTileMode tmy, const SkSamplingOptions& options, const SkMatrix* localMatrix, bool clampAsIfUnpremul) { auto is_unit = [](float x) { return x >= 0 && x <= 1; }; if (options.useCubic) { if (!is_unit(options.cubic.B) || !is_unit(options.cubic.C)) { return nullptr; } } if (!image || subset.isEmpty()) { return SkShaders::Empty(); } // Validate subset and check if we can drop it if (!SkRect::Make(image->bounds()).contains(subset)) { return nullptr; } sk_sp s = sk_make_sp(std::move(image), subset, tmx, tmy, options, /*raw=*/false, clampAsIfUnpremul); return s->makeWithLocalMatrix(localMatrix ? *localMatrix : SkMatrix::I()); } /////////////////////////////////////////////////////////////////////////////////////////////////// sk_sp SkMakeBitmapShaderForPaint(const SkPaint& paint, const SkBitmap& src, SkTileMode tmx, SkTileMode tmy, const SkSamplingOptions& sampling, const SkMatrix* localMatrix, SkCopyPixelsMode mode) { auto s = SkImageShader::Make(SkMakeImageFromRasterBitmap(src, mode), tmx, tmy, sampling, localMatrix); if (!s) { return nullptr; } if (SkColorTypeIsAlphaOnly(src.colorType()) && paint.getShader()) { // Compose the image shader with the paint's shader. Alpha images+shaders should output the // texture's alpha multiplied by the shader's color. DstIn (d*sa) will achieve this with // the source image and dst shader (MakeBlend takes dst first, src second). s = SkShaders::Blend(SkBlendMode::kDstIn, paint.refShader(), std::move(s)); } return s; } SkRect SkModifyPaintAndDstForDrawImageRect(const SkImage* image, const SkSamplingOptions& sampling, SkRect src, SkRect dst, bool strictSrcSubset, SkPaint* paint) { // The paint should have already been cleaned for a regular drawImageRect, e.g. no path // effect and is a fill. SkASSERT(paint); SkASSERT(paint->getStyle() == SkPaint::kFill_Style && !paint->getPathEffect()); SkASSERT(image); SkRect imgBounds = SkRect::Make(image->bounds()); SkASSERT(src.isFinite() && dst.isFinite() && dst.isSorted()); SkMatrix localMatrix = SkMatrix::RectToRect(src, dst); if (!imgBounds.contains(src)) { if (!src.intersect(imgBounds)) { return SkRect::MakeEmpty(); // Nothing to draw for this entry } // Update dst to match smaller src dst = localMatrix.mapRect(src); } bool imageIsAlphaOnly = SkColorTypeIsAlphaOnly(image->colorType()); sk_sp imgShader; if (strictSrcSubset) { imgShader = SkImageShader::MakeSubset(sk_ref_sp(image), src, SkTileMode::kClamp, SkTileMode::kClamp, sampling, &localMatrix); } else { imgShader = image->makeShader(SkTileMode::kClamp, SkTileMode::kClamp, sampling, &localMatrix); } if (!imgShader) { return SkRect::MakeEmpty(); } if (imageIsAlphaOnly && paint->getShader()) { // Compose the image shader with the paint's shader. Alpha images+shaders should output the // texture's alpha multiplied by the shader's color. DstIn (d*sa) will achieve this with // the source image and dst shader (MakeBlend takes dst first, src second). imgShader = SkShaders::Blend(SkBlendMode::kDstIn, paint->refShader(), std::move(imgShader)); } paint->setShader(std::move(imgShader)); return dst; } void SkShaderBase::RegisterFlattenables() { SK_REGISTER_FLATTENABLE(SkImageShader); } namespace { struct MipLevelHelper { SkPixmap pm; SkMatrix inv; SkRasterPipeline_GatherCtx* gather; SkRasterPipeline_TileCtx* limitX; SkRasterPipeline_TileCtx* limitY; SkRasterPipeline_DecalTileCtx* decalCtx = nullptr; void allocAndInit(SkArenaAlloc* alloc, const SkSamplingOptions& sampling, SkTileMode tileModeX, SkTileMode tileModeY) { gather = alloc->make(); gather->pixels = pm.addr(); gather->stride = pm.rowBytesAsPixels(); gather->width = pm.width(); gather->height = pm.height(); if (sampling.useCubic) { SkImageShader::CubicResamplerMatrix(sampling.cubic.B, sampling.cubic.C) .getColMajor(gather->weights); } limitX = alloc->make(); limitY = alloc->make(); limitX->scale = pm.width(); limitX->invScale = 1.0f / pm.width(); limitY->scale = pm.height(); limitY->invScale = 1.0f / pm.height(); // We would like an image that is mapped 1:1 with device pixels but at a half pixel offset // to select every pixel from the src image once. Our rasterizer biases upward. That is a // rect from 0.5...1.5 fills pixel 1 and not pixel 0. So we make exact integer pixel sample // values select the pixel to the left/above the integer value. // // Note that a mirror mapping between canvas and image space will not have this property - // on one side of the image a row/column will be skipped and one repeated on the other side. // // The GM nearest_half_pixel_image tests both of the above scenarios. // // The implementation of SkTileMode::kMirror also modifies integer pixel snapping to create // consistency when the sample coords are running backwards and must account for gather // modification we perform here. The GM mirror_tile tests this. if (!sampling.useCubic && sampling.filter == SkFilterMode::kNearest) { gather->roundDownAtInteger = true; limitX->mirrorBiasDir = limitY->mirrorBiasDir = 1; } if (tileModeX == SkTileMode::kDecal || tileModeY == SkTileMode::kDecal) { decalCtx = alloc->make(); decalCtx->limit_x = limitX->scale; decalCtx->limit_y = limitY->scale; // When integer sample coords snap left/up then we want the right/bottom edge of the // image bounds to be inside the image rather than the left/top edge, that is (0, w] // rather than [0, w). if (gather->roundDownAtInteger) { decalCtx->inclusiveEdge_x = decalCtx->limit_x; decalCtx->inclusiveEdge_y = decalCtx->limit_y; } } } }; } // namespace static SkSamplingOptions tweak_sampling(SkSamplingOptions sampling, const SkMatrix& matrix) { SkFilterMode filter = sampling.filter; // When the matrix is just an integer translate, bilerp == nearest neighbor. if (filter == SkFilterMode::kLinear && matrix.getType() <= SkMatrix::kTranslate_Mask && matrix.getTranslateX() == (int)matrix.getTranslateX() && matrix.getTranslateY() == (int)matrix.getTranslateY()) { filter = SkFilterMode::kNearest; } return SkSamplingOptions(filter, sampling.mipmap); } bool SkImageShader::appendStages(const SkStageRec& rec, const SkShaders::MatrixRec& mRec) const { SkASSERT(!needs_subset(fImage.get(), fSubset)); // TODO(skbug.com/12784) // We only support certain sampling options in stages so far auto sampling = fSampling; if (sampling.isAniso()) { sampling = SkSamplingPriv::AnisoFallback(fImage->hasMipmaps()); } SkRasterPipeline* p = rec.fPipeline; SkArenaAlloc* alloc = rec.fAlloc; SkMatrix baseInv; // If the total matrix isn't valid then we will always access the base MIP level. if (mRec.totalMatrixIsValid()) { if (!mRec.totalInverse(&baseInv)) { return false; } baseInv.normalizePerspective(); } SkASSERT(!sampling.useCubic || sampling.mipmap == SkMipmapMode::kNone); auto* access = SkMipmapAccessor::Make(alloc, fImage.get(), baseInv, sampling.mipmap); if (!access) { return false; } MipLevelHelper upper; std::tie(upper.pm, upper.inv) = access->level(); if (!sampling.useCubic) { // TODO: can tweak_sampling sometimes for cubic too when B=0 if (mRec.totalMatrixIsValid()) { sampling = tweak_sampling(sampling, SkMatrix::Concat(upper.inv, baseInv)); } } if (!mRec.apply(rec, upper.inv)) { return false; } upper.allocAndInit(alloc, sampling, fTileModeX, fTileModeY); MipLevelHelper lower; SkRasterPipeline_MipmapCtx* mipmapCtx = nullptr; float lowerWeight = access->lowerWeight(); if (lowerWeight > 0) { std::tie(lower.pm, lower.inv) = access->lowerLevel(); mipmapCtx = alloc->make(); mipmapCtx->lowerWeight = lowerWeight; mipmapCtx->scaleX = static_cast(lower.pm.width()) / upper.pm.width(); mipmapCtx->scaleY = static_cast(lower.pm.height()) / upper.pm.height(); lower.allocAndInit(alloc, sampling, fTileModeX, fTileModeY); p->append(SkRasterPipelineOp::mipmap_linear_init, mipmapCtx); } const bool decalBothAxes = fTileModeX == SkTileMode::kDecal && fTileModeY == SkTileMode::kDecal; auto append_tiling_and_gather = [&](const MipLevelHelper* level) { if (decalBothAxes) { p->append(SkRasterPipelineOp::decal_x_and_y, level->decalCtx); } else { switch (fTileModeX) { case SkTileMode::kClamp: /* The gather_xxx stage will clamp for us. */ break; case SkTileMode::kMirror: p->append(SkRasterPipelineOp::mirror_x, level->limitX); break; case SkTileMode::kRepeat: p->append(SkRasterPipelineOp::repeat_x, level->limitX); break; case SkTileMode::kDecal: p->append(SkRasterPipelineOp::decal_x, level->decalCtx); break; } switch (fTileModeY) { case SkTileMode::kClamp: /* The gather_xxx stage will clamp for us. */ break; case SkTileMode::kMirror: p->append(SkRasterPipelineOp::mirror_y, level->limitY); break; case SkTileMode::kRepeat: p->append(SkRasterPipelineOp::repeat_y, level->limitY); break; case SkTileMode::kDecal: p->append(SkRasterPipelineOp::decal_y, level->decalCtx); break; } } void* ctx = level->gather; switch (level->pm.colorType()) { case kAlpha_8_SkColorType: p->append(SkRasterPipelineOp::gather_a8, ctx); break; case kA16_unorm_SkColorType: p->append(SkRasterPipelineOp::gather_a16, ctx); break; case kA16_float_SkColorType: p->append(SkRasterPipelineOp::gather_af16, ctx); break; case kRGB_565_SkColorType: p->append(SkRasterPipelineOp::gather_565, ctx); break; case kARGB_4444_SkColorType: p->append(SkRasterPipelineOp::gather_4444, ctx); break; case kR8G8_unorm_SkColorType: p->append(SkRasterPipelineOp::gather_rg88, ctx); break; case kR16G16_unorm_SkColorType: p->append(SkRasterPipelineOp::gather_rg1616,ctx); break; case kR16G16_float_SkColorType: p->append(SkRasterPipelineOp::gather_rgf16, ctx); break; case kRGBA_8888_SkColorType: p->append(SkRasterPipelineOp::gather_8888, ctx); break; case kRGBA_1010102_SkColorType: p->append(SkRasterPipelineOp::gather_1010102, ctx); break; case kR16G16B16A16_unorm_SkColorType: p->append(SkRasterPipelineOp::gather_16161616, ctx); break; case kRGBA_F16Norm_SkColorType: case kRGBA_F16_SkColorType: p->append(SkRasterPipelineOp::gather_f16, ctx); break; case kRGBA_F32_SkColorType: p->append(SkRasterPipelineOp::gather_f32, ctx); break; case kBGRA_10101010_XR_SkColorType: p->append(SkRasterPipelineOp::gather_10101010_xr, ctx); p->append(SkRasterPipelineOp::swap_rb); break; case kRGBA_10x6_SkColorType: p->append(SkRasterPipelineOp::gather_10x6, ctx); break; case kGray_8_SkColorType: p->append(SkRasterPipelineOp::gather_a8, ctx); p->append(SkRasterPipelineOp::alpha_to_gray ); break; case kR8_unorm_SkColorType: p->append(SkRasterPipelineOp::gather_a8, ctx); p->append(SkRasterPipelineOp::alpha_to_red ); break; case kRGB_888x_SkColorType: p->append(SkRasterPipelineOp::gather_8888, ctx); p->append(SkRasterPipelineOp::force_opaque ); break; case kRGB_F16F16F16x_SkColorType: p->append(SkRasterPipelineOp::gather_f16, ctx); p->append(SkRasterPipelineOp::force_opaque); break; case kBGRA_1010102_SkColorType: p->append(SkRasterPipelineOp::gather_1010102, ctx); p->append(SkRasterPipelineOp::swap_rb); break; case kRGB_101010x_SkColorType: p->append(SkRasterPipelineOp::gather_1010102, ctx); p->append(SkRasterPipelineOp::force_opaque); break; case kBGR_101010x_XR_SkColorType: p->append(SkRasterPipelineOp::gather_1010102_xr, ctx); p->append(SkRasterPipelineOp::force_opaque); p->append(SkRasterPipelineOp::swap_rb); break; case kBGR_101010x_SkColorType: p->append(SkRasterPipelineOp::gather_1010102, ctx); p->append(SkRasterPipelineOp::force_opaque); p->append(SkRasterPipelineOp::swap_rb); break; case kBGRA_8888_SkColorType: p->append(SkRasterPipelineOp::gather_8888, ctx); p->append(SkRasterPipelineOp::swap_rb); break; case kSRGBA_8888_SkColorType: p->append(SkRasterPipelineOp::gather_8888, ctx); p->appendTransferFunction(*skcms_sRGB_TransferFunction()); break; case kUnknown_SkColorType: SkASSERT(false); } if (level->decalCtx) { p->append(SkRasterPipelineOp::check_decal_mask, level->decalCtx); } }; auto append_misc = [&] { SkColorSpace* cs = upper.pm.colorSpace(); SkAlphaType at = upper.pm.alphaType(); // Color for alpha-only images comes from the paint (already converted to dst color space). // If we were sampled by a runtime effect, the paint color was replaced with transparent // black, so this tinting is effectively suppressed. See also: RuntimeEffectRPCallbacks if (SkColorTypeIsAlphaOnly(upper.pm.colorType()) && !fRaw) { p->appendSetRGB(alloc, rec.fPaintColor); cs = rec.fDstCS; at = kUnpremul_SkAlphaType; } // Bicubic filtering naturally produces out of range values on both sides of [0,1]. if (sampling.useCubic) { p->append(at == kUnpremul_SkAlphaType || fClampAsIfUnpremul ? SkRasterPipelineOp::clamp_01 : SkRasterPipelineOp::clamp_gamut); } // Transform color space and alpha type to match shader convention (dst CS, premul alpha). if (!fRaw) { alloc->make(cs, at, rec.fDstCS, kPremul_SkAlphaType)->apply(p); } return true; }; // Check for fast-path stages. // TODO: Could we use the fast-path stages for each level when doing linear mipmap filtering? SkColorType ct = upper.pm.colorType(); if (true && (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) && !sampling.useCubic && sampling.filter == SkFilterMode::kLinear && sampling.mipmap != SkMipmapMode::kLinear && fTileModeX == SkTileMode::kClamp && fTileModeY == SkTileMode::kClamp) { p->append(SkRasterPipelineOp::bilerp_clamp_8888, upper.gather); if (ct == kBGRA_8888_SkColorType) { p->append(SkRasterPipelineOp::swap_rb); } return append_misc(); } if (true && (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) && sampling.useCubic && fTileModeX == SkTileMode::kClamp && fTileModeY == SkTileMode::kClamp) { p->append(SkRasterPipelineOp::bicubic_clamp_8888, upper.gather); if (ct == kBGRA_8888_SkColorType) { p->append(SkRasterPipelineOp::swap_rb); } return append_misc(); } // This context can be shared by both levels when doing linear mipmap filtering SkRasterPipeline_SamplerCtx* sampler = alloc->make(); auto sample = [&](SkRasterPipelineOp setup_x, SkRasterPipelineOp setup_y, const MipLevelHelper* level) { p->append(setup_x, sampler); p->append(setup_y, sampler); append_tiling_and_gather(level); p->append(SkRasterPipelineOp::accumulate, sampler); }; auto sample_level = [&](const MipLevelHelper* level) { if (sampling.useCubic) { CubicResamplerMatrix(sampling.cubic.B, sampling.cubic.C).getColMajor(sampler->weights); p->append(SkRasterPipelineOp::bicubic_setup, sampler); sample(SkRasterPipelineOp::bicubic_n3x, SkRasterPipelineOp::bicubic_n3y, level); sample(SkRasterPipelineOp::bicubic_n1x, SkRasterPipelineOp::bicubic_n3y, level); sample(SkRasterPipelineOp::bicubic_p1x, SkRasterPipelineOp::bicubic_n3y, level); sample(SkRasterPipelineOp::bicubic_p3x, SkRasterPipelineOp::bicubic_n3y, level); sample(SkRasterPipelineOp::bicubic_n3x, SkRasterPipelineOp::bicubic_n1y, level); sample(SkRasterPipelineOp::bicubic_n1x, SkRasterPipelineOp::bicubic_n1y, level); sample(SkRasterPipelineOp::bicubic_p1x, SkRasterPipelineOp::bicubic_n1y, level); sample(SkRasterPipelineOp::bicubic_p3x, SkRasterPipelineOp::bicubic_n1y, level); sample(SkRasterPipelineOp::bicubic_n3x, SkRasterPipelineOp::bicubic_p1y, level); sample(SkRasterPipelineOp::bicubic_n1x, SkRasterPipelineOp::bicubic_p1y, level); sample(SkRasterPipelineOp::bicubic_p1x, SkRasterPipelineOp::bicubic_p1y, level); sample(SkRasterPipelineOp::bicubic_p3x, SkRasterPipelineOp::bicubic_p1y, level); sample(SkRasterPipelineOp::bicubic_n3x, SkRasterPipelineOp::bicubic_p3y, level); sample(SkRasterPipelineOp::bicubic_n1x, SkRasterPipelineOp::bicubic_p3y, level); sample(SkRasterPipelineOp::bicubic_p1x, SkRasterPipelineOp::bicubic_p3y, level); sample(SkRasterPipelineOp::bicubic_p3x, SkRasterPipelineOp::bicubic_p3y, level); p->append(SkRasterPipelineOp::move_dst_src); } else if (sampling.filter == SkFilterMode::kLinear) { p->append(SkRasterPipelineOp::bilinear_setup, sampler); sample(SkRasterPipelineOp::bilinear_nx, SkRasterPipelineOp::bilinear_ny, level); sample(SkRasterPipelineOp::bilinear_px, SkRasterPipelineOp::bilinear_ny, level); sample(SkRasterPipelineOp::bilinear_nx, SkRasterPipelineOp::bilinear_py, level); sample(SkRasterPipelineOp::bilinear_px, SkRasterPipelineOp::bilinear_py, level); p->append(SkRasterPipelineOp::move_dst_src); } else { append_tiling_and_gather(level); } }; sample_level(&upper); if (mipmapCtx) { p->append(SkRasterPipelineOp::mipmap_linear_update, mipmapCtx); sample_level(&lower); p->append(SkRasterPipelineOp::mipmap_linear_finish, mipmapCtx); } return append_misc(); } namespace SkShaders { sk_sp Image(sk_sp image, SkTileMode tmx, SkTileMode tmy, const SkSamplingOptions& options, const SkMatrix* localMatrix) { return SkImageShader::Make(std::move(image), tmx, tmy, options, localMatrix); } sk_sp RawImage(sk_sp image, SkTileMode tmx, SkTileMode tmy, const SkSamplingOptions& options, const SkMatrix* localMatrix) { return SkImageShader::MakeRaw(std::move(image), tmx, tmy, options, localMatrix); } } // namespace SkShaders