/* * Copyright 2021 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/sksl/SkSLOperator.h" #include "include/core/SkTypes.h" #include "src/base/SkStringView.h" #include "src/sksl/SkSLBuiltinTypes.h" #include "src/sksl/SkSLContext.h" #include "src/sksl/SkSLProgramSettings.h" #include "src/sksl/ir/SkSLType.h" #include namespace SkSL { OperatorPrecedence Operator::getBinaryPrecedence() const { switch (this->kind()) { case Kind::STAR: // fall through case Kind::SLASH: // fall through case Kind::PERCENT: return OperatorPrecedence::kMultiplicative; case Kind::PLUS: // fall through case Kind::MINUS: return OperatorPrecedence::kAdditive; case Kind::SHL: // fall through case Kind::SHR: return OperatorPrecedence::kShift; case Kind::LT: // fall through case Kind::GT: // fall through case Kind::LTEQ: // fall through case Kind::GTEQ: return OperatorPrecedence::kRelational; case Kind::EQEQ: // fall through case Kind::NEQ: return OperatorPrecedence::kEquality; case Kind::BITWISEAND: return OperatorPrecedence::kBitwiseAnd; case Kind::BITWISEXOR: return OperatorPrecedence::kBitwiseXor; case Kind::BITWISEOR: return OperatorPrecedence::kBitwiseOr; case Kind::LOGICALAND: return OperatorPrecedence::kLogicalAnd; case Kind::LOGICALXOR: return OperatorPrecedence::kLogicalXor; case Kind::LOGICALOR: return OperatorPrecedence::kLogicalOr; case Kind::EQ: // fall through case Kind::PLUSEQ: // fall through case Kind::MINUSEQ: // fall through case Kind::STAREQ: // fall through case Kind::SLASHEQ: // fall through case Kind::PERCENTEQ: // fall through case Kind::SHLEQ: // fall through case Kind::SHREQ: // fall through case Kind::BITWISEANDEQ: // fall through case Kind::BITWISEXOREQ: // fall through case Kind::BITWISEOREQ: return OperatorPrecedence::kAssignment; case Kind::COMMA: return OperatorPrecedence::kSequence; default: SK_ABORT("unsupported binary operator"); } } const char* Operator::operatorName() const { switch (this->kind()) { case Kind::PLUS: return " + "; case Kind::MINUS: return " - "; case Kind::STAR: return " * "; case Kind::SLASH: return " / "; case Kind::PERCENT: return " % "; case Kind::SHL: return " << "; case Kind::SHR: return " >> "; case Kind::LOGICALNOT: return "!"; case Kind::LOGICALAND: return " && "; case Kind::LOGICALOR: return " || "; case Kind::LOGICALXOR: return " ^^ "; case Kind::BITWISENOT: return "~"; case Kind::BITWISEAND: return " & "; case Kind::BITWISEOR: return " | "; case Kind::BITWISEXOR: return " ^ "; case Kind::EQ: return " = "; case Kind::EQEQ: return " == "; case Kind::NEQ: return " != "; case Kind::LT: return " < "; case Kind::GT: return " > "; case Kind::LTEQ: return " <= "; case Kind::GTEQ: return " >= "; case Kind::PLUSEQ: return " += "; case Kind::MINUSEQ: return " -= "; case Kind::STAREQ: return " *= "; case Kind::SLASHEQ: return " /= "; case Kind::PERCENTEQ: return " %= "; case Kind::SHLEQ: return " <<= "; case Kind::SHREQ: return " >>= "; case Kind::BITWISEANDEQ: return " &= "; case Kind::BITWISEOREQ: return " |= "; case Kind::BITWISEXOREQ: return " ^= "; case Kind::PLUSPLUS: return "++"; case Kind::MINUSMINUS: return "--"; case Kind::COMMA: return ", "; default: SkUNREACHABLE; } } std::string_view Operator::tightOperatorName() const { std::string_view name = this->operatorName(); if (skstd::starts_with(name, ' ')) { name.remove_prefix(1); } if (skstd::ends_with(name, ' ')) { name.remove_suffix(1); } return name; } bool Operator::isAssignment() const { switch (this->kind()) { case Kind::EQ: // fall through case Kind::PLUSEQ: // fall through case Kind::MINUSEQ: // fall through case Kind::STAREQ: // fall through case Kind::SLASHEQ: // fall through case Kind::PERCENTEQ: // fall through case Kind::SHLEQ: // fall through case Kind::SHREQ: // fall through case Kind::BITWISEOREQ: // fall through case Kind::BITWISEXOREQ: // fall through case Kind::BITWISEANDEQ: return true; default: return false; } } bool Operator::isCompoundAssignment() const { return this->isAssignment() && this->kind() != Kind::EQ; } Operator Operator::removeAssignment() const { switch (this->kind()) { case Kind::PLUSEQ: return Kind::PLUS; case Kind::MINUSEQ: return Kind::MINUS; case Kind::STAREQ: return Kind::STAR; case Kind::SLASHEQ: return Kind::SLASH; case Kind::PERCENTEQ: return Kind::PERCENT; case Kind::SHLEQ: return Kind::SHL; case Kind::SHREQ: return Kind::SHR; case Kind::BITWISEOREQ: return Kind::BITWISEOR; case Kind::BITWISEXOREQ: return Kind::BITWISEXOR; case Kind::BITWISEANDEQ: return Kind::BITWISEAND; default: return *this; } } bool Operator::isRelational() const { switch (this->kind()) { case Kind::LT: case Kind::GT: case Kind::LTEQ: case Kind::GTEQ: return true; default: return false; } } bool Operator::isOnlyValidForIntegralTypes() const { switch (this->kind()) { case Kind::SHL: case Kind::SHR: case Kind::BITWISEAND: case Kind::BITWISEOR: case Kind::BITWISEXOR: case Kind::PERCENT: case Kind::SHLEQ: case Kind::SHREQ: case Kind::BITWISEANDEQ: case Kind::BITWISEOREQ: case Kind::BITWISEXOREQ: case Kind::PERCENTEQ: return true; default: return false; } } bool Operator::isValidForMatrixOrVector() const { switch (this->kind()) { case Kind::PLUS: case Kind::MINUS: case Kind::STAR: case Kind::SLASH: case Kind::PERCENT: case Kind::SHL: case Kind::SHR: case Kind::BITWISEAND: case Kind::BITWISEOR: case Kind::BITWISEXOR: case Kind::PLUSEQ: case Kind::MINUSEQ: case Kind::STAREQ: case Kind::SLASHEQ: case Kind::PERCENTEQ: case Kind::SHLEQ: case Kind::SHREQ: case Kind::BITWISEANDEQ: case Kind::BITWISEOREQ: case Kind::BITWISEXOREQ: return true; default: return false; } } bool Operator::isMatrixMultiply(const Type& left, const Type& right) const { if (this->kind() != Kind::STAR && this->kind() != Kind::STAREQ) { return false; } if (left.isMatrix()) { return right.isMatrix() || right.isVector(); } return left.isVector() && right.isMatrix(); } /** * Determines the operand and result types of a binary expression. Returns true if the expression is * legal, false otherwise. If false, the values of the out parameters are undefined. */ bool Operator::determineBinaryType(const Context& context, const Type& left, const Type& right, const Type** outLeftType, const Type** outRightType, const Type** outResultType) const { const bool allowNarrowing = context.fConfig->fSettings.fAllowNarrowingConversions; switch (this->kind()) { case Kind::EQ: // left = right if (left.isVoid()) { return false; } *outLeftType = &left; *outRightType = &left; *outResultType = &left; return right.canCoerceTo(left, allowNarrowing); case Kind::EQEQ: // left == right case Kind::NEQ: { // left != right if (left.isVoid() || left.isOpaque()) { return false; } CoercionCost rightToLeft = right.coercionCost(left), leftToRight = left.coercionCost(right); if (rightToLeft < leftToRight) { if (rightToLeft.isPossible(allowNarrowing)) { *outLeftType = &left; *outRightType = &left; *outResultType = context.fTypes.fBool.get(); return true; } } else { if (leftToRight.isPossible(allowNarrowing)) { *outLeftType = &right; *outRightType = &right; *outResultType = context.fTypes.fBool.get(); return true; } } return false; } case Kind::LOGICALOR: // left || right case Kind::LOGICALAND: // left && right case Kind::LOGICALXOR: // left ^^ right *outLeftType = context.fTypes.fBool.get(); *outRightType = context.fTypes.fBool.get(); *outResultType = context.fTypes.fBool.get(); return left.canCoerceTo(*context.fTypes.fBool, allowNarrowing) && right.canCoerceTo(*context.fTypes.fBool, allowNarrowing); case Operator::Kind::COMMA: // left, right if (left.isOpaque() || right.isOpaque()) { return false; } *outLeftType = &left; *outRightType = &right; *outResultType = &right; return true; default: break; } // Boolean types only support the operators listed above (, = == != || && ^^). // If we've gotten this far with a boolean, we have an unsupported operator. const Type& leftComponentType = left.componentType(); const Type& rightComponentType = right.componentType(); if (leftComponentType.isBoolean() || rightComponentType.isBoolean()) { return false; } bool isAssignment = this->isAssignment(); if (this->isMatrixMultiply(left, right)) { // left * right // Determine final component type. if (!this->determineBinaryType(context, left.componentType(), right.componentType(), outLeftType, outRightType, outResultType)) { return false; } // Convert component type to compound. *outLeftType = &(*outResultType)->toCompound(context, left.columns(), left.rows()); *outRightType = &(*outResultType)->toCompound(context, right.columns(), right.rows()); int leftColumns = left.columns(), leftRows = left.rows(); int rightColumns = right.columns(), rightRows = right.rows(); if (right.isVector()) { // `matrix * vector` treats the vector as a column vector; we need to transpose it. std::swap(rightColumns, rightRows); SkASSERT(rightColumns == 1); } if (rightColumns > 1) { *outResultType = &(*outResultType)->toCompound(context, rightColumns, leftRows); } else { // The result was a column vector. Transpose it back to a row. *outResultType = &(*outResultType)->toCompound(context, leftRows, rightColumns); } if (isAssignment && ((*outResultType)->columns() != leftColumns || (*outResultType)->rows() != leftRows)) { return false; } return leftColumns == rightRows; } bool leftIsVectorOrMatrix = left.isVector() || left.isMatrix(); bool validMatrixOrVectorOp = this->isValidForMatrixOrVector(); if (leftIsVectorOrMatrix && validMatrixOrVectorOp && right.isScalar()) { // Determine final component type. if (!this->determineBinaryType(context, left.componentType(), right, outLeftType, outRightType, outResultType)) { return false; } // Convert component type to compound. *outLeftType = &(*outLeftType)->toCompound(context, left.columns(), left.rows()); if (!this->isRelational()) { *outResultType = &(*outResultType)->toCompound(context, left.columns(), left.rows()); } return true; } bool rightIsVectorOrMatrix = right.isVector() || right.isMatrix(); if (!isAssignment && rightIsVectorOrMatrix && validMatrixOrVectorOp && left.isScalar()) { // Determine final component type. if (!this->determineBinaryType(context, left, right.componentType(), outLeftType, outRightType, outResultType)) { return false; } // Convert component type to compound. *outRightType = &(*outRightType)->toCompound(context, right.columns(), right.rows()); if (!this->isRelational()) { *outResultType = &(*outResultType)->toCompound(context, right.columns(), right.rows()); } return true; } CoercionCost rightToLeftCost = right.coercionCost(left); CoercionCost leftToRightCost = isAssignment ? CoercionCost::Impossible() : left.coercionCost(right); if ((left.isScalar() && right.isScalar()) || (leftIsVectorOrMatrix && validMatrixOrVectorOp)) { if (this->isOnlyValidForIntegralTypes()) { if (!leftComponentType.isInteger() || !rightComponentType.isInteger()) { return false; } } if (rightToLeftCost.isPossible(allowNarrowing) && rightToLeftCost < leftToRightCost) { // Right-to-Left conversion is possible and cheaper *outLeftType = &left; *outRightType = &left; *outResultType = &left; } else if (leftToRightCost.isPossible(allowNarrowing)) { // Left-to-Right conversion is possible (and at least as cheap as Right-to-Left) *outLeftType = &right; *outRightType = &right; *outResultType = &right; } else { return false; } if (this->isRelational()) { *outResultType = context.fTypes.fBool.get(); } return true; } return false; } } // namespace SkSL