/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/sksl/codegen/SkSLSPIRVCodeGenerator.h" #include "include/core/SkSpan.h" #include "include/core/SkTypes.h" #include "include/private/base/SkTArray.h" #include "include/private/base/SkTo.h" #include "src/base/SkEnumBitMask.h" #include "src/core/SkChecksum.h" #include "src/core/SkTHash.h" #include "src/core/SkTraceEvent.h" #include "src/sksl/GLSL.std.450.h" #include "src/sksl/SkSLAnalysis.h" #include "src/sksl/SkSLBuiltinTypes.h" #include "src/sksl/SkSLCompiler.h" #include "src/sksl/SkSLConstantFolder.h" #include "src/sksl/SkSLContext.h" #include "src/sksl/SkSLDefines.h" #include "src/sksl/SkSLErrorReporter.h" #include "src/sksl/SkSLIntrinsicList.h" #include "src/sksl/SkSLMemoryLayout.h" #include "src/sksl/SkSLOperator.h" #include "src/sksl/SkSLOutputStream.h" #include "src/sksl/SkSLPool.h" #include "src/sksl/SkSLPosition.h" #include "src/sksl/SkSLProgramSettings.h" #include "src/sksl/SkSLStringStream.h" #include "src/sksl/SkSLUtil.h" #include "src/sksl/analysis/SkSLSpecialization.h" #include "src/sksl/codegen/SkSLCodeGenerator.h" #include "src/sksl/ir/SkSLBinaryExpression.h" #include "src/sksl/ir/SkSLBlock.h" #include "src/sksl/ir/SkSLConstructor.h" #include "src/sksl/ir/SkSLConstructorArrayCast.h" #include "src/sksl/ir/SkSLConstructorCompound.h" #include "src/sksl/ir/SkSLConstructorCompoundCast.h" #include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h" #include "src/sksl/ir/SkSLConstructorMatrixResize.h" #include "src/sksl/ir/SkSLConstructorScalarCast.h" #include "src/sksl/ir/SkSLConstructorSplat.h" #include "src/sksl/ir/SkSLDoStatement.h" #include "src/sksl/ir/SkSLExpression.h" #include "src/sksl/ir/SkSLExpressionStatement.h" #include "src/sksl/ir/SkSLExtension.h" #include "src/sksl/ir/SkSLFieldAccess.h" #include "src/sksl/ir/SkSLFieldSymbol.h" #include "src/sksl/ir/SkSLForStatement.h" #include "src/sksl/ir/SkSLFunctionCall.h" #include "src/sksl/ir/SkSLFunctionDeclaration.h" #include "src/sksl/ir/SkSLFunctionDefinition.h" #include "src/sksl/ir/SkSLIRNode.h" #include "src/sksl/ir/SkSLIfStatement.h" #include "src/sksl/ir/SkSLIndexExpression.h" #include "src/sksl/ir/SkSLInterfaceBlock.h" #include "src/sksl/ir/SkSLLayout.h" #include "src/sksl/ir/SkSLLiteral.h" #include "src/sksl/ir/SkSLModifierFlags.h" #include "src/sksl/ir/SkSLModifiersDeclaration.h" #include "src/sksl/ir/SkSLPoison.h" #include "src/sksl/ir/SkSLPostfixExpression.h" #include "src/sksl/ir/SkSLPrefixExpression.h" #include "src/sksl/ir/SkSLProgram.h" #include "src/sksl/ir/SkSLProgramElement.h" #include "src/sksl/ir/SkSLReturnStatement.h" #include "src/sksl/ir/SkSLSetting.h" #include "src/sksl/ir/SkSLStatement.h" #include "src/sksl/ir/SkSLSwitchCase.h" #include "src/sksl/ir/SkSLSwitchStatement.h" #include "src/sksl/ir/SkSLSwizzle.h" #include "src/sksl/ir/SkSLSymbol.h" #include "src/sksl/ir/SkSLSymbolTable.h" #include "src/sksl/ir/SkSLTernaryExpression.h" #include "src/sksl/ir/SkSLType.h" #include "src/sksl/ir/SkSLVarDeclarations.h" #include "src/sksl/ir/SkSLVariable.h" #include "src/sksl/ir/SkSLVariableReference.h" #include "src/sksl/spirv.h" #include "src/sksl/transform/SkSLTransform.h" #include "src/utils/SkBitSet.h" #include #include #include #include #include #include #include #include #include #include #include #include using namespace skia_private; #define kLast_Capability SpvCapabilityMultiViewport constexpr int DEVICE_FRAGCOORDS_BUILTIN = -1000; constexpr int DEVICE_CLOCKWISE_BUILTIN = -1001; static constexpr SkSL::Layout kDefaultTypeLayout; namespace SkSL { enum class ProgramKind : int8_t; enum class StorageClass { kUniformConstant, kInput, kUniform, kStorageBuffer, kOutput, kWorkgroup, kCrossWorkgroup, kPrivate, kFunction, kGeneric, kPushConstant, kAtomicCounter, kImage, }; static SpvStorageClass get_storage_class_spv_id(StorageClass storageClass) { switch (storageClass) { case StorageClass::kUniformConstant: return SpvStorageClassUniformConstant; case StorageClass::kInput: return SpvStorageClassInput; case StorageClass::kUniform: return SpvStorageClassUniform; // Note: In SPIR-V 1.3, a storage buffer can be declared with the "StorageBuffer" // storage class and the "Block" decoration and the <1.3 approach we use here ("Uniform" // storage class and the "BufferBlock" decoration) is deprecated. Since we target SPIR-V // 1.0, we have to use the deprecated approach which is well supported in Vulkan and // addresses SkSL use cases (notably SkSL currently doesn't support pointer features that // would benefit from SPV_KHR_variable_pointers capabilities). case StorageClass::kStorageBuffer: return SpvStorageClassUniform; case StorageClass::kOutput: return SpvStorageClassOutput; case StorageClass::kWorkgroup: return SpvStorageClassWorkgroup; case StorageClass::kCrossWorkgroup: return SpvStorageClassCrossWorkgroup; case StorageClass::kPrivate: return SpvStorageClassPrivate; case StorageClass::kFunction: return SpvStorageClassFunction; case StorageClass::kGeneric: return SpvStorageClassGeneric; case StorageClass::kPushConstant: return SpvStorageClassPushConstant; case StorageClass::kAtomicCounter: return SpvStorageClassAtomicCounter; case StorageClass::kImage: return SpvStorageClassImage; } SkUNREACHABLE; } class SPIRVCodeGenerator : public CodeGenerator { public: // We reserve an impossible SpvId as a sentinel. (NA meaning none, n/a, etc.) static constexpr SpvId NA = (SpvId)-1; class LValue { public: virtual ~LValue() {} // returns a pointer to the lvalue, if possible. If the lvalue cannot be directly referenced // by a pointer (e.g. vector swizzles), returns NA. virtual SpvId getPointer() { return NA; } // Returns true if a valid pointer returned by getPointer represents a memory object // (see https://github.com/KhronosGroup/SPIRV-Tools/issues/2892). Has no meaning if // getPointer() returns NA. virtual bool isMemoryObjectPointer() const { return true; } // Applies a swizzle to the components of the LValue, if possible. This is used to create // LValues that are swizzes-of-swizzles. Non-swizzle LValues can just return false. virtual bool applySwizzle(const ComponentArray& components, const Type& newType) { return false; } // Returns the storage class of the lvalue. virtual StorageClass storageClass() const = 0; virtual SpvId load(OutputStream& out) = 0; virtual void store(SpvId value, OutputStream& out) = 0; }; SPIRVCodeGenerator(const Context* context, const ShaderCaps* caps, const Program* program, OutputStream* out) : CodeGenerator(context, caps, program, out) {} bool generateCode() override; private: enum IntrinsicOpcodeKind { kGLSL_STD_450_IntrinsicOpcodeKind, kSPIRV_IntrinsicOpcodeKind, kSpecial_IntrinsicOpcodeKind, kInvalid_IntrinsicOpcodeKind, }; enum SpecialIntrinsic { kAtan_SpecialIntrinsic, kClamp_SpecialIntrinsic, kMatrixCompMult_SpecialIntrinsic, kMax_SpecialIntrinsic, kMin_SpecialIntrinsic, kMix_SpecialIntrinsic, kMod_SpecialIntrinsic, kDFdy_SpecialIntrinsic, kSaturate_SpecialIntrinsic, kSampledImage_SpecialIntrinsic, kSmoothStep_SpecialIntrinsic, kStep_SpecialIntrinsic, kSubpassLoad_SpecialIntrinsic, kTexture_SpecialIntrinsic, kTextureGrad_SpecialIntrinsic, kTextureLod_SpecialIntrinsic, kTextureRead_SpecialIntrinsic, kTextureWrite_SpecialIntrinsic, kTextureWidth_SpecialIntrinsic, kTextureHeight_SpecialIntrinsic, kAtomicAdd_SpecialIntrinsic, kAtomicLoad_SpecialIntrinsic, kAtomicStore_SpecialIntrinsic, kStorageBarrier_SpecialIntrinsic, kWorkgroupBarrier_SpecialIntrinsic, }; enum class Precision { kDefault, kRelaxed, }; struct TempVar { SpvId spvId; const Type* type; std::unique_ptr lvalue; }; /** * Pass in the type to automatically add a RelaxedPrecision decoration for the id when * appropriate, or null to never add one. */ SpvId nextId(const Type* type); SpvId nextId(Precision precision); SpvId getType(const Type& type); SpvId getType(const Type& type, const Layout& typeLayout, const MemoryLayout& memoryLayout); SpvId getFunctionType(const FunctionDeclaration& function); SpvId getFunctionParameterType(const Type& parameterType, const Layout& parameterLayout); SpvId getPointerType(const Type& type, StorageClass storageClass); SpvId getPointerType(const Type& type, const Layout& typeLayout, const MemoryLayout& memoryLayout, StorageClass storageClass); StorageClass getStorageClass(const Expression& expr); TArray getAccessChain(const Expression& expr, OutputStream& out); void writeLayout(const Layout& layout, SpvId target, Position pos); void writeFieldLayout(const Layout& layout, SpvId target, int member); SpvId writeStruct(const Type& type, const MemoryLayout& memoryLayout); void writeProgramElement(const ProgramElement& pe, OutputStream& out); SpvId writeInterfaceBlock(const InterfaceBlock& intf, bool appendRTFlip = true); void writeFunctionStart(const FunctionDeclaration& f, OutputStream& out); SpvId writeFunctionDeclaration(const FunctionDeclaration& f, OutputStream& out); void writeFunction(const FunctionDefinition& f, OutputStream& out); // Writes the function with the defined specializationIndex, if the index is -1, then it is // assumed that the function has no specializations. void writeFunctionInstantiation(const FunctionDefinition& f, Analysis::SpecializationIndex specializationIndex, const Analysis::SpecializedParameters* specializedParams, OutputStream& out); bool writeGlobalVarDeclaration(ProgramKind kind, const VarDeclaration& v); SpvId writeGlobalVar(ProgramKind kind, StorageClass, const Variable& v); void writeVarDeclaration(const VarDeclaration& var, OutputStream& out); SpvId writeVariableReference(const VariableReference& ref, OutputStream& out); int findUniformFieldIndex(const Variable& var) const; std::unique_ptr getLValue(const Expression& value, OutputStream& out); SpvId writeExpression(const Expression& expr, OutputStream& out); SpvId writeIntrinsicCall(const FunctionCall& c, OutputStream& out); void writeFunctionCallArgument(TArray& argumentList, const FunctionCall& call, int argIndex, std::vector* tempVars, const SkBitSet* specializedParams, OutputStream& out); void copyBackTempVars(const std::vector& tempVars, OutputStream& out); SpvId writeFunctionCall(const FunctionCall& c, OutputStream& out); void writeGLSLExtendedInstruction(const Type& type, SpvId id, SpvId floatInst, SpvId signedInst, SpvId unsignedInst, const TArray& args, OutputStream& out); /** * Promotes an expression to a vector. If the expression is already a vector with vectorSize * columns, returns it unmodified. If the expression is a scalar, either promotes it to a * vector (if vectorSize > 1) or returns it unmodified (if vectorSize == 1). Asserts if the * expression is already a vector and it does not have vectorSize columns. */ SpvId vectorize(const Expression& expr, int vectorSize, OutputStream& out); /** * Given a list of potentially mixed scalars and vectors, promotes the scalars to match the * size of the vectors and returns the ids of the written expressions. e.g. given (float, vec2), * returns (vec2(float), vec2). It is an error to use mismatched vector sizes, e.g. (float, * vec2, vec3). */ TArray vectorize(const ExpressionArray& args, OutputStream& out); /** * Given a SpvId of a scalar, splats it across the passed-in type (scalar, vector or matrix) and * returns the SpvId of the new value. */ SpvId splat(const Type& type, SpvId id, OutputStream& out); SpvId writeSpecialIntrinsic(const FunctionCall& c, SpecialIntrinsic kind, OutputStream& out); SpvId writeAtomicIntrinsic(const FunctionCall& c, SpecialIntrinsic kind, SpvId resultId, OutputStream& out); SpvId castScalarToFloat(SpvId inputId, const Type& inputType, const Type& outputType, OutputStream& out); SpvId castScalarToSignedInt(SpvId inputId, const Type& inputType, const Type& outputType, OutputStream& out); SpvId castScalarToUnsignedInt(SpvId inputId, const Type& inputType, const Type& outputType, OutputStream& out); SpvId castScalarToBoolean(SpvId inputId, const Type& inputType, const Type& outputType, OutputStream& out); SpvId castScalarToType(SpvId inputExprId, const Type& inputType, const Type& outputType, OutputStream& out); /** * Writes a potentially-different-sized copy of a matrix. Entries which do not exist in the * source matrix are filled with zero; entries which do not exist in the destination matrix are * ignored. */ SpvId writeMatrixCopy(SpvId src, const Type& srcType, const Type& dstType, OutputStream& out); void addColumnEntry(const Type& columnType, TArray* currentColumn, TArray* columnIds, int rows, SpvId entry, OutputStream& out); SpvId writeConstructorCompound(const ConstructorCompound& c, OutputStream& out); SpvId writeMatrixConstructor(const ConstructorCompound& c, OutputStream& out); SpvId writeVectorConstructor(const ConstructorCompound& c, OutputStream& out); SpvId writeCompositeConstructor(const AnyConstructor& c, OutputStream& out); SpvId writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& c, OutputStream& out); SpvId writeConstructorMatrixResize(const ConstructorMatrixResize& c, OutputStream& out); SpvId writeConstructorScalarCast(const ConstructorScalarCast& c, OutputStream& out); SpvId writeConstructorSplat(const ConstructorSplat& c, OutputStream& out); SpvId writeConstructorCompoundCast(const ConstructorCompoundCast& c, OutputStream& out); SpvId writeFieldAccess(const FieldAccess& f, OutputStream& out); SpvId writeSwizzle(const Expression& baseExpr, const ComponentArray& components, OutputStream& out); SpvId writeSwizzle(const Swizzle& swizzle, OutputStream& out); /** * Folds the potentially-vector result of a logical operation down to a single bool. If * operandType is a vector type, assumes that the intermediate result in id is a bvec of the * same dimensions, and applys all() to it to fold it down to a single bool value. Otherwise, * returns the original id value. */ SpvId foldToBool(SpvId id, const Type& operandType, SpvOp op, OutputStream& out); SpvId writeMatrixComparison(const Type& operandType, SpvId lhs, SpvId rhs, SpvOp_ floatOperator, SpvOp_ intOperator, SpvOp_ vectorMergeOperator, SpvOp_ mergeOperator, OutputStream& out); SpvId writeStructComparison(const Type& structType, SpvId lhs, Operator op, SpvId rhs, OutputStream& out); SpvId writeArrayComparison(const Type& structType, SpvId lhs, Operator op, SpvId rhs, OutputStream& out); // Used by writeStructComparison and writeArrayComparison to logically combine field-by-field // comparisons into an overall comparison result. // - `a.x == b.x` merged with `a.y == b.y` generates `(a.x == b.x) && (a.y == b.y)` // - `a.x != b.x` merged with `a.y != b.y` generates `(a.x != b.x) || (a.y != b.y)` SpvId mergeComparisons(SpvId comparison, SpvId allComparisons, Operator op, OutputStream& out); // When the RewriteMatrixVectorMultiply caps bit is set, we manually decompose the M*V // multiplication into a sum of vector-scalar products. SpvId writeDecomposedMatrixVectorMultiply(const Type& leftType, SpvId lhs, const Type& rightType, SpvId rhs, const Type& resultType, OutputStream& out); SpvId writeComponentwiseMatrixUnary(const Type& operandType, SpvId operand, SpvOp_ op, OutputStream& out); SpvId writeComponentwiseMatrixBinary(const Type& operandType, SpvId lhs, SpvId rhs, SpvOp_ op, OutputStream& out); SpvId writeBinaryOperationComponentwiseIfMatrix(const Type& resultType, const Type& operandType, SpvId lhs, SpvId rhs, SpvOp_ ifFloat, SpvOp_ ifInt, SpvOp_ ifUInt, SpvOp_ ifBool, OutputStream& out); SpvId writeBinaryOperation(const Type& resultType, const Type& operandType, SpvId lhs, SpvId rhs, SpvOp_ ifFloat, SpvOp_ ifInt, SpvOp_ ifUInt, SpvOp_ ifBool, OutputStream& out); SpvId writeBinaryOperation(const Type& resultType, const Type& operandType, SpvId lhs, SpvId rhs, bool writeComponentwiseIfMatrix, SpvOp_ ifFloat, SpvOp_ ifInt, SpvOp_ ifUInt, SpvOp_ ifBool, OutputStream& out); SpvId writeReciprocal(const Type& type, SpvId value, OutputStream& out); SpvId writeBinaryExpression(const Type& leftType, SpvId lhs, Operator op, const Type& rightType, SpvId rhs, const Type& resultType, OutputStream& out); SpvId writeBinaryExpression(const BinaryExpression& b, OutputStream& out); SpvId writeTernaryExpression(const TernaryExpression& t, OutputStream& out); SpvId writeIndexExpression(const IndexExpression& expr, OutputStream& out); SpvId writeLogicalAnd(const Expression& left, const Expression& right, OutputStream& out); SpvId writeLogicalOr(const Expression& left, const Expression& right, OutputStream& out); SpvId writePrefixExpression(const PrefixExpression& p, OutputStream& out); SpvId writePostfixExpression(const PostfixExpression& p, OutputStream& out); SpvId writeLiteral(const Literal& f); SpvId writeLiteral(double value, const Type& type); void writeStatement(const Statement& s, OutputStream& out); void writeBlock(const Block& b, OutputStream& out); void writeIfStatement(const IfStatement& stmt, OutputStream& out); void writeForStatement(const ForStatement& f, OutputStream& out); void writeDoStatement(const DoStatement& d, OutputStream& out); void writeSwitchStatement(const SwitchStatement& s, OutputStream& out); void writeReturnStatement(const ReturnStatement& r, OutputStream& out); void writeCapabilities(OutputStream& out); void writeInstructions(const Program& program, OutputStream& out); void writeOpCode(SpvOp_ opCode, int length, OutputStream& out); void writeWord(int32_t word, OutputStream& out); void writeString(std::string_view s, OutputStream& out); void writeInstruction(SpvOp_ opCode, OutputStream& out); void writeInstruction(SpvOp_ opCode, std::string_view string, OutputStream& out); void writeInstruction(SpvOp_ opCode, int32_t word1, OutputStream& out); void writeInstruction(SpvOp_ opCode, int32_t word1, std::string_view string, OutputStream& out); void writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, std::string_view string, OutputStream& out); void writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, OutputStream& out); void writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, OutputStream& out); void writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, OutputStream& out); void writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, OutputStream& out); void writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, int32_t word6, OutputStream& out); void writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, int32_t word6, int32_t word7, OutputStream& out); void writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, int32_t word6, int32_t word7, int32_t word8, OutputStream& out); // This form of writeInstruction can deduplicate redundant ops. struct Word; // 8 Words is enough for nearly all instructions (except variable-length instructions like // OpAccessChain or OpConstantComposite). using Words = STArray<8, Word, true>; SpvId writeInstruction(SpvOp_ opCode, const TArray& words, OutputStream& out); struct Instruction { SpvId fOp; int32_t fResultKind; STArray<8, int32_t> fWords; bool operator==(const Instruction& that) const; struct Hash; }; static Instruction BuildInstructionKey(SpvOp_ opCode, const TArray& words); // The writeOpXxxxx calls will simplify and deduplicate ops where possible. SpvId writeOpConstantTrue(const Type& type); SpvId writeOpConstantFalse(const Type& type); SpvId writeOpConstant(const Type& type, int32_t valueBits); SpvId writeOpConstantComposite(const Type& type, const TArray& values); SpvId writeOpCompositeConstruct(const Type& type, const TArray&, OutputStream& out); SpvId writeOpCompositeExtract(const Type& type, SpvId base, int component, OutputStream& out); SpvId writeOpCompositeExtract(const Type& type, SpvId base, int componentA, int componentB, OutputStream& out); SpvId writeOpLoad(SpvId type, Precision precision, SpvId pointer, OutputStream& out); void writeOpStore(StorageClass storageClass, SpvId pointer, SpvId value, OutputStream& out); // Converts the provided SpvId(s) into an array of scalar OpConstants, if it can be done. bool toConstants(SpvId value, TArray* constants); bool toConstants(SkSpan values, TArray* constants); // Extracts the requested component SpvId from a composite instruction, if it can be done. Instruction* resultTypeForInstruction(const Instruction& instr); int numComponentsForVecInstruction(const Instruction& instr); SpvId toComponent(SpvId id, int component); struct ConditionalOpCounts { int numReachableOps; int numStoreOps; }; ConditionalOpCounts getConditionalOpCounts(); void pruneConditionalOps(ConditionalOpCounts ops); enum StraightLineLabelType { // Use "BranchlessBlock" for blocks which are never explicitly branched-to at all. This // happens at the start of a function, or when we find unreachable code. kBranchlessBlock, // Use "BranchIsOnPreviousLine" when writing a label that comes immediately after its // associated branch. Example usage: // - SPIR-V does not implicitly fall through from one block to the next, so you may need to // use an OpBranch to explicitly jump to the next block, even when they are adjacent in // the code. // - The block immediately following an OpBranchConditional or OpSwitch. kBranchIsOnPreviousLine, }; enum BranchingLabelType { // Use "BranchIsAbove" for labels which are referenced by OpBranch or OpBranchConditional // ops that are above the label in the code--i.e., the branch skips forward in the code. kBranchIsAbove, // Use "BranchIsBelow" for labels which are referenced by OpBranch or OpBranchConditional // ops below the label in the code--i.e., the branch jumps backward in the code. kBranchIsBelow, // Use "BranchesOnBothSides" for labels which have branches coming from both directions. kBranchesOnBothSides, }; void writeLabel(SpvId label, StraightLineLabelType type, OutputStream& out); void writeLabel(SpvId label, BranchingLabelType type, ConditionalOpCounts ops, OutputStream& out); MemoryLayout memoryLayoutForStorageClass(StorageClass storageClass); MemoryLayout memoryLayoutForVariable(const Variable&) const; struct EntrypointAdapter { std::unique_ptr entrypointDef; std::unique_ptr entrypointDecl; }; EntrypointAdapter writeEntrypointAdapter(const FunctionDeclaration& main); struct UniformBuffer { std::unique_ptr fInterfaceBlock; std::unique_ptr fInnerVariable; std::unique_ptr fStruct; }; void writeUniformBuffer(SymbolTable* topLevelSymbolTable); void addRTFlipUniform(Position pos); std::unique_ptr identifier(std::string_view name); std::tuple synthesizeTextureAndSampler( const Variable& combinedSampler); const MemoryLayout fDefaultMemoryLayout{MemoryLayout::Standard::k140}; uint64_t fCapabilities = 0; SpvId fIdCount = 1; SpvId fGLSLExtendedInstructions; struct Intrinsic { IntrinsicOpcodeKind opKind; int32_t floatOp; int32_t signedOp; int32_t unsignedOp; int32_t boolOp; }; Intrinsic getIntrinsic(IntrinsicKind) const; THashMap fFunctionMap; Analysis::SpecializationInfo fSpecializationInfo; Analysis::SpecializationIndex fActiveSpecializationIndex = Analysis::kUnspecialized; const Analysis::SpecializedParameters* fActiveSpecialization = nullptr; THashMap fVariableMap; THashMap fStructMap; StringStream fGlobalInitializersBuffer; StringStream fConstantBuffer; StringStream fVariableBuffer; StringStream fNameBuffer; StringStream fDecorationBuffer; // Mapping from combined sampler declarations to synthesized texture/sampler variables. // This is used when the sampler is declared as `layout(webgpu)` or `layout(direct3d)`. bool fUseTextureSamplerPairs = false; struct SynthesizedTextureSamplerPair { // The names of the synthesized variables. The Variable objects themselves store string // views referencing these strings. It is important for the std::string instances to have a // fixed memory location after the string views get created, which is why // `fSynthesizedSamplerMap` stores unique_ptr instead of values. std::string fTextureName; std::string fSamplerName; std::unique_ptr fTexture; std::unique_ptr fSampler; }; THashMap> fSynthesizedSamplerMap; // These caches map SpvIds to Instructions, and vice-versa. This enables us to deduplicate code // (by detecting an Instruction we've already issued and reusing the SpvId), and to introspect // and simplify code we've already emitted (by taking a SpvId from an Instruction and following // it back to its source). // A map of instruction -> SpvId: THashMap fOpCache; // A map of SpvId -> instruction: THashMap fSpvIdCache; // A map of SpvId -> value SpvId: THashMap fStoreCache; // "Reachable" ops are instructions which can safely be accessed from the current block. // For instance, if our SPIR-V contains `%3 = OpFAdd %1 %2`, we would be able to access and // reuse that computation on following lines. However, if that Add operation occurred inside an // `if` block, then its SpvId becomes inaccessible once we complete the if statement (since // depending on the if condition, we may or may not have actually done that computation). The // same logic applies to other control-flow blocks as well. Once an instruction becomes // unreachable, we remove it from both op-caches. TArray fReachableOps; // The "store-ops" list contains a running list of all the pointers in the store cache. If a // store occurs inside of a conditional block, once that block exits, we no longer know what is // stored in that particular SpvId. At that point, we must remove any associated entry from the // store cache. TArray fStoreOps; // label of the current block, or 0 if we are not in a block SpvId fCurrentBlock = 0; TArray fBreakTarget; TArray fContinueTarget; bool fWroteRTFlip = false; // holds variables synthesized during output, for lifetime purposes SymbolTable fSynthetics{/*builtin=*/true}; // Holds a list of uniforms that were declared as globals at the top-level instead of in an // interface block. UniformBuffer fUniformBuffer; std::vector fTopLevelUniforms; THashMap fTopLevelUniformMap; // SpvId fUniformBufferId = NA; friend class PointerLValue; friend class SwizzleLValue; }; // Equality and hash operators for Instructions. bool SPIRVCodeGenerator::Instruction::operator==(const SPIRVCodeGenerator::Instruction& that) const { return fOp == that.fOp && fResultKind == that.fResultKind && fWords == that.fWords; } struct SPIRVCodeGenerator::Instruction::Hash { uint32_t operator()(const SPIRVCodeGenerator::Instruction& key) const { uint32_t hash = key.fResultKind; hash = SkChecksum::Hash32(&key.fOp, sizeof(key.fOp), hash); hash = SkChecksum::Hash32(key.fWords.data(), key.fWords.size() * sizeof(int32_t), hash); return hash; } }; // This class is used to pass values and result placeholder slots to writeInstruction. struct SPIRVCodeGenerator::Word { enum Kind { kNone, // intended for use as a sentinel, not part of any Instruction kSpvId, kNumber, kDefaultPrecisionResult, kRelaxedPrecisionResult, kUniqueResult, kKeyedResult, }; Word(SpvId id) : fValue(id), fKind(Kind::kSpvId) {} Word(int32_t val, Kind kind) : fValue(val), fKind(kind) {} static Word Number(int32_t val) { return Word{val, Kind::kNumber}; } static Word Result(const Type& type) { return (type.hasPrecision() && !type.highPrecision()) ? RelaxedResult() : Result(); } static Word RelaxedResult() { return Word{(int32_t)NA, kRelaxedPrecisionResult}; } static Word UniqueResult() { return Word{(int32_t)NA, kUniqueResult}; } static Word Result() { return Word{(int32_t)NA, kDefaultPrecisionResult}; } // Unlike a Result (where the result ID is always deduplicated to its first instruction) or a // UniqueResult (which always produces a new instruction), a KeyedResult allows an instruction // to be deduplicated among those that share the same `key`. static Word KeyedResult(int32_t key) { return Word{key, Kind::kKeyedResult}; } bool isResult() const { return fKind >= Kind::kDefaultPrecisionResult; } int32_t fValue; Kind fKind; }; // Skia's magic number is 31 and goes in the top 16 bits. We can use the lower bits to version the // sksl generator if we want. // https://github.com/KhronosGroup/SPIRV-Headers/blob/master/include/spirv/spir-v.xml#L84 static const int32_t SKSL_MAGIC = 0x001F0000; SPIRVCodeGenerator::Intrinsic SPIRVCodeGenerator::getIntrinsic(IntrinsicKind ik) const { #define ALL_GLSL(x) Intrinsic{kGLSL_STD_450_IntrinsicOpcodeKind, GLSLstd450 ## x, \ GLSLstd450 ## x, GLSLstd450 ## x, GLSLstd450 ## x} #define BY_TYPE_GLSL(ifFloat, ifInt, ifUInt) Intrinsic{kGLSL_STD_450_IntrinsicOpcodeKind, \ GLSLstd450 ## ifFloat, \ GLSLstd450 ## ifInt, \ GLSLstd450 ## ifUInt, \ SpvOpUndef} #define ALL_SPIRV(x) Intrinsic{kSPIRV_IntrinsicOpcodeKind, \ SpvOp ## x, SpvOp ## x, SpvOp ## x, SpvOp ## x} #define BOOL_SPIRV(x) Intrinsic{kSPIRV_IntrinsicOpcodeKind, \ SpvOpUndef, SpvOpUndef, SpvOpUndef, SpvOp ## x} #define FLOAT_SPIRV(x) Intrinsic{kSPIRV_IntrinsicOpcodeKind, \ SpvOp ## x, SpvOpUndef, SpvOpUndef, SpvOpUndef} #define SPECIAL(x) Intrinsic{kSpecial_IntrinsicOpcodeKind, k ## x ## _SpecialIntrinsic, \ k ## x ## _SpecialIntrinsic, k ## x ## _SpecialIntrinsic, \ k ## x ## _SpecialIntrinsic} switch (ik) { case k_round_IntrinsicKind: return ALL_GLSL(Round); case k_roundEven_IntrinsicKind: return ALL_GLSL(RoundEven); case k_trunc_IntrinsicKind: return ALL_GLSL(Trunc); case k_abs_IntrinsicKind: return BY_TYPE_GLSL(FAbs, SAbs, SAbs); case k_sign_IntrinsicKind: return BY_TYPE_GLSL(FSign, SSign, SSign); case k_floor_IntrinsicKind: return ALL_GLSL(Floor); case k_ceil_IntrinsicKind: return ALL_GLSL(Ceil); case k_fract_IntrinsicKind: return ALL_GLSL(Fract); case k_radians_IntrinsicKind: return ALL_GLSL(Radians); case k_degrees_IntrinsicKind: return ALL_GLSL(Degrees); case k_sin_IntrinsicKind: return ALL_GLSL(Sin); case k_cos_IntrinsicKind: return ALL_GLSL(Cos); case k_tan_IntrinsicKind: return ALL_GLSL(Tan); case k_asin_IntrinsicKind: return ALL_GLSL(Asin); case k_acos_IntrinsicKind: return ALL_GLSL(Acos); case k_atan_IntrinsicKind: return SPECIAL(Atan); case k_sinh_IntrinsicKind: return ALL_GLSL(Sinh); case k_cosh_IntrinsicKind: return ALL_GLSL(Cosh); case k_tanh_IntrinsicKind: return ALL_GLSL(Tanh); case k_asinh_IntrinsicKind: return ALL_GLSL(Asinh); case k_acosh_IntrinsicKind: return ALL_GLSL(Acosh); case k_atanh_IntrinsicKind: return ALL_GLSL(Atanh); case k_pow_IntrinsicKind: return ALL_GLSL(Pow); case k_exp_IntrinsicKind: return ALL_GLSL(Exp); case k_log_IntrinsicKind: return ALL_GLSL(Log); case k_exp2_IntrinsicKind: return ALL_GLSL(Exp2); case k_log2_IntrinsicKind: return ALL_GLSL(Log2); case k_sqrt_IntrinsicKind: return ALL_GLSL(Sqrt); case k_inverse_IntrinsicKind: return ALL_GLSL(MatrixInverse); case k_outerProduct_IntrinsicKind: return ALL_SPIRV(OuterProduct); case k_transpose_IntrinsicKind: return ALL_SPIRV(Transpose); case k_isinf_IntrinsicKind: return ALL_SPIRV(IsInf); case k_isnan_IntrinsicKind: return ALL_SPIRV(IsNan); case k_inversesqrt_IntrinsicKind: return ALL_GLSL(InverseSqrt); case k_determinant_IntrinsicKind: return ALL_GLSL(Determinant); case k_matrixCompMult_IntrinsicKind: return SPECIAL(MatrixCompMult); case k_matrixInverse_IntrinsicKind: return ALL_GLSL(MatrixInverse); case k_mod_IntrinsicKind: return SPECIAL(Mod); case k_modf_IntrinsicKind: return ALL_GLSL(Modf); case k_min_IntrinsicKind: return SPECIAL(Min); case k_max_IntrinsicKind: return SPECIAL(Max); case k_clamp_IntrinsicKind: return SPECIAL(Clamp); case k_saturate_IntrinsicKind: return SPECIAL(Saturate); case k_dot_IntrinsicKind: return FLOAT_SPIRV(Dot); case k_mix_IntrinsicKind: return SPECIAL(Mix); case k_step_IntrinsicKind: return SPECIAL(Step); case k_smoothstep_IntrinsicKind: return SPECIAL(SmoothStep); case k_fma_IntrinsicKind: return ALL_GLSL(Fma); case k_frexp_IntrinsicKind: return ALL_GLSL(Frexp); case k_ldexp_IntrinsicKind: return ALL_GLSL(Ldexp); #define PACK(type) case k_pack##type##_IntrinsicKind: return ALL_GLSL(Pack##type); \ case k_unpack##type##_IntrinsicKind: return ALL_GLSL(Unpack##type) PACK(Snorm4x8); PACK(Unorm4x8); PACK(Snorm2x16); PACK(Unorm2x16); PACK(Half2x16); #undef PACK case k_length_IntrinsicKind: return ALL_GLSL(Length); case k_distance_IntrinsicKind: return ALL_GLSL(Distance); case k_cross_IntrinsicKind: return ALL_GLSL(Cross); case k_normalize_IntrinsicKind: return ALL_GLSL(Normalize); case k_faceforward_IntrinsicKind: return ALL_GLSL(FaceForward); case k_reflect_IntrinsicKind: return ALL_GLSL(Reflect); case k_refract_IntrinsicKind: return ALL_GLSL(Refract); case k_bitCount_IntrinsicKind: return ALL_SPIRV(BitCount); case k_findLSB_IntrinsicKind: return ALL_GLSL(FindILsb); case k_findMSB_IntrinsicKind: return BY_TYPE_GLSL(FindSMsb, FindSMsb, FindUMsb); case k_dFdx_IntrinsicKind: return FLOAT_SPIRV(DPdx); case k_dFdy_IntrinsicKind: return SPECIAL(DFdy); case k_fwidth_IntrinsicKind: return FLOAT_SPIRV(Fwidth); case k_sample_IntrinsicKind: return SPECIAL(Texture); case k_sampleGrad_IntrinsicKind: return SPECIAL(TextureGrad); case k_sampleLod_IntrinsicKind: return SPECIAL(TextureLod); case k_subpassLoad_IntrinsicKind: return SPECIAL(SubpassLoad); case k_textureRead_IntrinsicKind: return SPECIAL(TextureRead); case k_textureWrite_IntrinsicKind: return SPECIAL(TextureWrite); case k_textureWidth_IntrinsicKind: return SPECIAL(TextureWidth); case k_textureHeight_IntrinsicKind: return SPECIAL(TextureHeight); case k_floatBitsToInt_IntrinsicKind: return ALL_SPIRV(Bitcast); case k_floatBitsToUint_IntrinsicKind: return ALL_SPIRV(Bitcast); case k_intBitsToFloat_IntrinsicKind: return ALL_SPIRV(Bitcast); case k_uintBitsToFloat_IntrinsicKind: return ALL_SPIRV(Bitcast); case k_any_IntrinsicKind: return BOOL_SPIRV(Any); case k_all_IntrinsicKind: return BOOL_SPIRV(All); case k_not_IntrinsicKind: return BOOL_SPIRV(LogicalNot); case k_equal_IntrinsicKind: return Intrinsic{kSPIRV_IntrinsicOpcodeKind, SpvOpFOrdEqual, SpvOpIEqual, SpvOpIEqual, SpvOpLogicalEqual}; case k_notEqual_IntrinsicKind: return Intrinsic{kSPIRV_IntrinsicOpcodeKind, SpvOpFUnordNotEqual, SpvOpINotEqual, SpvOpINotEqual, SpvOpLogicalNotEqual}; case k_lessThan_IntrinsicKind: return Intrinsic{kSPIRV_IntrinsicOpcodeKind, SpvOpFOrdLessThan, SpvOpSLessThan, SpvOpULessThan, SpvOpUndef}; case k_lessThanEqual_IntrinsicKind: return Intrinsic{kSPIRV_IntrinsicOpcodeKind, SpvOpFOrdLessThanEqual, SpvOpSLessThanEqual, SpvOpULessThanEqual, SpvOpUndef}; case k_greaterThan_IntrinsicKind: return Intrinsic{kSPIRV_IntrinsicOpcodeKind, SpvOpFOrdGreaterThan, SpvOpSGreaterThan, SpvOpUGreaterThan, SpvOpUndef}; case k_greaterThanEqual_IntrinsicKind: return Intrinsic{kSPIRV_IntrinsicOpcodeKind, SpvOpFOrdGreaterThanEqual, SpvOpSGreaterThanEqual, SpvOpUGreaterThanEqual, SpvOpUndef}; case k_atomicAdd_IntrinsicKind: return SPECIAL(AtomicAdd); case k_atomicLoad_IntrinsicKind: return SPECIAL(AtomicLoad); case k_atomicStore_IntrinsicKind: return SPECIAL(AtomicStore); case k_storageBarrier_IntrinsicKind: return SPECIAL(StorageBarrier); case k_workgroupBarrier_IntrinsicKind: return SPECIAL(WorkgroupBarrier); default: return Intrinsic{kInvalid_IntrinsicOpcodeKind, 0, 0, 0, 0}; } } void SPIRVCodeGenerator::writeWord(int32_t word, OutputStream& out) { out.write((const char*) &word, sizeof(word)); } static bool is_float(const Type& type) { return (type.isScalar() || type.isVector() || type.isMatrix()) && type.componentType().isFloat(); } static bool is_signed(const Type& type) { return (type.isScalar() || type.isVector()) && type.componentType().isSigned(); } static bool is_unsigned(const Type& type) { return (type.isScalar() || type.isVector()) && type.componentType().isUnsigned(); } static bool is_bool(const Type& type) { return (type.isScalar() || type.isVector()) && type.componentType().isBoolean(); } template static T pick_by_type(const Type& type, T ifFloat, T ifInt, T ifUInt, T ifBool) { if (is_float(type)) { return ifFloat; } if (is_signed(type)) { return ifInt; } if (is_unsigned(type)) { return ifUInt; } if (is_bool(type)) { return ifBool; } SkDEBUGFAIL("unrecognized type"); return ifFloat; } static bool is_out(ModifierFlags f) { return SkToBool(f & ModifierFlag::kOut); } static bool is_in(ModifierFlags f) { if (f & ModifierFlag::kIn) { return true; // `in` and `inout` both count } // If neither in/out flag is set, the type is implicitly `in`. return !SkToBool(f & ModifierFlag::kOut); } static bool is_control_flow_op(SpvOp_ op) { switch (op) { case SpvOpReturn: case SpvOpReturnValue: case SpvOpKill: case SpvOpSwitch: case SpvOpBranch: case SpvOpBranchConditional: return true; default: return false; } } static bool is_globally_reachable_op(SpvOp_ op) { switch (op) { case SpvOpConstant: case SpvOpConstantTrue: case SpvOpConstantFalse: case SpvOpConstantComposite: case SpvOpTypeVoid: case SpvOpTypeInt: case SpvOpTypeFloat: case SpvOpTypeBool: case SpvOpTypeVector: case SpvOpTypeMatrix: case SpvOpTypeArray: case SpvOpTypePointer: case SpvOpTypeFunction: case SpvOpTypeRuntimeArray: case SpvOpTypeStruct: case SpvOpTypeImage: case SpvOpTypeSampledImage: case SpvOpTypeSampler: case SpvOpVariable: case SpvOpFunction: case SpvOpFunctionParameter: case SpvOpFunctionEnd: case SpvOpExecutionMode: case SpvOpMemoryModel: case SpvOpCapability: case SpvOpExtInstImport: case SpvOpEntryPoint: case SpvOpSource: case SpvOpSourceExtension: case SpvOpName: case SpvOpMemberName: case SpvOpDecorate: case SpvOpMemberDecorate: return true; default: return false; } } void SPIRVCodeGenerator::writeOpCode(SpvOp_ opCode, int length, OutputStream& out) { SkASSERT(opCode != SpvOpLoad || &out != &fConstantBuffer); SkASSERT(opCode != SpvOpUndef); bool foundDeadCode = false; if (is_control_flow_op(opCode)) { // This instruction causes us to leave the current block. foundDeadCode = (fCurrentBlock == 0); fCurrentBlock = 0; } else if (!is_globally_reachable_op(opCode)) { foundDeadCode = (fCurrentBlock == 0); } if (foundDeadCode) { // We just encountered dead code--an instruction that don't have an associated block. // Synthesize a label if this happens; this is necessary to satisfy the validator. this->writeLabel(this->nextId(nullptr), kBranchlessBlock, out); } this->writeWord((length << 16) | opCode, out); } void SPIRVCodeGenerator::writeLabel(SpvId label, StraightLineLabelType, OutputStream& out) { // The straight-line label type is not important; in any case, no caches are invalidated. SkASSERT(!fCurrentBlock); fCurrentBlock = label; this->writeInstruction(SpvOpLabel, label, out); } void SPIRVCodeGenerator::writeLabel(SpvId label, BranchingLabelType type, ConditionalOpCounts ops, OutputStream& out) { switch (type) { case kBranchIsBelow: case kBranchesOnBothSides: // With a backward or bidirectional branch, we haven't seen the code between the label // and the branch yet, so any stored value is potentially suspect. Without scanning // ahead to check, the only safe option is to ditch the store cache entirely. fStoreCache.reset(); [[fallthrough]]; case kBranchIsAbove: // With a forward branch, we can rely on stores that we had cached at the start of the // statement/expression, if they haven't been touched yet. Anything newer than that is // pruned. this->pruneConditionalOps(ops); break; } // Emit the label. this->writeLabel(label, kBranchlessBlock, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, OutputStream& out) { this->writeOpCode(opCode, 1, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, OutputStream& out) { this->writeOpCode(opCode, 2, out); this->writeWord(word1, out); } void SPIRVCodeGenerator::writeString(std::string_view s, OutputStream& out) { out.write(s.data(), s.length()); switch (s.length() % 4) { case 1: out.write8(0); [[fallthrough]]; case 2: out.write8(0); [[fallthrough]]; case 3: out.write8(0); break; default: this->writeWord(0, out); break; } } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, std::string_view string, OutputStream& out) { this->writeOpCode(opCode, 1 + (string.length() + 4) / 4, out); this->writeString(string, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, std::string_view string, OutputStream& out) { this->writeOpCode(opCode, 2 + (string.length() + 4) / 4, out); this->writeWord(word1, out); this->writeString(string, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, std::string_view string, OutputStream& out) { this->writeOpCode(opCode, 3 + (string.length() + 4) / 4, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeString(string, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, OutputStream& out) { this->writeOpCode(opCode, 3, out); this->writeWord(word1, out); this->writeWord(word2, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, OutputStream& out) { this->writeOpCode(opCode, 4, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, OutputStream& out) { this->writeOpCode(opCode, 5, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, OutputStream& out) { this->writeOpCode(opCode, 6, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); this->writeWord(word5, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, int32_t word6, OutputStream& out) { this->writeOpCode(opCode, 7, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); this->writeWord(word5, out); this->writeWord(word6, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, int32_t word6, int32_t word7, OutputStream& out) { this->writeOpCode(opCode, 8, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); this->writeWord(word5, out); this->writeWord(word6, out); this->writeWord(word7, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, int32_t word6, int32_t word7, int32_t word8, OutputStream& out) { this->writeOpCode(opCode, 9, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); this->writeWord(word5, out); this->writeWord(word6, out); this->writeWord(word7, out); this->writeWord(word8, out); } SPIRVCodeGenerator::Instruction SPIRVCodeGenerator::BuildInstructionKey(SpvOp_ opCode, const TArray& words) { // Assemble a cache key for this instruction. Instruction key; key.fOp = opCode; key.fWords.resize(words.size()); key.fResultKind = Word::Kind::kNone; for (int index = 0; index < words.size(); ++index) { const Word& word = words[index]; key.fWords[index] = word.fValue; if (word.isResult()) { SkASSERT(key.fResultKind == Word::Kind::kNone); key.fResultKind = word.fKind; } } return key; } SpvId SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, const TArray& words, OutputStream& out) { // writeOpLoad and writeOpStore have dedicated code. SkASSERT(opCode != SpvOpLoad); SkASSERT(opCode != SpvOpStore); // If this instruction exists in our op cache, return the cached SpvId. Instruction key = BuildInstructionKey(opCode, words); if (SpvId* cachedOp = fOpCache.find(key)) { return *cachedOp; } SpvId result = NA; Precision precision = Precision::kDefault; switch (key.fResultKind) { case Word::Kind::kUniqueResult: // The instruction returns a SpvId, but we do not want deduplication. result = this->nextId(Precision::kDefault); fSpvIdCache.set(result, key); break; case Word::Kind::kNone: // The instruction doesn't return a SpvId, but we can still cache and deduplicate it. fOpCache.set(key, result); break; case Word::Kind::kRelaxedPrecisionResult: precision = Precision::kRelaxed; [[fallthrough]]; case Word::Kind::kKeyedResult: [[fallthrough]]; case Word::Kind::kDefaultPrecisionResult: // Consume a new SpvId. result = this->nextId(precision); fOpCache.set(key, result); fSpvIdCache.set(result, key); // Globally-reachable ops are not subject to the whims of flow control. if (!is_globally_reachable_op(opCode)) { fReachableOps.push_back(result); } break; default: SkDEBUGFAIL("unexpected result kind"); break; } // Write the requested instruction. this->writeOpCode(opCode, words.size() + 1, out); for (const Word& word : words) { if (word.isResult()) { SkASSERT(result != NA); this->writeWord(result, out); } else { this->writeWord(word.fValue, out); } } // Return the result. return result; } SpvId SPIRVCodeGenerator::writeOpLoad(SpvId type, Precision precision, SpvId pointer, OutputStream& out) { // Look for this pointer in our load-cache. if (SpvId* cachedOp = fStoreCache.find(pointer)) { return *cachedOp; } // Write the requested OpLoad instruction. SpvId result = this->nextId(precision); this->writeInstruction(SpvOpLoad, type, result, pointer, out); return result; } void SPIRVCodeGenerator::writeOpStore(StorageClass storageClass, SpvId pointer, SpvId value, OutputStream& out) { // Write the uncached SpvOpStore directly. this->writeInstruction(SpvOpStore, pointer, value, out); if (storageClass == StorageClass::kFunction) { // Insert a pointer-to-SpvId mapping into the load cache. A writeOpLoad to this pointer will // return the cached value as-is. fStoreCache.set(pointer, value); fStoreOps.push_back(pointer); } } SpvId SPIRVCodeGenerator::writeOpConstantTrue(const Type& type) { return this->writeInstruction(SpvOpConstantTrue, Words{this->getType(type), Word::Result()}, fConstantBuffer); } SpvId SPIRVCodeGenerator::writeOpConstantFalse(const Type& type) { return this->writeInstruction(SpvOpConstantFalse, Words{this->getType(type), Word::Result()}, fConstantBuffer); } SpvId SPIRVCodeGenerator::writeOpConstant(const Type& type, int32_t valueBits) { return this->writeInstruction( SpvOpConstant, Words{this->getType(type), Word::Result(), Word::Number(valueBits)}, fConstantBuffer); } SpvId SPIRVCodeGenerator::writeOpConstantComposite(const Type& type, const TArray& values) { SkASSERT(values.size() == (type.isStruct() ? SkToInt(type.fields().size()) : type.columns())); Words words; words.push_back(this->getType(type)); words.push_back(Word::Result()); for (SpvId value : values) { words.push_back(value); } return this->writeInstruction(SpvOpConstantComposite, words, fConstantBuffer); } bool SPIRVCodeGenerator::toConstants(SpvId value, TArray* constants) { Instruction* instr = fSpvIdCache.find(value); if (!instr) { return false; } switch (instr->fOp) { case SpvOpConstant: case SpvOpConstantTrue: case SpvOpConstantFalse: constants->push_back(value); return true; case SpvOpConstantComposite: // OpConstantComposite ResultType ResultID Constituents... // Start at word 2 to skip past ResultType and ResultID. for (int i = 2; i < instr->fWords.size(); ++i) { if (!this->toConstants(instr->fWords[i], constants)) { return false; } } return true; default: return false; } } bool SPIRVCodeGenerator::toConstants(SkSpan values, TArray* constants) { for (SpvId value : values) { if (!this->toConstants(value, constants)) { return false; } } return true; } SpvId SPIRVCodeGenerator::writeOpCompositeConstruct(const Type& type, const TArray& values, OutputStream& out) { // If this is a vector composed entirely of literals, write a constant-composite instead. if (type.isVector()) { STArray<4, SpvId> constants; if (this->toConstants(SkSpan(values), &constants)) { // Create a vector from literals. return this->writeOpConstantComposite(type, constants); } } // If this is a matrix composed entirely of literals, constant-composite them instead. if (type.isMatrix()) { STArray<16, SpvId> constants; if (this->toConstants(SkSpan(values), &constants)) { // Create each matrix column. SkASSERT(type.isMatrix()); const Type& vecType = type.columnType(fContext); STArray<4, SpvId> columnIDs; for (int index=0; index < type.columns(); ++index) { STArray<4, SpvId> columnConstants(&constants[index * type.rows()], type.rows()); columnIDs.push_back(this->writeOpConstantComposite(vecType, columnConstants)); } // Compose the matrix from its columns. return this->writeOpConstantComposite(type, columnIDs); } } Words words; words.push_back(this->getType(type)); words.push_back(Word::Result(type)); for (SpvId value : values) { words.push_back(value); } return this->writeInstruction(SpvOpCompositeConstruct, words, out); } SPIRVCodeGenerator::Instruction* SPIRVCodeGenerator::resultTypeForInstruction( const Instruction& instr) { // This list should contain every op that we cache that has a result and result-type. // (If one is missing, we will not find some optimization opportunities.) // Generally, the result type of an op is in the 0th word, but I'm not sure if this is // universally true, so it's configurable on a per-op basis. int resultTypeWord; switch (instr.fOp) { case SpvOpConstant: case SpvOpConstantTrue: case SpvOpConstantFalse: case SpvOpConstantComposite: case SpvOpCompositeConstruct: case SpvOpCompositeExtract: case SpvOpLoad: resultTypeWord = 0; break; default: return nullptr; } Instruction* typeInstr = fSpvIdCache.find(instr.fWords[resultTypeWord]); SkASSERT(typeInstr); return typeInstr; } int SPIRVCodeGenerator::numComponentsForVecInstruction(const Instruction& instr) { // If an instruction is in the op cache, its type should be as well. Instruction* typeInstr = this->resultTypeForInstruction(instr); SkASSERT(typeInstr); SkASSERT(typeInstr->fOp == SpvOpTypeVector || typeInstr->fOp == SpvOpTypeFloat || typeInstr->fOp == SpvOpTypeInt || typeInstr->fOp == SpvOpTypeBool); // For vectors, extract their column count. Scalars have one component by definition. // SpvOpTypeVector ResultID ComponentType NumComponents return (typeInstr->fOp == SpvOpTypeVector) ? typeInstr->fWords[2] : 1; } SpvId SPIRVCodeGenerator::toComponent(SpvId id, int component) { Instruction* instr = fSpvIdCache.find(id); if (!instr) { return NA; } if (instr->fOp == SpvOpConstantComposite) { // SpvOpConstantComposite ResultType ResultID [components...] // Add 2 to the component index to skip past ResultType and ResultID. return instr->fWords[2 + component]; } if (instr->fOp == SpvOpCompositeConstruct) { // SpvOpCompositeConstruct ResultType ResultID [components...] // Vectors have special rules; check to see if we are composing a vector. Instruction* composedType = fSpvIdCache.find(instr->fWords[0]); SkASSERT(composedType); // When composing a non-vector, each instruction word maps 1:1 to the component index. // We can just extract out the associated component directly. if (composedType->fOp != SpvOpTypeVector) { return instr->fWords[2 + component]; } // When composing a vector, components can be either scalars or vectors. // This means we need to check the op type on each component. (+2 to skip ResultType/Result) for (int index = 2; index < instr->fWords.size(); ++index) { int32_t currentWord = instr->fWords[index]; // Retrieve the sub-instruction pointed to by OpCompositeConstruct. Instruction* subinstr = fSpvIdCache.find(currentWord); if (!subinstr) { return NA; } // If this subinstruction contains the component we're looking for... int numComponents = this->numComponentsForVecInstruction(*subinstr); if (component < numComponents) { if (numComponents == 1) { // ... it's a scalar. Return it. SkASSERT(component == 0); return currentWord; } else { // ... it's a vector. Recurse into it. return this->toComponent(currentWord, component); } } // This sub-instruction doesn't contain our component. Keep walking forward. component -= numComponents; } SkDEBUGFAIL("component index goes past the end of this composite value"); return NA; } return NA; } SpvId SPIRVCodeGenerator::writeOpCompositeExtract(const Type& type, SpvId base, int component, OutputStream& out) { // If the base op is a composite, we can extract from it directly. SpvId result = this->toComponent(base, component); if (result != NA) { return result; } return this->writeInstruction( SpvOpCompositeExtract, {this->getType(type), Word::Result(type), base, Word::Number(component)}, out); } SpvId SPIRVCodeGenerator::writeOpCompositeExtract(const Type& type, SpvId base, int componentA, int componentB, OutputStream& out) { // If the base op is a composite, we can extract from it directly. SpvId result = this->toComponent(base, componentA); if (result != NA) { return this->writeOpCompositeExtract(type, result, componentB, out); } return this->writeInstruction(SpvOpCompositeExtract, {this->getType(type), Word::Result(type), base, Word::Number(componentA), Word::Number(componentB)}, out); } void SPIRVCodeGenerator::writeCapabilities(OutputStream& out) { for (uint64_t i = 0, bit = 1; i <= kLast_Capability; i++, bit <<= 1) { if (fCapabilities & bit) { this->writeInstruction(SpvOpCapability, (SpvId) i, out); } } this->writeInstruction(SpvOpCapability, SpvCapabilityShader, out); } SpvId SPIRVCodeGenerator::nextId(const Type* type) { return this->nextId(type && type->hasPrecision() && !type->highPrecision() ? Precision::kRelaxed : Precision::kDefault); } SpvId SPIRVCodeGenerator::nextId(Precision precision) { if (precision == Precision::kRelaxed && !fProgram.fConfig->fSettings.fForceHighPrecision) { this->writeInstruction(SpvOpDecorate, fIdCount, SpvDecorationRelaxedPrecision, fDecorationBuffer); } return fIdCount++; } SpvId SPIRVCodeGenerator::writeStruct(const Type& type, const MemoryLayout& memoryLayout) { // If we've already written out this struct, return its existing SpvId. if (SpvId* cachedStructId = fStructMap.find(&type)) { return *cachedStructId; } // Write all of the field types first, so we don't inadvertently write them while we're in the // middle of writing the struct instruction. Words words; words.push_back(Word::UniqueResult()); for (const auto& f : type.fields()) { words.push_back(this->getType(*f.fType, f.fLayout, memoryLayout)); } SpvId resultId = this->writeInstruction(SpvOpTypeStruct, words, fConstantBuffer); this->writeInstruction(SpvOpName, resultId, type.name(), fNameBuffer); fStructMap.set(&type, resultId); size_t offset = 0; for (int32_t i = 0; i < (int32_t) type.fields().size(); i++) { const Field& field = type.fields()[i]; if (!memoryLayout.isSupported(*field.fType)) { fContext.fErrors->error(type.fPosition, "type '" + field.fType->displayName() + "' is not permitted here"); return resultId; } size_t size = memoryLayout.size(*field.fType); size_t alignment = memoryLayout.alignment(*field.fType); const Layout& fieldLayout = field.fLayout; if (fieldLayout.fOffset >= 0) { if (fieldLayout.fOffset < (int) offset) { fContext.fErrors->error(field.fPosition, "offset of field '" + std::string(field.fName) + "' must be at least " + std::to_string(offset)); } if (fieldLayout.fOffset % alignment) { fContext.fErrors->error(field.fPosition, "offset of field '" + std::string(field.fName) + "' must be a multiple of " + std::to_string(alignment)); } offset = fieldLayout.fOffset; } else { size_t mod = offset % alignment; if (mod) { offset += alignment - mod; } } this->writeInstruction(SpvOpMemberName, resultId, i, field.fName, fNameBuffer); this->writeFieldLayout(fieldLayout, resultId, i); if (field.fLayout.fBuiltin < 0) { this->writeInstruction(SpvOpMemberDecorate, resultId, (SpvId) i, SpvDecorationOffset, (SpvId) offset, fDecorationBuffer); } if (field.fType->isMatrix()) { this->writeInstruction(SpvOpMemberDecorate, resultId, i, SpvDecorationColMajor, fDecorationBuffer); this->writeInstruction(SpvOpMemberDecorate, resultId, i, SpvDecorationMatrixStride, (SpvId) memoryLayout.stride(*field.fType), fDecorationBuffer); } if (!field.fType->highPrecision()) { this->writeInstruction(SpvOpMemberDecorate, resultId, (SpvId) i, SpvDecorationRelaxedPrecision, fDecorationBuffer); } offset += size; if ((field.fType->isArray() || field.fType->isStruct()) && offset % alignment != 0) { offset += alignment - offset % alignment; } } return resultId; } SpvId SPIRVCodeGenerator::getType(const Type& type) { return this->getType(type, kDefaultTypeLayout, fDefaultMemoryLayout); } static SpvImageFormat layout_flags_to_image_format(LayoutFlags flags) { flags &= LayoutFlag::kAllPixelFormats; switch (flags.value()) { case (int)LayoutFlag::kRGBA8: return SpvImageFormatRgba8; case (int)LayoutFlag::kRGBA32F: return SpvImageFormatRgba32f; case (int)LayoutFlag::kR32F: return SpvImageFormatR32f; default: return SpvImageFormatUnknown; } SkUNREACHABLE; } SpvId SPIRVCodeGenerator::getType(const Type& rawType, const Layout& typeLayout, const MemoryLayout& memoryLayout) { const Type* type = &rawType; switch (type->typeKind()) { case Type::TypeKind::kVoid: { return this->writeInstruction(SpvOpTypeVoid, Words{Word::Result()}, fConstantBuffer); } case Type::TypeKind::kScalar: case Type::TypeKind::kLiteral: { if (type->isBoolean()) { return this->writeInstruction(SpvOpTypeBool, {Word::Result()}, fConstantBuffer); } if (type->isSigned()) { return this->writeInstruction( SpvOpTypeInt, Words{Word::Result(), Word::Number(32), Word::Number(1)}, fConstantBuffer); } if (type->isUnsigned()) { return this->writeInstruction( SpvOpTypeInt, Words{Word::Result(), Word::Number(32), Word::Number(0)}, fConstantBuffer); } if (type->isFloat()) { return this->writeInstruction( SpvOpTypeFloat, Words{Word::Result(), Word::Number(32)}, fConstantBuffer); } SkDEBUGFAILF("unrecognized scalar type '%s'", type->description().c_str()); return NA; } case Type::TypeKind::kVector: { SpvId scalarTypeId = this->getType(type->componentType(), typeLayout, memoryLayout); return this->writeInstruction( SpvOpTypeVector, Words{Word::Result(), scalarTypeId, Word::Number(type->columns())}, fConstantBuffer); } case Type::TypeKind::kMatrix: { SpvId vectorTypeId = this->getType(IndexExpression::IndexType(fContext, *type), typeLayout, memoryLayout); return this->writeInstruction( SpvOpTypeMatrix, Words{Word::Result(), vectorTypeId, Word::Number(type->columns())}, fConstantBuffer); } case Type::TypeKind::kArray: { const MemoryLayout arrayMemoryLayout = fCaps.fForceStd430ArrayLayout ? MemoryLayout(MemoryLayout::Standard::k430) : memoryLayout; if (!arrayMemoryLayout.isSupported(*type)) { fContext.fErrors->error(type->fPosition, "type '" + type->displayName() + "' is not permitted here"); return NA; } size_t stride = arrayMemoryLayout.stride(*type); SpvId typeId = this->getType(type->componentType(), typeLayout, arrayMemoryLayout); SpvId result = NA; if (type->isUnsizedArray()) { result = this->writeInstruction(SpvOpTypeRuntimeArray, Words{Word::KeyedResult(stride), typeId}, fConstantBuffer); } else { SpvId countId = this->writeLiteral(type->columns(), *fContext.fTypes.fInt); result = this->writeInstruction(SpvOpTypeArray, Words{Word::KeyedResult(stride), typeId, countId}, fConstantBuffer); } this->writeInstruction(SpvOpDecorate, {result, SpvDecorationArrayStride, Word::Number(stride)}, fDecorationBuffer); return result; } case Type::TypeKind::kStruct: { return this->writeStruct(*type, memoryLayout); } case Type::TypeKind::kSeparateSampler: { return this->writeInstruction(SpvOpTypeSampler, Words{Word::Result()}, fConstantBuffer); } case Type::TypeKind::kSampler: { if (SpvDimBuffer == type->dimensions()) { fCapabilities |= 1ULL << SpvCapabilitySampledBuffer; } SpvId imageTypeId = this->getType(type->textureType(), typeLayout, memoryLayout); return this->writeInstruction(SpvOpTypeSampledImage, Words{Word::Result(), imageTypeId}, fConstantBuffer); } case Type::TypeKind::kTexture: { SpvId floatTypeId = this->getType(*fContext.fTypes.fFloat, kDefaultTypeLayout, memoryLayout); bool sampled = (type->textureAccess() == Type::TextureAccess::kSample); SpvImageFormat format = (!sampled && type->dimensions() != SpvDimSubpassData) ? layout_flags_to_image_format(typeLayout.fFlags) : SpvImageFormatUnknown; return this->writeInstruction(SpvOpTypeImage, Words{Word::Result(), floatTypeId, Word::Number(type->dimensions()), Word::Number(type->isDepth()), Word::Number(type->isArrayedTexture()), Word::Number(type->isMultisampled()), Word::Number(sampled ? 1 : 2), format}, fConstantBuffer); } case Type::TypeKind::kAtomic: { // SkSL currently only supports the atomicUint type. SkASSERT(type->matches(*fContext.fTypes.fAtomicUInt)); // SPIR-V doesn't have atomic types. Rather, it allows atomic operations on primitive // types. The SPIR-V type of an SkSL atomic is simply the underlying type. return this->writeInstruction(SpvOpTypeInt, Words{Word::Result(), Word::Number(32), Word::Number(0)}, fConstantBuffer); } default: { SkDEBUGFAILF("invalid type: %s", type->description().c_str()); return NA; } } } SpvId SPIRVCodeGenerator::getFunctionType(const FunctionDeclaration& function) { Words words; words.push_back(Word::Result()); words.push_back(this->getType(function.returnType())); for (const Variable* parameter : function.parameters()) { bool paramIsSpecialized = fActiveSpecialization && fActiveSpecialization->find(parameter); if (fUseTextureSamplerPairs && parameter->type().isSampler()) { words.push_back(this->getFunctionParameterType(parameter->type().textureType(), parameter->layout())); if (!paramIsSpecialized) { words.push_back(this->getFunctionParameterType(*fContext.fTypes.fSampler, kDefaultTypeLayout)); } } else if (!paramIsSpecialized) { words.push_back(this->getFunctionParameterType(parameter->type(), parameter->layout())); } } return this->writeInstruction(SpvOpTypeFunction, words, fConstantBuffer); } SpvId SPIRVCodeGenerator::getFunctionParameterType(const Type& parameterType, const Layout& parameterLayout) { // glslang treats all function arguments as pointers whether they need to be or // not. I was initially puzzled by this until I ran bizarre failures with certain // patterns of function calls and control constructs, as exemplified by this minimal // failure case: // // void sphere(float x) { // } // // void map() { // sphere(1.0); // } // // void main() { // for (int i = 0; i < 1; i++) { // map(); // } // } // // As of this writing, compiling this in the "obvious" way (with sphere taking a float) // crashes. Making it take a float* and storing the argument in a temporary variable, // as glslang does, fixes it. // // The consensus among shader compiler authors seems to be that GPU driver generally don't // handle value-based parameters consistently. It is highly likely that they fit their // implementations to conform to glslang. We take care to do so ourselves. // // Our implementation first stores every parameter value into a function storage-class pointer // before calling a function. The exception is for opaque handle types (samplers and textures) // which must be stored in a pointer with UniformConstant storage-class. This prevents // unnecessary temporaries (becuase opaque handles are always rooted in a pointer variable), // matches glslang's behavior, and translates into WGSL more easily when targeting Dawn. StorageClass storageClass; if (parameterType.typeKind() == Type::TypeKind::kSampler || parameterType.typeKind() == Type::TypeKind::kSeparateSampler || parameterType.typeKind() == Type::TypeKind::kTexture) { storageClass = StorageClass::kUniformConstant; } else { storageClass = StorageClass::kFunction; } return this->getPointerType(parameterType, parameterLayout, this->memoryLayoutForStorageClass(storageClass), storageClass); } SpvId SPIRVCodeGenerator::getPointerType(const Type& type, StorageClass storageClass) { return this->getPointerType(type, kDefaultTypeLayout, this->memoryLayoutForStorageClass(storageClass), storageClass); } SpvId SPIRVCodeGenerator::getPointerType(const Type& type, const Layout& typeLayout, const MemoryLayout& memoryLayout, StorageClass storageClass) { return this->writeInstruction(SpvOpTypePointer, Words{Word::Result(), Word::Number(get_storage_class_spv_id(storageClass)), this->getType(type, typeLayout, memoryLayout)}, fConstantBuffer); } SpvId SPIRVCodeGenerator::writeExpression(const Expression& expr, OutputStream& out) { switch (expr.kind()) { case Expression::Kind::kBinary: return this->writeBinaryExpression(expr.as(), out); case Expression::Kind::kConstructorArrayCast: return this->writeExpression(*expr.as().argument(), out); case Expression::Kind::kConstructorArray: case Expression::Kind::kConstructorStruct: return this->writeCompositeConstructor(expr.asAnyConstructor(), out); case Expression::Kind::kConstructorDiagonalMatrix: return this->writeConstructorDiagonalMatrix(expr.as(), out); case Expression::Kind::kConstructorMatrixResize: return this->writeConstructorMatrixResize(expr.as(), out); case Expression::Kind::kConstructorScalarCast: return this->writeConstructorScalarCast(expr.as(), out); case Expression::Kind::kConstructorSplat: return this->writeConstructorSplat(expr.as(), out); case Expression::Kind::kConstructorCompound: return this->writeConstructorCompound(expr.as(), out); case Expression::Kind::kConstructorCompoundCast: return this->writeConstructorCompoundCast(expr.as(), out); case Expression::Kind::kEmpty: return NA; case Expression::Kind::kFieldAccess: return this->writeFieldAccess(expr.as(), out); case Expression::Kind::kFunctionCall: return this->writeFunctionCall(expr.as(), out); case Expression::Kind::kLiteral: return this->writeLiteral(expr.as()); case Expression::Kind::kPrefix: return this->writePrefixExpression(expr.as(), out); case Expression::Kind::kPostfix: return this->writePostfixExpression(expr.as(), out); case Expression::Kind::kSwizzle: return this->writeSwizzle(expr.as(), out); case Expression::Kind::kVariableReference: return this->writeVariableReference(expr.as(), out); case Expression::Kind::kTernary: return this->writeTernaryExpression(expr.as(), out); case Expression::Kind::kIndex: return this->writeIndexExpression(expr.as(), out); case Expression::Kind::kSetting: return this->writeExpression(*expr.as().toLiteral(fCaps), out); default: SkDEBUGFAILF("unsupported expression: %s", expr.description().c_str()); break; } return NA; } SpvId SPIRVCodeGenerator::writeIntrinsicCall(const FunctionCall& c, OutputStream& out) { const FunctionDeclaration& function = c.function(); Intrinsic intrinsic = this->getIntrinsic(function.intrinsicKind()); if (intrinsic.opKind == kInvalid_IntrinsicOpcodeKind) { fContext.fErrors->error(c.fPosition, "unsupported intrinsic '" + function.description() + "'"); return NA; } const ExpressionArray& arguments = c.arguments(); int32_t intrinsicId = intrinsic.floatOp; if (!arguments.empty()) { const Type& type = arguments[0]->type(); if (intrinsic.opKind == kSpecial_IntrinsicOpcodeKind) { // Keep the default float op. } else { intrinsicId = pick_by_type(type, intrinsic.floatOp, intrinsic.signedOp, intrinsic.unsignedOp, intrinsic.boolOp); } } switch (intrinsic.opKind) { case kGLSL_STD_450_IntrinsicOpcodeKind: { SpvId result = this->nextId(&c.type()); TArray argumentIds; argumentIds.reserve_exact(arguments.size()); std::vector tempVars; for (int i = 0; i < arguments.size(); i++) { this->writeFunctionCallArgument(argumentIds, c, i, &tempVars, /*specializedParams=*/nullptr, out); } this->writeOpCode(SpvOpExtInst, 5 + (int32_t) argumentIds.size(), out); this->writeWord(this->getType(c.type()), out); this->writeWord(result, out); this->writeWord(fGLSLExtendedInstructions, out); this->writeWord(intrinsicId, out); for (SpvId id : argumentIds) { this->writeWord(id, out); } this->copyBackTempVars(tempVars, out); return result; } case kSPIRV_IntrinsicOpcodeKind: { // GLSL supports dot(float, float), but SPIR-V does not. Convert it to FMul if (intrinsicId == SpvOpDot && arguments[0]->type().isScalar()) { intrinsicId = SpvOpFMul; } SpvId result = this->nextId(&c.type()); TArray argumentIds; argumentIds.reserve_exact(arguments.size()); std::vector tempVars; for (int i = 0; i < arguments.size(); i++) { this->writeFunctionCallArgument(argumentIds, c, i, &tempVars, /*specializedParams=*/nullptr, out); } if (!c.type().isVoid()) { this->writeOpCode((SpvOp_) intrinsicId, 3 + (int32_t) arguments.size(), out); this->writeWord(this->getType(c.type()), out); this->writeWord(result, out); } else { this->writeOpCode((SpvOp_) intrinsicId, 1 + (int32_t) arguments.size(), out); } for (SpvId id : argumentIds) { this->writeWord(id, out); } this->copyBackTempVars(tempVars, out); return result; } case kSpecial_IntrinsicOpcodeKind: return this->writeSpecialIntrinsic(c, (SpecialIntrinsic) intrinsicId, out); default: fContext.fErrors->error(c.fPosition, "unsupported intrinsic '" + function.description() + "'"); return NA; } } SpvId SPIRVCodeGenerator::vectorize(const Expression& arg, int vectorSize, OutputStream& out) { SkASSERT(vectorSize >= 1 && vectorSize <= 4); const Type& argType = arg.type(); if (argType.isScalar() && vectorSize > 1) { SpvId argID = this->writeExpression(arg, out); return this->splat(argType.toCompound(fContext, vectorSize, /*rows=*/1), argID, out); } SkASSERT(vectorSize == argType.columns()); return this->writeExpression(arg, out); } TArray SPIRVCodeGenerator::vectorize(const ExpressionArray& args, OutputStream& out) { int vectorSize = 1; for (const auto& a : args) { if (a->type().isVector()) { if (vectorSize > 1) { SkASSERT(a->type().columns() == vectorSize); } else { vectorSize = a->type().columns(); } } } TArray result; result.reserve_exact(args.size()); for (const auto& arg : args) { result.push_back(this->vectorize(*arg, vectorSize, out)); } return result; } void SPIRVCodeGenerator::writeGLSLExtendedInstruction(const Type& type, SpvId id, SpvId floatInst, SpvId signedInst, SpvId unsignedInst, const TArray& args, OutputStream& out) { this->writeOpCode(SpvOpExtInst, 5 + args.size(), out); this->writeWord(this->getType(type), out); this->writeWord(id, out); this->writeWord(fGLSLExtendedInstructions, out); this->writeWord(pick_by_type(type, floatInst, signedInst, unsignedInst, NA), out); for (SpvId a : args) { this->writeWord(a, out); } } SpvId SPIRVCodeGenerator::writeSpecialIntrinsic(const FunctionCall& c, SpecialIntrinsic kind, OutputStream& out) { const ExpressionArray& arguments = c.arguments(); const Type& callType = c.type(); SpvId result = this->nextId(nullptr); switch (kind) { case kAtan_SpecialIntrinsic: { STArray<2, SpvId> argumentIds; for (const std::unique_ptr& arg : arguments) { argumentIds.push_back(this->writeExpression(*arg, out)); } this->writeOpCode(SpvOpExtInst, 5 + (int32_t) argumentIds.size(), out); this->writeWord(this->getType(callType), out); this->writeWord(result, out); this->writeWord(fGLSLExtendedInstructions, out); this->writeWord(argumentIds.size() == 2 ? GLSLstd450Atan2 : GLSLstd450Atan, out); for (SpvId id : argumentIds) { this->writeWord(id, out); } break; } case kSampledImage_SpecialIntrinsic: { SkASSERT(arguments.size() == 2); SpvId img = this->writeExpression(*arguments[0], out); SpvId sampler = this->writeExpression(*arguments[1], out); this->writeInstruction(SpvOpSampledImage, this->getType(callType), result, img, sampler, out); break; } case kSubpassLoad_SpecialIntrinsic: { SpvId img = this->writeExpression(*arguments[0], out); ExpressionArray args; args.reserve_exact(2); args.push_back(Literal::MakeInt(fContext, Position(), /*value=*/0)); args.push_back(Literal::MakeInt(fContext, Position(), /*value=*/0)); ConstructorCompound ctor(Position(), *fContext.fTypes.fInt2, std::move(args)); SpvId coords = this->writeExpression(ctor, out); if (arguments.size() == 1) { this->writeInstruction(SpvOpImageRead, this->getType(callType), result, img, coords, out); } else { SkASSERT(arguments.size() == 2); SpvId sample = this->writeExpression(*arguments[1], out); this->writeInstruction(SpvOpImageRead, this->getType(callType), result, img, coords, SpvImageOperandsSampleMask, sample, out); } break; } case kTexture_SpecialIntrinsic: { SpvOp_ op = SpvOpImageSampleImplicitLod; const Type& arg1Type = arguments[1]->type(); switch (arguments[0]->type().dimensions()) { case SpvDim1D: if (arg1Type.matches(*fContext.fTypes.fFloat2)) { op = SpvOpImageSampleProjImplicitLod; } else { SkASSERT(arg1Type.matches(*fContext.fTypes.fFloat)); } break; case SpvDim2D: if (arg1Type.matches(*fContext.fTypes.fFloat3)) { op = SpvOpImageSampleProjImplicitLod; } else { SkASSERT(arg1Type.matches(*fContext.fTypes.fFloat2)); } break; case SpvDim3D: if (arg1Type.matches(*fContext.fTypes.fFloat4)) { op = SpvOpImageSampleProjImplicitLod; } else { SkASSERT(arg1Type.matches(*fContext.fTypes.fFloat3)); } break; case SpvDimCube: // fall through case SpvDimRect: // fall through case SpvDimBuffer: // fall through case SpvDimSubpassData: break; } SpvId type = this->getType(callType); SpvId sampler = this->writeExpression(*arguments[0], out); SpvId uv = this->writeExpression(*arguments[1], out); if (arguments.size() == 3) { this->writeInstruction(op, type, result, sampler, uv, SpvImageOperandsBiasMask, this->writeExpression(*arguments[2], out), out); } else { SkASSERT(arguments.size() == 2); if (fProgram.fConfig->fSettings.fSharpenTextures) { SpvId lodBias = this->writeLiteral(kSharpenTexturesBias, *fContext.fTypes.fFloat); this->writeInstruction(op, type, result, sampler, uv, SpvImageOperandsBiasMask, lodBias, out); } else { this->writeInstruction(op, type, result, sampler, uv, out); } } break; } case kTextureGrad_SpecialIntrinsic: { SpvOp_ op = SpvOpImageSampleExplicitLod; SkASSERT(arguments.size() == 4); SkASSERT(arguments[0]->type().dimensions() == SpvDim2D); SkASSERT(arguments[1]->type().matches(*fContext.fTypes.fFloat2)); SkASSERT(arguments[2]->type().matches(*fContext.fTypes.fFloat2)); SkASSERT(arguments[3]->type().matches(*fContext.fTypes.fFloat2)); SpvId type = this->getType(callType); SpvId sampler = this->writeExpression(*arguments[0], out); SpvId uv = this->writeExpression(*arguments[1], out); SpvId dPdx = this->writeExpression(*arguments[2], out); SpvId dPdy = this->writeExpression(*arguments[3], out); this->writeInstruction(op, type, result, sampler, uv, SpvImageOperandsGradMask, dPdx, dPdy, out); break; } case kTextureLod_SpecialIntrinsic: { SpvOp_ op = SpvOpImageSampleExplicitLod; SkASSERT(arguments.size() == 3); SkASSERT(arguments[0]->type().dimensions() == SpvDim2D); SkASSERT(arguments[2]->type().matches(*fContext.fTypes.fFloat)); const Type& arg1Type = arguments[1]->type(); if (arg1Type.matches(*fContext.fTypes.fFloat3)) { op = SpvOpImageSampleProjExplicitLod; } else { SkASSERT(arg1Type.matches(*fContext.fTypes.fFloat2)); } SpvId type = this->getType(callType); SpvId sampler = this->writeExpression(*arguments[0], out); SpvId uv = this->writeExpression(*arguments[1], out); this->writeInstruction(op, type, result, sampler, uv, SpvImageOperandsLodMask, this->writeExpression(*arguments[2], out), out); break; } case kTextureRead_SpecialIntrinsic: { SkASSERT(arguments[0]->type().dimensions() == SpvDim2D); SkASSERT(arguments[1]->type().matches(*fContext.fTypes.fUInt2)); SpvId type = this->getType(callType); SpvId image = this->writeExpression(*arguments[0], out); SpvId coord = this->writeExpression(*arguments[1], out); const Type& arg0Type = arguments[0]->type(); SkASSERT(arg0Type.typeKind() == Type::TypeKind::kTexture); switch (arg0Type.textureAccess()) { case Type::TextureAccess::kSample: this->writeInstruction(SpvOpImageFetch, type, result, image, coord, SpvImageOperandsLodMask, this->writeOpConstant(*fContext.fTypes.fInt, 0), out); break; case Type::TextureAccess::kRead: case Type::TextureAccess::kReadWrite: this->writeInstruction(SpvOpImageRead, type, result, image, coord, out); break; case Type::TextureAccess::kWrite: default: SkDEBUGFAIL("'textureRead' called on writeonly texture type"); break; } break; } case kTextureWrite_SpecialIntrinsic: { SkASSERT(arguments[0]->type().dimensions() == SpvDim2D); SkASSERT(arguments[1]->type().matches(*fContext.fTypes.fUInt2)); SkASSERT(arguments[2]->type().matches(*fContext.fTypes.fHalf4)); SpvId image = this->writeExpression(*arguments[0], out); SpvId coord = this->writeExpression(*arguments[1], out); SpvId texel = this->writeExpression(*arguments[2], out); this->writeInstruction(SpvOpImageWrite, image, coord, texel, out); break; } case kTextureWidth_SpecialIntrinsic: case kTextureHeight_SpecialIntrinsic: { SkASSERT(arguments[0]->type().dimensions() == SpvDim2D); fCapabilities |= 1ULL << SpvCapabilityImageQuery; SpvId dimsType = this->getType(*fContext.fTypes.fUInt2); SpvId dims = this->nextId(nullptr); SpvId image = this->writeExpression(*arguments[0], out); this->writeInstruction(SpvOpImageQuerySize, dimsType, dims, image, out); SpvId type = this->getType(callType); int32_t index = (kind == kTextureWidth_SpecialIntrinsic) ? 0 : 1; this->writeInstruction(SpvOpCompositeExtract, type, result, dims, index, out); break; } case kMod_SpecialIntrinsic: { TArray args = this->vectorize(arguments, out); SkASSERT(args.size() == 2); const Type& operandType = arguments[0]->type(); SpvOp_ op = pick_by_type(operandType, SpvOpFMod, SpvOpSMod, SpvOpUMod, SpvOpUndef); SkASSERT(op != SpvOpUndef); this->writeOpCode(op, 5, out); this->writeWord(this->getType(operandType), out); this->writeWord(result, out); this->writeWord(args[0], out); this->writeWord(args[1], out); break; } case kDFdy_SpecialIntrinsic: { SpvId fn = this->writeExpression(*arguments[0], out); this->writeOpCode(SpvOpDPdy, 4, out); this->writeWord(this->getType(callType), out); this->writeWord(result, out); this->writeWord(fn, out); if (!fProgram.fConfig->fSettings.fForceNoRTFlip) { this->addRTFlipUniform(c.fPosition); ComponentArray componentArray; for (int index = 0; index < callType.columns(); ++index) { componentArray.push_back(SwizzleComponent::Y); } SpvId rtFlipY = this->writeSwizzle(*this->identifier(SKSL_RTFLIP_NAME), componentArray, out); SpvId flipped = this->nextId(&callType); this->writeInstruction(SpvOpFMul, this->getType(callType), flipped, result, rtFlipY, out); result = flipped; } break; } case kClamp_SpecialIntrinsic: { TArray args = this->vectorize(arguments, out); SkASSERT(args.size() == 3); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FClamp, GLSLstd450SClamp, GLSLstd450UClamp, args, out); break; } case kMax_SpecialIntrinsic: { TArray args = this->vectorize(arguments, out); SkASSERT(args.size() == 2); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FMax, GLSLstd450SMax, GLSLstd450UMax, args, out); break; } case kMin_SpecialIntrinsic: { TArray args = this->vectorize(arguments, out); SkASSERT(args.size() == 2); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FMin, GLSLstd450SMin, GLSLstd450UMin, args, out); break; } case kMix_SpecialIntrinsic: { TArray args = this->vectorize(arguments, out); SkASSERT(args.size() == 3); if (arguments[2]->type().componentType().isBoolean()) { // Use OpSelect to implement Boolean mix(). SpvId falseId = this->writeExpression(*arguments[0], out); SpvId trueId = this->writeExpression(*arguments[1], out); SpvId conditionId = this->writeExpression(*arguments[2], out); this->writeInstruction(SpvOpSelect, this->getType(arguments[0]->type()), result, conditionId, trueId, falseId, out); } else { this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FMix, SpvOpUndef, SpvOpUndef, args, out); } break; } case kSaturate_SpecialIntrinsic: { SkASSERT(arguments.size() == 1); int width = arguments[0]->type().columns(); STArray<3, SpvId> spvArgs{ this->vectorize(*arguments[0], width, out), this->vectorize(*Literal::MakeFloat(fContext, Position(), /*value=*/0), width, out), this->vectorize(*Literal::MakeFloat(fContext, Position(), /*value=*/1), width, out), }; this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FClamp, GLSLstd450SClamp, GLSLstd450UClamp, spvArgs, out); break; } case kSmoothStep_SpecialIntrinsic: { TArray args = this->vectorize(arguments, out); SkASSERT(args.size() == 3); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450SmoothStep, SpvOpUndef, SpvOpUndef, args, out); break; } case kStep_SpecialIntrinsic: { TArray args = this->vectorize(arguments, out); SkASSERT(args.size() == 2); this->writeGLSLExtendedInstruction(callType, result, GLSLstd450Step, SpvOpUndef, SpvOpUndef, args, out); break; } case kMatrixCompMult_SpecialIntrinsic: { SkASSERT(arguments.size() == 2); SpvId lhs = this->writeExpression(*arguments[0], out); SpvId rhs = this->writeExpression(*arguments[1], out); result = this->writeComponentwiseMatrixBinary(callType, lhs, rhs, SpvOpFMul, out); break; } case kAtomicAdd_SpecialIntrinsic: case kAtomicLoad_SpecialIntrinsic: case kAtomicStore_SpecialIntrinsic: result = this->writeAtomicIntrinsic(c, kind, result, out); break; case kStorageBarrier_SpecialIntrinsic: case kWorkgroupBarrier_SpecialIntrinsic: { // Both barrier types operate in the workgroup execution and memory scope and differ // only in memory semantics. storageBarrier() is not a device-scope barrier. SpvId scopeId = this->writeOpConstant(*fContext.fTypes.fUInt, (int32_t)SpvScopeWorkgroup); int32_t memSemMask = (kind == kStorageBarrier_SpecialIntrinsic) ? SpvMemorySemanticsAcquireReleaseMask | SpvMemorySemanticsUniformMemoryMask : SpvMemorySemanticsAcquireReleaseMask | SpvMemorySemanticsWorkgroupMemoryMask; SpvId memorySemanticsId = this->writeOpConstant(*fContext.fTypes.fUInt, memSemMask); this->writeInstruction(SpvOpControlBarrier, scopeId, // execution scope scopeId, // memory scope memorySemanticsId, out); break; } } return result; } SpvId SPIRVCodeGenerator::writeAtomicIntrinsic(const FunctionCall& c, SpecialIntrinsic kind, SpvId resultId, OutputStream& out) { const ExpressionArray& arguments = c.arguments(); SkASSERT(!arguments.empty()); std::unique_ptr atomicPtr = this->getLValue(*arguments[0], out); SpvId atomicPtrId = atomicPtr->getPointer(); if (atomicPtrId == NA) { SkDEBUGFAILF("atomic intrinsic expected a pointer argument: %s", arguments[0]->description().c_str()); return NA; } SpvId memoryScopeId = NA; { // In SkSL, the atomicUint type can only be declared as a workgroup variable or SSBO block // member. The two memory scopes that these map to are "workgroup" and "device", // respectively. SpvScope memoryScope; switch (atomicPtr->storageClass()) { case StorageClass::kUniform: case StorageClass::kStorageBuffer: // We encode storage buffers in the uniform address space (with the BufferBlock // decorator). memoryScope = SpvScopeDevice; break; case StorageClass::kWorkgroup: memoryScope = SpvScopeWorkgroup; break; default: SkDEBUGFAILF("atomic argument has invalid storage class: %d", get_storage_class_spv_id(atomicPtr->storageClass())); return NA; } memoryScopeId = this->writeOpConstant(*fContext.fTypes.fUInt, (int32_t)memoryScope); } SpvId relaxedMemoryOrderId = this->writeOpConstant(*fContext.fTypes.fUInt, (int32_t)SpvMemorySemanticsMaskNone); switch (kind) { case kAtomicAdd_SpecialIntrinsic: SkASSERT(arguments.size() == 2); this->writeInstruction(SpvOpAtomicIAdd, this->getType(c.type()), resultId, atomicPtrId, memoryScopeId, relaxedMemoryOrderId, this->writeExpression(*arguments[1], out), out); break; case kAtomicLoad_SpecialIntrinsic: SkASSERT(arguments.size() == 1); this->writeInstruction(SpvOpAtomicLoad, this->getType(c.type()), resultId, atomicPtrId, memoryScopeId, relaxedMemoryOrderId, out); break; case kAtomicStore_SpecialIntrinsic: SkASSERT(arguments.size() == 2); this->writeInstruction(SpvOpAtomicStore, atomicPtrId, memoryScopeId, relaxedMemoryOrderId, this->writeExpression(*arguments[1], out), out); break; default: SkUNREACHABLE; } return resultId; } void SPIRVCodeGenerator::writeFunctionCallArgument(TArray& argumentList, const FunctionCall& call, int argIndex, std::vector* tempVars, const SkBitSet* specializedParams, OutputStream& out) { const FunctionDeclaration& funcDecl = call.function(); const Expression& arg = *call.arguments()[argIndex]; const Variable* param = funcDecl.parameters()[argIndex]; bool paramIsSpecialized = specializedParams && specializedParams->test(argIndex); ModifierFlags paramFlags = param->modifierFlags(); // Ignore the argument since it is specialized, if fUseTextureSamplerPairs is true and this // argument is a sampler, handle ignoring the sampler below when generating the texture and // sampler pair arguments. if (paramIsSpecialized && !(param->type().isSampler() && fUseTextureSamplerPairs)) { return; } if (arg.is() && (arg.type().typeKind() == Type::TypeKind::kSampler || arg.type().typeKind() == Type::TypeKind::kSeparateSampler || arg.type().typeKind() == Type::TypeKind::kTexture)) { // Opaque handle (sampler/texture) arguments are always declared as pointers but never // stored in intermediates when calling user-defined functions. // // The case for intrinsics (which take opaque arguments by value) is handled above just like // regular pointers. // // See getFunctionParameterType for further explanation. const Variable* var = arg.as().variable(); // In Dawn-mode the texture and sampler arguments are forwarded to the helper function. if (fUseTextureSamplerPairs && var->type().isSampler()) { if (const auto* p = fSynthesizedSamplerMap.find(var)) { SpvId* img = fVariableMap.find((*p)->fTexture.get()); SkASSERT(img); argumentList.push_back(*img); if (!paramIsSpecialized) { SpvId* sampler = fVariableMap.find((*p)->fSampler.get()); SkASSERT(sampler); argumentList.push_back(*sampler); } return; } SkDEBUGFAIL("sampler missing from fSynthesizedSamplerMap"); } SpvId* entry = fVariableMap.find(var); SkASSERTF(entry, "%s", arg.description().c_str()); argumentList.push_back(*entry); return; } SkASSERT(!paramIsSpecialized); // ID of temporary variable that we will use to hold this argument, or 0 if it is being // passed directly SpvId tmpVar = NA; // if we need a temporary var to store this argument, this is the value to store in the var SpvId tmpValueId = NA; if (is_out(paramFlags)) { std::unique_ptr lv = this->getLValue(arg, out); // We handle out params with a temp var that we copy back to the original variable at the // end of the call. GLSL guarantees that the original variable will be unchanged until the // end of the call, and also that out params are written back to their original variables in // a specific order (left-to-right), so it's unsafe to pass a pointer to the original value. if (is_in(paramFlags)) { tmpValueId = lv->load(out); } tmpVar = this->nextId(&arg.type()); tempVars->push_back(TempVar{tmpVar, &arg.type(), std::move(lv)}); } else if (funcDecl.isIntrinsic()) { // Unlike user function calls, non-out intrinsic arguments don't need pointer parameters. argumentList.push_back(this->writeExpression(arg, out)); return; } else { // We always use pointer parameters when calling user functions. // See getFunctionParameterType for further explanation. tmpValueId = this->writeExpression(arg, out); tmpVar = this->nextId(nullptr); } this->writeInstruction(SpvOpVariable, this->getPointerType(arg.type(), StorageClass::kFunction), tmpVar, SpvStorageClassFunction, fVariableBuffer); if (tmpValueId != NA) { this->writeOpStore(StorageClass::kFunction, tmpVar, tmpValueId, out); } argumentList.push_back(tmpVar); } void SPIRVCodeGenerator::copyBackTempVars(const std::vector& tempVars, OutputStream& out) { for (const TempVar& tempVar : tempVars) { SpvId load = this->nextId(tempVar.type); this->writeInstruction(SpvOpLoad, this->getType(*tempVar.type), load, tempVar.spvId, out); tempVar.lvalue->store(load, out); } } SpvId SPIRVCodeGenerator::writeFunctionCall(const FunctionCall& c, OutputStream& out) { // Handle intrinsics. const FunctionDeclaration& function = c.function(); if (function.isIntrinsic() && !function.definition()) { return this->writeIntrinsicCall(c, out); } // Look up this function (or its specialization, if any) in our map of function SpvIds. Analysis::SpecializationIndex specializationIndex = Analysis::FindSpecializationIndexForCall( c, fSpecializationInfo, fActiveSpecializationIndex); SpvId* entry = fFunctionMap.find({&function, specializationIndex}); if (!entry) { fContext.fErrors->error(c.fPosition, "function '" + function.description() + "' is not defined"); return NA; } // If we are calling a specialized function, we need to gather the specialized parameters // so we can remove them from the argument list. SkBitSet specializedParams = Analysis::FindSpecializedParametersForFunction(c.function(), fSpecializationInfo); // Temp variables are used to write back out-parameters after the function call is complete. const ExpressionArray& arguments = c.arguments(); std::vector tempVars; TArray argumentIds; argumentIds.reserve_exact(arguments.size()); for (int i = 0; i < arguments.size(); i++) { this->writeFunctionCallArgument(argumentIds, c, i, &tempVars, &specializedParams, out); } SpvId result = this->nextId(nullptr); this->writeOpCode(SpvOpFunctionCall, 4 + (int32_t)argumentIds.size(), out); this->writeWord(this->getType(c.type()), out); this->writeWord(result, out); this->writeWord(*entry, out); for (SpvId id : argumentIds) { this->writeWord(id, out); } // Now that the call is complete, we copy temp out-variables back to their real lvalues. this->copyBackTempVars(tempVars, out); return result; } SpvId SPIRVCodeGenerator::castScalarToType(SpvId inputExprId, const Type& inputType, const Type& outputType, OutputStream& out) { if (outputType.isFloat()) { return this->castScalarToFloat(inputExprId, inputType, outputType, out); } if (outputType.isSigned()) { return this->castScalarToSignedInt(inputExprId, inputType, outputType, out); } if (outputType.isUnsigned()) { return this->castScalarToUnsignedInt(inputExprId, inputType, outputType, out); } if (outputType.isBoolean()) { return this->castScalarToBoolean(inputExprId, inputType, outputType, out); } fContext.fErrors->error(Position(), "unsupported cast: " + inputType.description() + " to " + outputType.description()); return inputExprId; } SpvId SPIRVCodeGenerator::castScalarToFloat(SpvId inputId, const Type& inputType, const Type& outputType, OutputStream& out) { // Casting a float to float is a no-op. if (inputType.isFloat()) { return inputId; } // Given the input type, generate the appropriate instruction to cast to float. SpvId result = this->nextId(&outputType); if (inputType.isBoolean()) { // Use OpSelect to convert the boolean argument to a literal 1.0 or 0.0. const SpvId oneID = this->writeLiteral(1.0, *fContext.fTypes.fFloat); const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fFloat); this->writeInstruction(SpvOpSelect, this->getType(outputType), result, inputId, oneID, zeroID, out); } else if (inputType.isSigned()) { this->writeInstruction(SpvOpConvertSToF, this->getType(outputType), result, inputId, out); } else if (inputType.isUnsigned()) { this->writeInstruction(SpvOpConvertUToF, this->getType(outputType), result, inputId, out); } else { SkDEBUGFAILF("unsupported type for float typecast: %s", inputType.description().c_str()); return NA; } return result; } SpvId SPIRVCodeGenerator::castScalarToSignedInt(SpvId inputId, const Type& inputType, const Type& outputType, OutputStream& out) { // Casting a signed int to signed int is a no-op. if (inputType.isSigned()) { return inputId; } // Given the input type, generate the appropriate instruction to cast to signed int. SpvId result = this->nextId(&outputType); if (inputType.isBoolean()) { // Use OpSelect to convert the boolean argument to a literal 1 or 0. const SpvId oneID = this->writeLiteral(1.0, *fContext.fTypes.fInt); const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fInt); this->writeInstruction(SpvOpSelect, this->getType(outputType), result, inputId, oneID, zeroID, out); } else if (inputType.isFloat()) { this->writeInstruction(SpvOpConvertFToS, this->getType(outputType), result, inputId, out); } else if (inputType.isUnsigned()) { this->writeInstruction(SpvOpBitcast, this->getType(outputType), result, inputId, out); } else { SkDEBUGFAILF("unsupported type for signed int typecast: %s", inputType.description().c_str()); return NA; } return result; } SpvId SPIRVCodeGenerator::castScalarToUnsignedInt(SpvId inputId, const Type& inputType, const Type& outputType, OutputStream& out) { // Casting an unsigned int to unsigned int is a no-op. if (inputType.isUnsigned()) { return inputId; } // Given the input type, generate the appropriate instruction to cast to unsigned int. SpvId result = this->nextId(&outputType); if (inputType.isBoolean()) { // Use OpSelect to convert the boolean argument to a literal 1u or 0u. const SpvId oneID = this->writeLiteral(1.0, *fContext.fTypes.fUInt); const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fUInt); this->writeInstruction(SpvOpSelect, this->getType(outputType), result, inputId, oneID, zeroID, out); } else if (inputType.isFloat()) { this->writeInstruction(SpvOpConvertFToU, this->getType(outputType), result, inputId, out); } else if (inputType.isSigned()) { this->writeInstruction(SpvOpBitcast, this->getType(outputType), result, inputId, out); } else { SkDEBUGFAILF("unsupported type for unsigned int typecast: %s", inputType.description().c_str()); return NA; } return result; } SpvId SPIRVCodeGenerator::castScalarToBoolean(SpvId inputId, const Type& inputType, const Type& outputType, OutputStream& out) { // Casting a bool to bool is a no-op. if (inputType.isBoolean()) { return inputId; } // Given the input type, generate the appropriate instruction to cast to bool. SpvId result = this->nextId(nullptr); if (inputType.isSigned()) { // Synthesize a boolean result by comparing the input against a signed zero literal. const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fInt); this->writeInstruction(SpvOpINotEqual, this->getType(outputType), result, inputId, zeroID, out); } else if (inputType.isUnsigned()) { // Synthesize a boolean result by comparing the input against an unsigned zero literal. const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fUInt); this->writeInstruction(SpvOpINotEqual, this->getType(outputType), result, inputId, zeroID, out); } else if (inputType.isFloat()) { // Synthesize a boolean result by comparing the input against a floating-point zero literal. const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fFloat); this->writeInstruction(SpvOpFUnordNotEqual, this->getType(outputType), result, inputId, zeroID, out); } else { SkDEBUGFAILF("unsupported type for boolean typecast: %s", inputType.description().c_str()); return NA; } return result; } SpvId SPIRVCodeGenerator::writeMatrixCopy(SpvId src, const Type& srcType, const Type& dstType, OutputStream& out) { SkASSERT(srcType.isMatrix()); SkASSERT(dstType.isMatrix()); SkASSERT(srcType.componentType().matches(dstType.componentType())); const Type& srcColumnType = srcType.componentType().toCompound(fContext, srcType.rows(), 1); const Type& dstColumnType = dstType.componentType().toCompound(fContext, dstType.rows(), 1); SkASSERT(dstType.componentType().isFloat()); SpvId dstColumnTypeId = this->getType(dstColumnType); const SpvId zeroId = this->writeLiteral(0.0, dstType.componentType()); const SpvId oneId = this->writeLiteral(1.0, dstType.componentType()); STArray<4, SpvId> columns; for (int i = 0; i < dstType.columns(); i++) { if (i < srcType.columns()) { // we're still inside the src matrix, copy the column SpvId srcColumn = this->writeOpCompositeExtract(srcColumnType, src, i, out); SpvId dstColumn; if (srcType.rows() == dstType.rows()) { // columns are equal size, don't need to do anything dstColumn = srcColumn; } else if (dstType.rows() > srcType.rows()) { // dst column is bigger, need to zero-pad it STArray<4, SpvId> values; values.push_back(srcColumn); for (int j = srcType.rows(); j < dstType.rows(); ++j) { values.push_back((i == j) ? oneId : zeroId); } dstColumn = this->writeOpCompositeConstruct(dstColumnType, values, out); } else { // dst column is smaller, need to swizzle the src column dstColumn = this->nextId(&dstType); this->writeOpCode(SpvOpVectorShuffle, 5 + dstType.rows(), out); this->writeWord(dstColumnTypeId, out); this->writeWord(dstColumn, out); this->writeWord(srcColumn, out); this->writeWord(srcColumn, out); for (int j = 0; j < dstType.rows(); j++) { this->writeWord(j, out); } } columns.push_back(dstColumn); } else { // we're past the end of the src matrix, need to synthesize an identity-matrix column STArray<4, SpvId> values; for (int j = 0; j < dstType.rows(); ++j) { values.push_back((i == j) ? oneId : zeroId); } columns.push_back(this->writeOpCompositeConstruct(dstColumnType, values, out)); } } return this->writeOpCompositeConstruct(dstType, columns, out); } void SPIRVCodeGenerator::addColumnEntry(const Type& columnType, TArray* currentColumn, TArray* columnIds, int rows, SpvId entry, OutputStream& out) { SkASSERT(currentColumn->size() < rows); currentColumn->push_back(entry); if (currentColumn->size() == rows) { // Synthesize this column into a vector. SpvId columnId = this->writeOpCompositeConstruct(columnType, *currentColumn, out); columnIds->push_back(columnId); currentColumn->clear(); } } SpvId SPIRVCodeGenerator::writeMatrixConstructor(const ConstructorCompound& c, OutputStream& out) { const Type& type = c.type(); SkASSERT(type.isMatrix()); SkASSERT(!c.arguments().empty()); const Type& arg0Type = c.arguments()[0]->type(); // go ahead and write the arguments so we don't try to write new instructions in the middle of // an instruction STArray<16, SpvId> arguments; for (const std::unique_ptr& arg : c.arguments()) { arguments.push_back(this->writeExpression(*arg, out)); } if (arguments.size() == 1 && arg0Type.isVector()) { // Special-case handling of float4 -> mat2x2. SkASSERT(type.rows() == 2 && type.columns() == 2); SkASSERT(arg0Type.columns() == 4); SpvId v[4]; for (int i = 0; i < 4; ++i) { v[i] = this->writeOpCompositeExtract(type.componentType(), arguments[0], i, out); } const Type& vecType = type.columnType(fContext); SpvId v0v1 = this->writeOpCompositeConstruct(vecType, {v[0], v[1]}, out); SpvId v2v3 = this->writeOpCompositeConstruct(vecType, {v[2], v[3]}, out); return this->writeOpCompositeConstruct(type, {v0v1, v2v3}, out); } int rows = type.rows(); const Type& columnType = type.columnType(fContext); // SpvIds of completed columns of the matrix. STArray<4, SpvId> columnIds; // SpvIds of scalars we have written to the current column so far. STArray<4, SpvId> currentColumn; for (int i = 0; i < arguments.size(); i++) { const Type& argType = c.arguments()[i]->type(); if (currentColumn.empty() && argType.isVector() && argType.columns() == rows) { // This vector is a complete matrix column by itself and can be used as-is. columnIds.push_back(arguments[i]); } else if (argType.columns() == 1) { // This argument is a lone scalar and can be added to the current column as-is. this->addColumnEntry(columnType, ¤tColumn, &columnIds, rows, arguments[i], out); } else { // This argument needs to be decomposed into its constituent scalars. for (int j = 0; j < argType.columns(); ++j) { SpvId swizzle = this->writeOpCompositeExtract(argType.componentType(), arguments[i], j, out); this->addColumnEntry(columnType, ¤tColumn, &columnIds, rows, swizzle, out); } } } SkASSERT(columnIds.size() == type.columns()); return this->writeOpCompositeConstruct(type, columnIds, out); } SpvId SPIRVCodeGenerator::writeConstructorCompound(const ConstructorCompound& c, OutputStream& out) { return c.type().isMatrix() ? this->writeMatrixConstructor(c, out) : this->writeVectorConstructor(c, out); } SpvId SPIRVCodeGenerator::writeVectorConstructor(const ConstructorCompound& c, OutputStream& out) { const Type& type = c.type(); const Type& componentType = type.componentType(); SkASSERT(type.isVector()); STArray<4, SpvId> arguments; for (int i = 0; i < c.arguments().size(); i++) { const Type& argType = c.arguments()[i]->type(); SkASSERT(componentType.numberKind() == argType.componentType().numberKind()); SpvId arg = this->writeExpression(*c.arguments()[i], out); if (argType.isMatrix()) { // CompositeConstruct cannot take a 2x2 matrix as an input, so we need to extract out // each scalar separately. SkASSERT(argType.rows() == 2); SkASSERT(argType.columns() == 2); for (int j = 0; j < 4; ++j) { arguments.push_back(this->writeOpCompositeExtract(componentType, arg, j / 2, j % 2, out)); } } else if (argType.isVector()) { // There's a bug in the Intel Vulkan driver where OpCompositeConstruct doesn't handle // vector arguments at all, so we always extract each vector component and pass them // into OpCompositeConstruct individually. for (int j = 0; j < argType.columns(); j++) { arguments.push_back(this->writeOpCompositeExtract(componentType, arg, j, out)); } } else { arguments.push_back(arg); } } return this->writeOpCompositeConstruct(type, arguments, out); } SpvId SPIRVCodeGenerator::writeConstructorSplat(const ConstructorSplat& c, OutputStream& out) { // Write the splat argument as a scalar, then splat it. SpvId argument = this->writeExpression(*c.argument(), out); return this->splat(c.type(), argument, out); } SpvId SPIRVCodeGenerator::writeCompositeConstructor(const AnyConstructor& c, OutputStream& out) { SkASSERT(c.type().isArray() || c.type().isStruct()); auto ctorArgs = c.argumentSpan(); STArray<4, SpvId> arguments; for (const std::unique_ptr& arg : ctorArgs) { arguments.push_back(this->writeExpression(*arg, out)); } return this->writeOpCompositeConstruct(c.type(), arguments, out); } SpvId SPIRVCodeGenerator::writeConstructorScalarCast(const ConstructorScalarCast& c, OutputStream& out) { const Type& type = c.type(); if (type.componentType().numberKind() == c.argument()->type().componentType().numberKind()) { return this->writeExpression(*c.argument(), out); } const Expression& ctorExpr = *c.argument(); SpvId expressionId = this->writeExpression(ctorExpr, out); return this->castScalarToType(expressionId, ctorExpr.type(), type, out); } SpvId SPIRVCodeGenerator::writeConstructorCompoundCast(const ConstructorCompoundCast& c, OutputStream& out) { const Type& ctorType = c.type(); const Type& argType = c.argument()->type(); SkASSERT(ctorType.isVector() || ctorType.isMatrix()); // Write the composite that we are casting. If the actual type matches, we are done. SpvId compositeId = this->writeExpression(*c.argument(), out); if (ctorType.componentType().numberKind() == argType.componentType().numberKind()) { return compositeId; } // writeMatrixCopy can cast matrices to a different type. if (ctorType.isMatrix()) { return this->writeMatrixCopy(compositeId, argType, ctorType, out); } // SPIR-V doesn't support vector(vector-of-different-type) directly, so we need to extract the // components and convert each one manually. const Type& srcType = argType.componentType(); const Type& dstType = ctorType.componentType(); STArray<4, SpvId> arguments; for (int index = 0; index < argType.columns(); ++index) { SpvId componentId = this->writeOpCompositeExtract(srcType, compositeId, index, out); arguments.push_back(this->castScalarToType(componentId, srcType, dstType, out)); } return this->writeOpCompositeConstruct(ctorType, arguments, out); } SpvId SPIRVCodeGenerator::writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& c, OutputStream& out) { const Type& type = c.type(); SkASSERT(type.isMatrix()); SkASSERT(c.argument()->type().isScalar()); // Write out the scalar argument. SpvId diagonal = this->writeExpression(*c.argument(), out); // Build the diagonal matrix. SpvId zeroId = this->writeLiteral(0.0, *fContext.fTypes.fFloat); const Type& vecType = type.columnType(fContext); STArray<4, SpvId> columnIds; STArray<4, SpvId> arguments; arguments.resize(type.rows()); for (int column = 0; column < type.columns(); column++) { for (int row = 0; row < type.rows(); row++) { arguments[row] = (row == column) ? diagonal : zeroId; } columnIds.push_back(this->writeOpCompositeConstruct(vecType, arguments, out)); } return this->writeOpCompositeConstruct(type, columnIds, out); } SpvId SPIRVCodeGenerator::writeConstructorMatrixResize(const ConstructorMatrixResize& c, OutputStream& out) { // Write the input matrix. SpvId argument = this->writeExpression(*c.argument(), out); // Use matrix-copy to resize the input matrix to its new size. return this->writeMatrixCopy(argument, c.argument()->type(), c.type(), out); } static StorageClass get_storage_class_for_global_variable( const Variable& var, StorageClass fallbackStorageClass) { SkASSERT(var.storage() == Variable::Storage::kGlobal); if (var.type().typeKind() == Type::TypeKind::kSampler || var.type().typeKind() == Type::TypeKind::kSeparateSampler || var.type().typeKind() == Type::TypeKind::kTexture) { return StorageClass::kUniformConstant; } const Layout& layout = var.layout(); ModifierFlags flags = var.modifierFlags(); if (flags & ModifierFlag::kIn) { SkASSERT(!(layout.fFlags & LayoutFlag::kPushConstant)); return StorageClass::kInput; } if (flags & ModifierFlag::kOut) { SkASSERT(!(layout.fFlags & LayoutFlag::kPushConstant)); return StorageClass::kOutput; } if (flags.isUniform()) { if (layout.fFlags & LayoutFlag::kPushConstant) { return StorageClass::kPushConstant; } return StorageClass::kUniform; } if (flags.isBuffer()) { return StorageClass::kStorageBuffer; } if (flags.isWorkgroup()) { return StorageClass::kWorkgroup; } return fallbackStorageClass; } StorageClass SPIRVCodeGenerator::getStorageClass(const Expression& expr) { switch (expr.kind()) { case Expression::Kind::kVariableReference: { const Variable& var = *expr.as().variable(); if (fActiveSpecialization) { const Expression** specializedExpr = fActiveSpecialization->find(&var); if (specializedExpr && (*specializedExpr)->is()) { return this->getStorageClass(**specializedExpr); } } if (var.storage() != Variable::Storage::kGlobal) { return StorageClass::kFunction; } return get_storage_class_for_global_variable(var, StorageClass::kPrivate); } case Expression::Kind::kFieldAccess: return this->getStorageClass(*expr.as().base()); case Expression::Kind::kIndex: return this->getStorageClass(*expr.as().base()); default: return StorageClass::kFunction; } } TArray SPIRVCodeGenerator::getAccessChain(const Expression& expr, OutputStream& out) { switch (expr.kind()) { case Expression::Kind::kIndex: { const IndexExpression& indexExpr = expr.as(); if (indexExpr.base()->is()) { // Access chains don't directly support dynamically indexing into a swizzle, but we // can rewrite them into a supported form. return this->getAccessChain(*Transform::RewriteIndexedSwizzle(fContext, indexExpr), out); } // All other index-expressions can be represented as typical access chains. TArray chain = this->getAccessChain(*indexExpr.base(), out); chain.push_back(this->writeExpression(*indexExpr.index(), out)); return chain; } case Expression::Kind::kFieldAccess: { const FieldAccess& fieldExpr = expr.as(); TArray chain = this->getAccessChain(*fieldExpr.base(), out); chain.push_back(this->writeLiteral(fieldExpr.fieldIndex(), *fContext.fTypes.fInt)); return chain; } case Expression::Kind::kVariableReference: { if (fActiveSpecialization) { const Expression** specializedFieldIndex = fActiveSpecialization->find(expr.as().variable()); if (specializedFieldIndex && (*specializedFieldIndex)->is()) { return this->getAccessChain(**specializedFieldIndex, out); } } [[fallthrough]]; } default: { SpvId id = this->getLValue(expr, out)->getPointer(); SkASSERT(id != NA); return TArray{id}; } } SkUNREACHABLE; } class PointerLValue : public SPIRVCodeGenerator::LValue { public: PointerLValue(SPIRVCodeGenerator& gen, SpvId pointer, bool isMemoryObject, SpvId type, SPIRVCodeGenerator::Precision precision, StorageClass storageClass) : fGen(gen) , fPointer(pointer) , fIsMemoryObject(isMemoryObject) , fType(type) , fPrecision(precision) , fStorageClass(storageClass) {} SpvId getPointer() override { return fPointer; } bool isMemoryObjectPointer() const override { return fIsMemoryObject; } StorageClass storageClass() const override { return fStorageClass; } SpvId load(OutputStream& out) override { return fGen.writeOpLoad(fType, fPrecision, fPointer, out); } void store(SpvId value, OutputStream& out) override { if (!fIsMemoryObject) { // We are going to write into an access chain; this could represent one component of a // vector, or one element of an array. This has the potential to invalidate other, // *unknown* elements of our store cache. (e.g. if the store cache holds `%50 = myVec4`, // and we store `%60 = myVec4.z`, this invalidates the cached value for %50.) To avoid // relying on stale data, reset the store cache entirely when this happens. fGen.fStoreCache.reset(); } fGen.writeOpStore(fStorageClass, fPointer, value, out); } private: SPIRVCodeGenerator& fGen; const SpvId fPointer; const bool fIsMemoryObject; const SpvId fType; const SPIRVCodeGenerator::Precision fPrecision; const StorageClass fStorageClass; }; class SwizzleLValue : public SPIRVCodeGenerator::LValue { public: SwizzleLValue(SPIRVCodeGenerator& gen, SpvId vecPointer, const ComponentArray& components, const Type& baseType, const Type& swizzleType, StorageClass storageClass) : fGen(gen) , fVecPointer(vecPointer) , fComponents(components) , fBaseType(&baseType) , fSwizzleType(&swizzleType) , fStorageClass(storageClass) {} bool applySwizzle(const ComponentArray& components, const Type& newType) override { ComponentArray updatedSwizzle; for (int8_t component : components) { if (component < 0 || component >= fComponents.size()) { SkDEBUGFAILF("swizzle accessed nonexistent component %d", (int)component); return false; } updatedSwizzle.push_back(fComponents[component]); } fComponents = updatedSwizzle; fSwizzleType = &newType; return true; } StorageClass storageClass() const override { return fStorageClass; } SpvId load(OutputStream& out) override { SpvId base = fGen.nextId(fBaseType); fGen.writeInstruction(SpvOpLoad, fGen.getType(*fBaseType), base, fVecPointer, out); SpvId result = fGen.nextId(fBaseType); fGen.writeOpCode(SpvOpVectorShuffle, 5 + (int32_t) fComponents.size(), out); fGen.writeWord(fGen.getType(*fSwizzleType), out); fGen.writeWord(result, out); fGen.writeWord(base, out); fGen.writeWord(base, out); for (int component : fComponents) { fGen.writeWord(component, out); } return result; } void store(SpvId value, OutputStream& out) override { // use OpVectorShuffle to mix and match the vector components. We effectively create // a virtual vector out of the concatenation of the left and right vectors, and then // select components from this virtual vector to make the result vector. For // instance, given: // float3L = ...; // float3R = ...; // L.xz = R.xy; // we end up with the virtual vector (L.x, L.y, L.z, R.x, R.y, R.z). Then we want // our result vector to look like (R.x, L.y, R.y), so we need to select indices // (3, 1, 4). SpvId base = fGen.nextId(fBaseType); fGen.writeInstruction(SpvOpLoad, fGen.getType(*fBaseType), base, fVecPointer, out); SpvId shuffle = fGen.nextId(fBaseType); fGen.writeOpCode(SpvOpVectorShuffle, 5 + fBaseType->columns(), out); fGen.writeWord(fGen.getType(*fBaseType), out); fGen.writeWord(shuffle, out); fGen.writeWord(base, out); fGen.writeWord(value, out); for (int i = 0; i < fBaseType->columns(); i++) { // current offset into the virtual vector, defaults to pulling the unmodified // value from the left side int offset = i; // check to see if we are writing this component for (int j = 0; j < fComponents.size(); j++) { if (fComponents[j] == i) { // we're writing to this component, so adjust the offset to pull from // the correct component of the right side instead of preserving the // value from the left offset = (int) (j + fBaseType->columns()); break; } } fGen.writeWord(offset, out); } fGen.writeOpStore(fStorageClass, fVecPointer, shuffle, out); } private: SPIRVCodeGenerator& fGen; const SpvId fVecPointer; ComponentArray fComponents; const Type* fBaseType; const Type* fSwizzleType; const StorageClass fStorageClass; }; int SPIRVCodeGenerator::findUniformFieldIndex(const Variable& var) const { int* fieldIndex = fTopLevelUniformMap.find(&var); return fieldIndex ? *fieldIndex : -1; } std::unique_ptr SPIRVCodeGenerator::getLValue(const Expression& expr, OutputStream& out) { const Type& type = expr.type(); Precision precision = type.highPrecision() ? Precision::kDefault : Precision::kRelaxed; switch (expr.kind()) { case Expression::Kind::kVariableReference: { const Variable& var = *expr.as().variable(); int uniformIdx = this->findUniformFieldIndex(var); if (uniformIdx >= 0) { // Access uniforms via an AccessChain into the uniform-buffer struct. SpvId memberId = this->nextId(nullptr); SpvId typeId = this->getPointerType(type, StorageClass::kUniform); SpvId uniformIdxId = this->writeLiteral((double)uniformIdx, *fContext.fTypes.fInt); this->writeInstruction(SpvOpAccessChain, typeId, memberId, fUniformBufferId, uniformIdxId, out); return std::make_unique( *this, memberId, /*isMemoryObjectPointer=*/true, this->getType(type, kDefaultTypeLayout, this->memoryLayoutForVariable(var)), precision, StorageClass::kUniform); } SpvId* entry = fVariableMap.find(&var); SkASSERTF(entry, "%s", expr.description().c_str()); if (var.layout().fBuiltin == SK_SAMPLEMASKIN_BUILTIN || var.layout().fBuiltin == SK_SAMPLEMASK_BUILTIN) { // Access sk_SampleMask and sk_SampleMaskIn via an array access, since Vulkan // represents sample masks as an array of uints. StorageClass storageClass = get_storage_class_for_global_variable(var, StorageClass::kPrivate); SkASSERT(storageClass != StorageClass::kPrivate); SkASSERT(type.matches(*fContext.fTypes.fUInt)); SpvId accessId = this->nextId(nullptr); SpvId typeId = this->getPointerType(type, storageClass); SpvId indexId = this->writeLiteral(0.0, *fContext.fTypes.fInt); this->writeInstruction(SpvOpAccessChain, typeId, accessId, *entry, indexId, out); return std::make_unique(*this, accessId, /*isMemoryObjectPointer=*/true, this->getType(type), precision, storageClass); } SpvId typeId = this->getType(type, var.layout(), this->memoryLayoutForVariable(var)); return std::make_unique(*this, *entry, /*isMemoryObjectPointer=*/true, typeId, precision, this->getStorageClass(expr)); } case Expression::Kind::kIndex: // fall through case Expression::Kind::kFieldAccess: { TArray chain = this->getAccessChain(expr, out); SpvId member = this->nextId(nullptr); StorageClass storageClass = this->getStorageClass(expr); this->writeOpCode(SpvOpAccessChain, (SpvId) (3 + chain.size()), out); this->writeWord(this->getPointerType(type, storageClass), out); this->writeWord(member, out); for (SpvId idx : chain) { this->writeWord(idx, out); } return std::make_unique( *this, member, /*isMemoryObjectPointer=*/false, this->getType(type, kDefaultTypeLayout, this->memoryLayoutForStorageClass(storageClass)), precision, storageClass); } case Expression::Kind::kSwizzle: { const Swizzle& swizzle = expr.as(); std::unique_ptr lvalue = this->getLValue(*swizzle.base(), out); if (lvalue->applySwizzle(swizzle.components(), type)) { return lvalue; } SpvId base = lvalue->getPointer(); if (base == NA) { fContext.fErrors->error(swizzle.fPosition, "unable to retrieve lvalue from swizzle"); } StorageClass storageClass = this->getStorageClass(*swizzle.base()); if (swizzle.components().size() == 1) { SpvId member = this->nextId(nullptr); SpvId typeId = this->getPointerType(type, storageClass); SpvId indexId = this->writeLiteral(swizzle.components()[0], *fContext.fTypes.fInt); this->writeInstruction(SpvOpAccessChain, typeId, member, base, indexId, out); return std::make_unique(*this, member, /*isMemoryObjectPointer=*/false, this->getType(type), precision, storageClass); } else { return std::make_unique(*this, base, swizzle.components(), swizzle.base()->type(), type, storageClass); } } default: { // expr isn't actually an lvalue, create a placeholder variable for it. This case // happens due to the need to store values in temporary variables during function // calls (see comments in getFunctionParameterType); erroneous uses of rvalues as // lvalues should have been caught before code generation. // // This is with the exception of opaque handle types (textures/samplers) which are // always defined as UniformConstant pointers and don't need to be explicitly stored // into a temporary (which is handled explicitly in writeFunctionCallArgument). SpvId result = this->nextId(nullptr); SpvId pointerType = this->getPointerType(type, StorageClass::kFunction); this->writeInstruction(SpvOpVariable, pointerType, result, SpvStorageClassFunction, fVariableBuffer); this->writeOpStore(StorageClass::kFunction, result, this->writeExpression(expr, out), out); return std::make_unique(*this, result, /*isMemoryObjectPointer=*/true, this->getType(type), precision, StorageClass::kFunction); } } } std::unique_ptr SPIRVCodeGenerator::identifier(std::string_view name) { std::unique_ptr expr = fProgram.fSymbols->instantiateSymbolRef(fContext, name, Position()); return expr ? std::move(expr) : Poison::Make(Position(), fContext); } SpvId SPIRVCodeGenerator::writeVariableReference(const VariableReference& ref, OutputStream& out) { const Variable* variable = ref.variable(); switch (variable->layout().fBuiltin) { case DEVICE_FRAGCOORDS_BUILTIN: { // Down below, we rewrite raw references to sk_FragCoord with expressions that reference // DEVICE_FRAGCOORDS_BUILTIN. This is a fake variable that means we need to directly // access the fragcoord; do so now. return this->getLValue(*this->identifier("sk_FragCoord"), out)->load(out); } case DEVICE_CLOCKWISE_BUILTIN: { // Down below, we rewrite raw references to sk_Clockwise with expressions that reference // DEVICE_CLOCKWISE_BUILTIN. This is a fake variable that means we need to directly // access front facing; do so now. return this->getLValue(*this->identifier("sk_Clockwise"), out)->load(out); } case SK_SECONDARYFRAGCOLOR_BUILTIN: { if (fCaps.fDualSourceBlendingSupport) { return this->getLValue(*this->identifier("sk_SecondaryFragColor"), out)->load(out); } else { fContext.fErrors->error(ref.position(), "'sk_SecondaryFragColor' not supported"); return NA; } } case SK_FRAGCOORD_BUILTIN: { if (fProgram.fConfig->fSettings.fForceNoRTFlip) { return this->getLValue(*this->identifier("sk_FragCoord"), out)->load(out); } // Handle inserting use of uniform to flip y when referencing sk_FragCoord. this->addRTFlipUniform(ref.fPosition); // Use sk_RTAdjust to compute the flipped coordinate // Use a uniform to flip the Y coordinate. The new expression will be written in // terms of $device_FragCoords, which is a fake variable that means "access the // underlying fragcoords directly without flipping it". static constexpr char DEVICE_COORDS_NAME[] = "$device_FragCoords"; if (!fProgram.fSymbols->find(DEVICE_COORDS_NAME)) { AutoAttachPoolToThread attach(fProgram.fPool.get()); Layout layout; layout.fBuiltin = DEVICE_FRAGCOORDS_BUILTIN; auto coordsVar = Variable::Make(/*pos=*/Position(), /*modifiersPosition=*/Position(), layout, ModifierFlag::kNone, fContext.fTypes.fFloat4.get(), DEVICE_COORDS_NAME, /*mangledName=*/"", /*builtin=*/true, Variable::Storage::kGlobal); fProgram.fSymbols->add(fContext, std::move(coordsVar)); } std::unique_ptr deviceCoord = this->identifier(DEVICE_COORDS_NAME); std::unique_ptr rtFlip = this->identifier(SKSL_RTFLIP_NAME); SpvId rtFlipX = this->writeSwizzle(*rtFlip, {SwizzleComponent::X}, out); SpvId rtFlipY = this->writeSwizzle(*rtFlip, {SwizzleComponent::Y}, out); SpvId deviceCoordX = this->writeSwizzle(*deviceCoord, {SwizzleComponent::X}, out); SpvId deviceCoordY = this->writeSwizzle(*deviceCoord, {SwizzleComponent::Y}, out); SpvId deviceCoordZW = this->writeSwizzle(*deviceCoord, {SwizzleComponent::Z, SwizzleComponent::W}, out); // Compute `flippedY = u_RTFlip.y * $device_FragCoords.y`. SpvId flippedY = this->writeBinaryExpression( *fContext.fTypes.fFloat, rtFlipY, OperatorKind::STAR, *fContext.fTypes.fFloat, deviceCoordY, *fContext.fTypes.fFloat, out); // Compute `flippedY = u_RTFlip.x + flippedY`. flippedY = this->writeBinaryExpression( *fContext.fTypes.fFloat, rtFlipX, OperatorKind::PLUS, *fContext.fTypes.fFloat, flippedY, *fContext.fTypes.fFloat, out); // Return `float4(deviceCoord.x, flippedY, deviceCoord.zw)`. return this->writeOpCompositeConstruct(*fContext.fTypes.fFloat4, {deviceCoordX, flippedY, deviceCoordZW}, out); } case SK_CLOCKWISE_BUILTIN: { if (fProgram.fConfig->fSettings.fForceNoRTFlip) { return this->getLValue(*this->identifier("sk_Clockwise"), out)->load(out); } // Apply RTFlip to sk_Clockwise. this->addRTFlipUniform(ref.fPosition); // Use a uniform to flip the Y coordinate. The new expression will be written in // terms of $device_Clockwise, which is a fake variable that means "access the // underlying FrontFacing directly". static constexpr char DEVICE_CLOCKWISE_NAME[] = "$device_Clockwise"; if (!fProgram.fSymbols->find(DEVICE_CLOCKWISE_NAME)) { AutoAttachPoolToThread attach(fProgram.fPool.get()); Layout layout; layout.fBuiltin = DEVICE_CLOCKWISE_BUILTIN; auto clockwiseVar = Variable::Make(/*pos=*/Position(), /*modifiersPosition=*/Position(), layout, ModifierFlag::kNone, fContext.fTypes.fBool.get(), DEVICE_CLOCKWISE_NAME, /*mangledName=*/"", /*builtin=*/true, Variable::Storage::kGlobal); fProgram.fSymbols->add(fContext, std::move(clockwiseVar)); } // FrontFacing in Vulkan is defined in terms of a top-down render target. In Skia, // we use the default convention of "counter-clockwise face is front". // Compute `positiveRTFlip = (rtFlip.y > 0)`. std::unique_ptr rtFlip = this->identifier(SKSL_RTFLIP_NAME); SpvId rtFlipY = this->writeSwizzle(*rtFlip, {SwizzleComponent::Y}, out); SpvId zero = this->writeLiteral(0.0, *fContext.fTypes.fFloat); SpvId positiveRTFlip = this->writeBinaryExpression( *fContext.fTypes.fFloat, rtFlipY, OperatorKind::GT, *fContext.fTypes.fFloat, zero, *fContext.fTypes.fBool, out); // Compute `positiveRTFlip ^^ $device_Clockwise`. std::unique_ptr deviceClockwise = this->identifier(DEVICE_CLOCKWISE_NAME); SpvId deviceClockwiseID = this->writeExpression(*deviceClockwise, out); return this->writeBinaryExpression( *fContext.fTypes.fBool, positiveRTFlip, OperatorKind::LOGICALXOR, *fContext.fTypes.fBool, deviceClockwiseID, *fContext.fTypes.fBool, out); } default: { // Constant-propagate variables that have a known compile-time value. if (const Expression* expr = ConstantFolder::GetConstantValueOrNull(ref)) { return this->writeExpression(*expr, out); } // A reference to a sampler variable at global scope with synthesized texture/sampler // backing should construct a function-scope combined image-sampler from the synthesized // constituents. This is the case in which a sample intrinsic was invoked. // // Variable references to opaque handles (texture/sampler) that appear as the argument // of a user-defined function call are explicitly handled in writeFunctionCallArgument. if (fUseTextureSamplerPairs && variable->type().isSampler()) { if (const auto* p = fSynthesizedSamplerMap.find(variable)) { SpvId* imgPtr = fVariableMap.find((*p)->fTexture.get()); SpvId* samplerPtr = fVariableMap.find((*p)->fSampler.get()); SkASSERT(imgPtr); SkASSERT(samplerPtr); SpvId img = this->writeOpLoad(this->getType((*p)->fTexture->type()), Precision::kDefault, *imgPtr, out); SpvId sampler = this->writeOpLoad(this->getType((*p)->fSampler->type()), Precision::kDefault, *samplerPtr, out); SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpSampledImage, this->getType(variable->type()), result, img, sampler, out); return result; } SkDEBUGFAIL("sampler missing from fSynthesizedSamplerMap"); } return this->getLValue(ref, out)->load(out); } } } SpvId SPIRVCodeGenerator::writeIndexExpression(const IndexExpression& expr, OutputStream& out) { if (expr.base()->type().isVector()) { SpvId base = this->writeExpression(*expr.base(), out); SpvId index = this->writeExpression(*expr.index(), out); SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpVectorExtractDynamic, this->getType(expr.type()), result, base, index, out); return result; } return getLValue(expr, out)->load(out); } SpvId SPIRVCodeGenerator::writeFieldAccess(const FieldAccess& f, OutputStream& out) { return getLValue(f, out)->load(out); } SpvId SPIRVCodeGenerator::writeSwizzle(const Expression& baseExpr, const ComponentArray& components, OutputStream& out) { size_t count = components.size(); const Type& type = baseExpr.type().componentType().toCompound(fContext, count, /*rows=*/1); SpvId base = this->writeExpression(baseExpr, out); if (count == 1) { return this->writeOpCompositeExtract(type, base, components[0], out); } SpvId result = this->nextId(&type); this->writeOpCode(SpvOpVectorShuffle, 5 + (int32_t) count, out); this->writeWord(this->getType(type), out); this->writeWord(result, out); this->writeWord(base, out); this->writeWord(base, out); for (int component : components) { this->writeWord(component, out); } return result; } SpvId SPIRVCodeGenerator::writeSwizzle(const Swizzle& swizzle, OutputStream& out) { return this->writeSwizzle(*swizzle.base(), swizzle.components(), out); } SpvId SPIRVCodeGenerator::writeBinaryOperation(const Type& resultType, const Type& operandType, SpvId lhs, SpvId rhs, bool writeComponentwiseIfMatrix, SpvOp_ ifFloat, SpvOp_ ifInt, SpvOp_ ifUInt, SpvOp_ ifBool, OutputStream& out) { SpvOp_ op = pick_by_type(operandType, ifFloat, ifInt, ifUInt, ifBool); if (op == SpvOpUndef) { fContext.fErrors->error(operandType.fPosition, "unsupported operand for binary expression: " + operandType.description()); return NA; } if (writeComponentwiseIfMatrix && operandType.isMatrix()) { return this->writeComponentwiseMatrixBinary(resultType, lhs, rhs, op, out); } SpvId result = this->nextId(&resultType); this->writeInstruction(op, this->getType(resultType), result, lhs, rhs, out); return result; } SpvId SPIRVCodeGenerator::writeBinaryOperationComponentwiseIfMatrix(const Type& resultType, const Type& operandType, SpvId lhs, SpvId rhs, SpvOp_ ifFloat, SpvOp_ ifInt, SpvOp_ ifUInt, SpvOp_ ifBool, OutputStream& out) { return this->writeBinaryOperation(resultType, operandType, lhs, rhs, /*writeComponentwiseIfMatrix=*/true, ifFloat, ifInt, ifUInt, ifBool, out); } SpvId SPIRVCodeGenerator::writeBinaryOperation(const Type& resultType, const Type& operandType, SpvId lhs, SpvId rhs, SpvOp_ ifFloat, SpvOp_ ifInt, SpvOp_ ifUInt, SpvOp_ ifBool, OutputStream& out) { return this->writeBinaryOperation(resultType, operandType, lhs, rhs, /*writeComponentwiseIfMatrix=*/false, ifFloat, ifInt, ifUInt, ifBool, out); } SpvId SPIRVCodeGenerator::foldToBool(SpvId id, const Type& operandType, SpvOp op, OutputStream& out) { if (operandType.isVector()) { SpvId result = this->nextId(nullptr); this->writeInstruction(op, this->getType(*fContext.fTypes.fBool), result, id, out); return result; } return id; } SpvId SPIRVCodeGenerator::writeMatrixComparison(const Type& operandType, SpvId lhs, SpvId rhs, SpvOp_ floatOperator, SpvOp_ intOperator, SpvOp_ vectorMergeOperator, SpvOp_ mergeOperator, OutputStream& out) { SpvOp_ compareOp = is_float(operandType) ? floatOperator : intOperator; SkASSERT(operandType.isMatrix()); const Type& columnType = operandType.componentType().toCompound(fContext, operandType.rows(), 1); SpvId bvecType = this->getType(fContext.fTypes.fBool->toCompound(fContext, operandType.rows(), 1)); SpvId boolType = this->getType(*fContext.fTypes.fBool); SpvId result = 0; for (int i = 0; i < operandType.columns(); i++) { SpvId columnL = this->writeOpCompositeExtract(columnType, lhs, i, out); SpvId columnR = this->writeOpCompositeExtract(columnType, rhs, i, out); SpvId compare = this->nextId(&operandType); this->writeInstruction(compareOp, bvecType, compare, columnL, columnR, out); SpvId merge = this->nextId(nullptr); this->writeInstruction(vectorMergeOperator, boolType, merge, compare, out); if (result != 0) { SpvId next = this->nextId(nullptr); this->writeInstruction(mergeOperator, boolType, next, result, merge, out); result = next; } else { result = merge; } } return result; } SpvId SPIRVCodeGenerator::writeComponentwiseMatrixUnary(const Type& operandType, SpvId operand, SpvOp_ op, OutputStream& out) { SkASSERT(operandType.isMatrix()); const Type& columnType = operandType.columnType(fContext); SpvId columnTypeId = this->getType(columnType); STArray<4, SpvId> columns; for (int i = 0; i < operandType.columns(); i++) { SpvId srcColumn = this->writeOpCompositeExtract(columnType, operand, i, out); SpvId dstColumn = this->nextId(&operandType); this->writeInstruction(op, columnTypeId, dstColumn, srcColumn, out); columns.push_back(dstColumn); } return this->writeOpCompositeConstruct(operandType, columns, out); } SpvId SPIRVCodeGenerator::writeComponentwiseMatrixBinary(const Type& operandType, SpvId lhs, SpvId rhs, SpvOp_ op, OutputStream& out) { SkASSERT(operandType.isMatrix()); const Type& columnType = operandType.columnType(fContext); SpvId columnTypeId = this->getType(columnType); STArray<4, SpvId> columns; for (int i = 0; i < operandType.columns(); i++) { SpvId columnL = this->writeOpCompositeExtract(columnType, lhs, i, out); SpvId columnR = this->writeOpCompositeExtract(columnType, rhs, i, out); columns.push_back(this->nextId(&operandType)); this->writeInstruction(op, columnTypeId, columns[i], columnL, columnR, out); } return this->writeOpCompositeConstruct(operandType, columns, out); } SpvId SPIRVCodeGenerator::writeReciprocal(const Type& type, SpvId value, OutputStream& out) { SkASSERT(type.isFloat()); SpvId one = this->writeLiteral(1.0, type); SpvId reciprocal = this->nextId(&type); this->writeInstruction(SpvOpFDiv, this->getType(type), reciprocal, one, value, out); return reciprocal; } SpvId SPIRVCodeGenerator::splat(const Type& type, SpvId id, OutputStream& out) { if (type.isScalar()) { // Scalars require no additional work; we can return the passed-in ID as is. } else { SkASSERT(type.isVector() || type.isMatrix()); bool isMatrix = type.isMatrix(); // Splat the input scalar across a vector. int vectorSize = (isMatrix ? type.rows() : type.columns()); const Type& vectorType = type.componentType().toCompound(fContext, vectorSize, /*rows=*/1); STArray<4, SpvId> values; values.push_back_n(/*n=*/vectorSize, /*t=*/id); id = this->writeOpCompositeConstruct(vectorType, values, out); if (isMatrix) { // Splat the newly-synthesized vector into a matrix. STArray<4, SpvId> matArguments; matArguments.push_back_n(/*n=*/type.columns(), /*t=*/id); id = this->writeOpCompositeConstruct(type, matArguments, out); } } return id; } static bool types_match(const Type& a, const Type& b) { if (a.matches(b)) { return true; } return (a.typeKind() == b.typeKind()) && (a.isScalar() || a.isVector() || a.isMatrix()) && (a.columns() == b.columns() && a.rows() == b.rows()) && a.componentType().numberKind() == b.componentType().numberKind(); } SpvId SPIRVCodeGenerator::writeDecomposedMatrixVectorMultiply(const Type& leftType, SpvId lhs, const Type& rightType, SpvId rhs, const Type& resultType, OutputStream& out) { SpvId sum = NA; const Type& columnType = leftType.columnType(fContext); const Type& scalarType = rightType.componentType(); for (int n = 0; n < leftType.rows(); ++n) { // Extract mat[N] from the matrix. SpvId matN = this->writeOpCompositeExtract(columnType, lhs, n, out); // Extract vec[N] from the vector. SpvId vecN = this->writeOpCompositeExtract(scalarType, rhs, n, out); // Multiply them together. SpvId product = this->writeBinaryExpression(columnType, matN, OperatorKind::STAR, scalarType, vecN, columnType, out); // Sum all the components together. if (sum == NA) { sum = product; } else { sum = this->writeBinaryExpression(columnType, sum, OperatorKind::PLUS, columnType, product, columnType, out); } } return sum; } SpvId SPIRVCodeGenerator::writeBinaryExpression(const Type& leftType, SpvId lhs, Operator op, const Type& rightType, SpvId rhs, const Type& resultType, OutputStream& out) { // The comma operator ignores the type of the left-hand side entirely. if (op.kind() == Operator::Kind::COMMA) { return rhs; } // overall type we are operating on: float2, int, uint4... const Type* operandType; if (types_match(leftType, rightType)) { operandType = &leftType; } else { // IR allows mismatched types in expressions (e.g. float2 * float), but they need special // handling in SPIR-V if (leftType.isVector() && rightType.isNumber()) { if (resultType.componentType().isFloat()) { switch (op.kind()) { case Operator::Kind::SLASH: { rhs = this->writeReciprocal(rightType, rhs, out); [[fallthrough]]; } case Operator::Kind::STAR: { SpvId result = this->nextId(&resultType); this->writeInstruction(SpvOpVectorTimesScalar, this->getType(resultType), result, lhs, rhs, out); return result; } default: break; } } // Vectorize the right-hand side. STArray<4, SpvId> arguments; arguments.push_back_n(/*n=*/leftType.columns(), /*t=*/rhs); rhs = this->writeOpCompositeConstruct(leftType, arguments, out); operandType = &leftType; } else if (rightType.isVector() && leftType.isNumber()) { if (resultType.componentType().isFloat()) { if (op.kind() == Operator::Kind::STAR) { SpvId result = this->nextId(&resultType); this->writeInstruction(SpvOpVectorTimesScalar, this->getType(resultType), result, rhs, lhs, out); return result; } } // Vectorize the left-hand side. STArray<4, SpvId> arguments; arguments.push_back_n(/*n=*/rightType.columns(), /*t=*/lhs); lhs = this->writeOpCompositeConstruct(rightType, arguments, out); operandType = &rightType; } else if (leftType.isMatrix()) { if (op.kind() == Operator::Kind::STAR) { // When the rewriteMatrixVectorMultiply bit is set, we rewrite medium-precision // matrix * vector multiplication as (mat[0]*vec[0] + ... + mat[N]*vec[N]). if (fCaps.fRewriteMatrixVectorMultiply && rightType.isVector() && !resultType.highPrecision()) { return this->writeDecomposedMatrixVectorMultiply(leftType, lhs, rightType, rhs, resultType, out); } // Matrix-times-vector and matrix-times-scalar have dedicated ops in SPIR-V. SpvOp_ spvop; if (rightType.isMatrix()) { spvop = SpvOpMatrixTimesMatrix; } else if (rightType.isVector()) { spvop = SpvOpMatrixTimesVector; } else { SkASSERT(rightType.isScalar()); spvop = SpvOpMatrixTimesScalar; } SpvId result = this->nextId(&resultType); this->writeInstruction(spvop, this->getType(resultType), result, lhs, rhs, out); return result; } else { // Matrix-op-vector is not supported in GLSL/SkSL for non-multiplication ops; we // expect to have a scalar here. SkASSERT(rightType.isScalar()); // Splat rhs across an entire matrix so we can reuse the matrix-op-matrix path. SpvId rhsMatrix = this->splat(leftType, rhs, out); // Perform this operation as matrix-op-matrix. return this->writeBinaryExpression(leftType, lhs, op, leftType, rhsMatrix, resultType, out); } } else if (rightType.isMatrix()) { if (op.kind() == Operator::Kind::STAR) { // Matrix-times-vector and matrix-times-scalar have dedicated ops in SPIR-V. SpvId result = this->nextId(&resultType); if (leftType.isVector()) { this->writeInstruction(SpvOpVectorTimesMatrix, this->getType(resultType), result, lhs, rhs, out); } else { SkASSERT(leftType.isScalar()); this->writeInstruction(SpvOpMatrixTimesScalar, this->getType(resultType), result, rhs, lhs, out); } return result; } else { // Vector-op-matrix is not supported in GLSL/SkSL for non-multiplication ops; we // expect to have a scalar here. SkASSERT(leftType.isScalar()); // Splat lhs across an entire matrix so we can reuse the matrix-op-matrix path. SpvId lhsMatrix = this->splat(rightType, lhs, out); // Perform this operation as matrix-op-matrix. return this->writeBinaryExpression(rightType, lhsMatrix, op, rightType, rhs, resultType, out); } } else { fContext.fErrors->error(leftType.fPosition, "unsupported mixed-type expression"); return NA; } } switch (op.kind()) { case Operator::Kind::EQEQ: { if (operandType->isMatrix()) { return this->writeMatrixComparison(*operandType, lhs, rhs, SpvOpFOrdEqual, SpvOpIEqual, SpvOpAll, SpvOpLogicalAnd, out); } if (operandType->isStruct()) { return this->writeStructComparison(*operandType, lhs, op, rhs, out); } if (operandType->isArray()) { return this->writeArrayComparison(*operandType, lhs, op, rhs, out); } SkASSERT(resultType.isBoolean()); const Type* tmpType; if (operandType->isVector()) { tmpType = &fContext.fTypes.fBool->toCompound(fContext, operandType->columns(), operandType->rows()); } else { tmpType = &resultType; } if (lhs == rhs) { // This ignores the effects of NaN. return this->writeOpConstantTrue(*fContext.fTypes.fBool); } return this->foldToBool(this->writeBinaryOperation(*tmpType, *operandType, lhs, rhs, SpvOpFOrdEqual, SpvOpIEqual, SpvOpIEqual, SpvOpLogicalEqual, out), *operandType, SpvOpAll, out); } case Operator::Kind::NEQ: if (operandType->isMatrix()) { return this->writeMatrixComparison(*operandType, lhs, rhs, SpvOpFUnordNotEqual, SpvOpINotEqual, SpvOpAny, SpvOpLogicalOr, out); } if (operandType->isStruct()) { return this->writeStructComparison(*operandType, lhs, op, rhs, out); } if (operandType->isArray()) { return this->writeArrayComparison(*operandType, lhs, op, rhs, out); } [[fallthrough]]; case Operator::Kind::LOGICALXOR: SkASSERT(resultType.isBoolean()); const Type* tmpType; if (operandType->isVector()) { tmpType = &fContext.fTypes.fBool->toCompound(fContext, operandType->columns(), operandType->rows()); } else { tmpType = &resultType; } if (lhs == rhs) { // This ignores the effects of NaN. return this->writeOpConstantFalse(*fContext.fTypes.fBool); } return this->foldToBool(this->writeBinaryOperation(*tmpType, *operandType, lhs, rhs, SpvOpFUnordNotEqual, SpvOpINotEqual, SpvOpINotEqual, SpvOpLogicalNotEqual, out), *operandType, SpvOpAny, out); case Operator::Kind::GT: SkASSERT(resultType.isBoolean()); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdGreaterThan, SpvOpSGreaterThan, SpvOpUGreaterThan, SpvOpUndef, out); case Operator::Kind::LT: SkASSERT(resultType.isBoolean()); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdLessThan, SpvOpSLessThan, SpvOpULessThan, SpvOpUndef, out); case Operator::Kind::GTEQ: SkASSERT(resultType.isBoolean()); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdGreaterThanEqual, SpvOpSGreaterThanEqual, SpvOpUGreaterThanEqual, SpvOpUndef, out); case Operator::Kind::LTEQ: SkASSERT(resultType.isBoolean()); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdLessThanEqual, SpvOpSLessThanEqual, SpvOpULessThanEqual, SpvOpUndef, out); case Operator::Kind::PLUS: return this->writeBinaryOperationComponentwiseIfMatrix(resultType, *operandType, lhs, rhs, SpvOpFAdd, SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out); case Operator::Kind::MINUS: return this->writeBinaryOperationComponentwiseIfMatrix(resultType, *operandType, lhs, rhs, SpvOpFSub, SpvOpISub, SpvOpISub, SpvOpUndef, out); case Operator::Kind::STAR: if (leftType.isMatrix() && rightType.isMatrix()) { // matrix multiply SpvId result = this->nextId(&resultType); this->writeInstruction(SpvOpMatrixTimesMatrix, this->getType(resultType), result, lhs, rhs, out); return result; } return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFMul, SpvOpIMul, SpvOpIMul, SpvOpUndef, out); case Operator::Kind::SLASH: return this->writeBinaryOperationComponentwiseIfMatrix(resultType, *operandType, lhs, rhs, SpvOpFDiv, SpvOpSDiv, SpvOpUDiv, SpvOpUndef, out); case Operator::Kind::PERCENT: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFMod, SpvOpSMod, SpvOpUMod, SpvOpUndef, out); case Operator::Kind::SHL: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef, SpvOpShiftLeftLogical, SpvOpShiftLeftLogical, SpvOpUndef, out); case Operator::Kind::SHR: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef, SpvOpShiftRightArithmetic, SpvOpShiftRightLogical, SpvOpUndef, out); case Operator::Kind::BITWISEAND: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef, SpvOpBitwiseAnd, SpvOpBitwiseAnd, SpvOpUndef, out); case Operator::Kind::BITWISEOR: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef, SpvOpBitwiseOr, SpvOpBitwiseOr, SpvOpUndef, out); case Operator::Kind::BITWISEXOR: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef, SpvOpBitwiseXor, SpvOpBitwiseXor, SpvOpUndef, out); default: fContext.fErrors->error(Position(), "unsupported token"); return NA; } } SpvId SPIRVCodeGenerator::writeArrayComparison(const Type& arrayType, SpvId lhs, Operator op, SpvId rhs, OutputStream& out) { // The inputs must be arrays, and the op must be == or !=. SkASSERT(op.kind() == Operator::Kind::EQEQ || op.kind() == Operator::Kind::NEQ); SkASSERT(arrayType.isArray()); const Type& componentType = arrayType.componentType(); const int arraySize = arrayType.columns(); SkASSERT(arraySize > 0); // Synthesize equality checks for each item in the array. const Type& boolType = *fContext.fTypes.fBool; SpvId allComparisons = NA; for (int index = 0; index < arraySize; ++index) { // Get the left and right item in the array. SpvId itemL = this->writeOpCompositeExtract(componentType, lhs, index, out); SpvId itemR = this->writeOpCompositeExtract(componentType, rhs, index, out); // Use `writeBinaryExpression` with the requested == or != operator on these items. SpvId comparison = this->writeBinaryExpression(componentType, itemL, op, componentType, itemR, boolType, out); // Merge this comparison result with all the other comparisons we've done. allComparisons = this->mergeComparisons(comparison, allComparisons, op, out); } return allComparisons; } SpvId SPIRVCodeGenerator::writeStructComparison(const Type& structType, SpvId lhs, Operator op, SpvId rhs, OutputStream& out) { // The inputs must be structs containing fields, and the op must be == or !=. SkASSERT(op.kind() == Operator::Kind::EQEQ || op.kind() == Operator::Kind::NEQ); SkASSERT(structType.isStruct()); SkSpan fields = structType.fields(); SkASSERT(!fields.empty()); // Synthesize equality checks for each field in the struct. const Type& boolType = *fContext.fTypes.fBool; SpvId allComparisons = NA; for (int index = 0; index < (int)fields.size(); ++index) { // Get the left and right versions of this field. const Type& fieldType = *fields[index].fType; SpvId fieldL = this->writeOpCompositeExtract(fieldType, lhs, index, out); SpvId fieldR = this->writeOpCompositeExtract(fieldType, rhs, index, out); // Use `writeBinaryExpression` with the requested == or != operator on these fields. SpvId comparison = this->writeBinaryExpression(fieldType, fieldL, op, fieldType, fieldR, boolType, out); // Merge this comparison result with all the other comparisons we've done. allComparisons = this->mergeComparisons(comparison, allComparisons, op, out); } return allComparisons; } SpvId SPIRVCodeGenerator::mergeComparisons(SpvId comparison, SpvId allComparisons, Operator op, OutputStream& out) { // If this is the first entry, we don't need to merge comparison results with anything. if (allComparisons == NA) { return comparison; } // Use LogicalAnd or LogicalOr to combine the comparison with all the other comparisons. const Type& boolType = *fContext.fTypes.fBool; SpvId boolTypeId = this->getType(boolType); SpvId logicalOp = this->nextId(&boolType); switch (op.kind()) { case Operator::Kind::EQEQ: this->writeInstruction(SpvOpLogicalAnd, boolTypeId, logicalOp, comparison, allComparisons, out); break; case Operator::Kind::NEQ: this->writeInstruction(SpvOpLogicalOr, boolTypeId, logicalOp, comparison, allComparisons, out); break; default: SkDEBUGFAILF("mergeComparisons only supports == and !=, not %s", op.operatorName()); return NA; } return logicalOp; } SpvId SPIRVCodeGenerator::writeBinaryExpression(const BinaryExpression& b, OutputStream& out) { const Expression* left = b.left().get(); const Expression* right = b.right().get(); Operator op = b.getOperator(); switch (op.kind()) { case Operator::Kind::EQ: { // Handles assignment. SpvId rhs = this->writeExpression(*right, out); this->getLValue(*left, out)->store(rhs, out); return rhs; } case Operator::Kind::LOGICALAND: // Handles short-circuiting; we don't necessarily evaluate both LHS and RHS. return this->writeLogicalAnd(*b.left(), *b.right(), out); case Operator::Kind::LOGICALOR: // Handles short-circuiting; we don't necessarily evaluate both LHS and RHS. return this->writeLogicalOr(*b.left(), *b.right(), out); default: break; } std::unique_ptr lvalue; SpvId lhs; if (op.isAssignment()) { lvalue = this->getLValue(*left, out); lhs = lvalue->load(out); } else { lvalue = nullptr; lhs = this->writeExpression(*left, out); } SpvId rhs = this->writeExpression(*right, out); SpvId result = this->writeBinaryExpression(left->type(), lhs, op.removeAssignment(), right->type(), rhs, b.type(), out); if (lvalue) { lvalue->store(result, out); } return result; } SpvId SPIRVCodeGenerator::writeLogicalAnd(const Expression& left, const Expression& right, OutputStream& out) { SpvId falseConstant = this->writeLiteral(0.0, *fContext.fTypes.fBool); SpvId lhs = this->writeExpression(left, out); ConditionalOpCounts conditionalOps = this->getConditionalOpCounts(); SpvId rhsLabel = this->nextId(nullptr); SpvId end = this->nextId(nullptr); SpvId lhsBlock = fCurrentBlock; this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, lhs, rhsLabel, end, out); this->writeLabel(rhsLabel, kBranchIsOnPreviousLine, out); SpvId rhs = this->writeExpression(right, out); SpvId rhsBlock = fCurrentBlock; this->writeInstruction(SpvOpBranch, end, out); this->writeLabel(end, kBranchIsAbove, conditionalOps, out); SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpPhi, this->getType(*fContext.fTypes.fBool), result, falseConstant, lhsBlock, rhs, rhsBlock, out); return result; } SpvId SPIRVCodeGenerator::writeLogicalOr(const Expression& left, const Expression& right, OutputStream& out) { SpvId trueConstant = this->writeLiteral(1.0, *fContext.fTypes.fBool); SpvId lhs = this->writeExpression(left, out); ConditionalOpCounts conditionalOps = this->getConditionalOpCounts(); SpvId rhsLabel = this->nextId(nullptr); SpvId end = this->nextId(nullptr); SpvId lhsBlock = fCurrentBlock; this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, lhs, end, rhsLabel, out); this->writeLabel(rhsLabel, kBranchIsOnPreviousLine, out); SpvId rhs = this->writeExpression(right, out); SpvId rhsBlock = fCurrentBlock; this->writeInstruction(SpvOpBranch, end, out); this->writeLabel(end, kBranchIsAbove, conditionalOps, out); SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpPhi, this->getType(*fContext.fTypes.fBool), result, trueConstant, lhsBlock, rhs, rhsBlock, out); return result; } SpvId SPIRVCodeGenerator::writeTernaryExpression(const TernaryExpression& t, OutputStream& out) { const Type& type = t.type(); SpvId test = this->writeExpression(*t.test(), out); if (t.ifTrue()->type().columns() == 1 && Analysis::IsCompileTimeConstant(*t.ifTrue()) && Analysis::IsCompileTimeConstant(*t.ifFalse())) { // both true and false are constants, can just use OpSelect SpvId result = this->nextId(nullptr); SpvId trueId = this->writeExpression(*t.ifTrue(), out); SpvId falseId = this->writeExpression(*t.ifFalse(), out); this->writeInstruction(SpvOpSelect, this->getType(type), result, test, trueId, falseId, out); return result; } ConditionalOpCounts conditionalOps = this->getConditionalOpCounts(); // was originally using OpPhi to choose the result, but for some reason that is crashing on // Adreno. Switched to storing the result in a temp variable as glslang does. SpvId var = this->nextId(nullptr); this->writeInstruction(SpvOpVariable, this->getPointerType(type, StorageClass::kFunction), var, SpvStorageClassFunction, fVariableBuffer); SpvId trueLabel = this->nextId(nullptr); SpvId falseLabel = this->nextId(nullptr); SpvId end = this->nextId(nullptr); this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, test, trueLabel, falseLabel, out); this->writeLabel(trueLabel, kBranchIsOnPreviousLine, out); this->writeOpStore(StorageClass::kFunction, var, this->writeExpression(*t.ifTrue(), out), out); this->writeInstruction(SpvOpBranch, end, out); this->writeLabel(falseLabel, kBranchIsAbove, conditionalOps, out); this->writeOpStore(StorageClass::kFunction, var, this->writeExpression(*t.ifFalse(), out), out); this->writeInstruction(SpvOpBranch, end, out); this->writeLabel(end, kBranchIsAbove, conditionalOps, out); SpvId result = this->nextId(&type); this->writeInstruction(SpvOpLoad, this->getType(type), result, var, out); return result; } SpvId SPIRVCodeGenerator::writePrefixExpression(const PrefixExpression& p, OutputStream& out) { const Type& type = p.type(); if (p.getOperator().kind() == Operator::Kind::MINUS) { SpvOp_ negateOp = pick_by_type(type, SpvOpFNegate, SpvOpSNegate, SpvOpSNegate, SpvOpUndef); SkASSERT(negateOp != SpvOpUndef); SpvId expr = this->writeExpression(*p.operand(), out); if (type.isMatrix()) { return this->writeComponentwiseMatrixUnary(type, expr, negateOp, out); } SpvId result = this->nextId(&type); SpvId typeId = this->getType(type); this->writeInstruction(negateOp, typeId, result, expr, out); return result; } switch (p.getOperator().kind()) { case Operator::Kind::PLUS: return this->writeExpression(*p.operand(), out); case Operator::Kind::PLUSPLUS: { std::unique_ptr lv = this->getLValue(*p.operand(), out); SpvId one = this->writeLiteral(1.0, type.componentType()); one = this->splat(type, one, out); SpvId result = this->writeBinaryOperationComponentwiseIfMatrix(type, type, lv->load(out), one, SpvOpFAdd, SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out); lv->store(result, out); return result; } case Operator::Kind::MINUSMINUS: { std::unique_ptr lv = this->getLValue(*p.operand(), out); SpvId one = this->writeLiteral(1.0, type.componentType()); one = this->splat(type, one, out); SpvId result = this->writeBinaryOperationComponentwiseIfMatrix(type, type, lv->load(out), one, SpvOpFSub, SpvOpISub, SpvOpISub, SpvOpUndef, out); lv->store(result, out); return result; } case Operator::Kind::LOGICALNOT: { SkASSERT(p.operand()->type().isBoolean()); SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpLogicalNot, this->getType(type), result, this->writeExpression(*p.operand(), out), out); return result; } case Operator::Kind::BITWISENOT: { SpvId result = this->nextId(nullptr); this->writeInstruction(SpvOpNot, this->getType(type), result, this->writeExpression(*p.operand(), out), out); return result; } default: SkDEBUGFAILF("unsupported prefix expression: %s", p.description(OperatorPrecedence::kExpression).c_str()); return NA; } } SpvId SPIRVCodeGenerator::writePostfixExpression(const PostfixExpression& p, OutputStream& out) { const Type& type = p.type(); std::unique_ptr lv = this->getLValue(*p.operand(), out); SpvId result = lv->load(out); SpvId one = this->writeLiteral(1.0, type.componentType()); one = this->splat(type, one, out); switch (p.getOperator().kind()) { case Operator::Kind::PLUSPLUS: { SpvId temp = this->writeBinaryOperationComponentwiseIfMatrix(type, type, result, one, SpvOpFAdd, SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out); lv->store(temp, out); return result; } case Operator::Kind::MINUSMINUS: { SpvId temp = this->writeBinaryOperationComponentwiseIfMatrix(type, type, result, one, SpvOpFSub, SpvOpISub, SpvOpISub, SpvOpUndef, out); lv->store(temp, out); return result; } default: SkDEBUGFAILF("unsupported postfix expression %s", p.description(OperatorPrecedence::kExpression).c_str()); return NA; } } SpvId SPIRVCodeGenerator::writeLiteral(const Literal& l) { return this->writeLiteral(l.value(), l.type()); } SpvId SPIRVCodeGenerator::writeLiteral(double value, const Type& type) { switch (type.numberKind()) { case Type::NumberKind::kFloat: { float floatVal = value; int32_t valueBits; memcpy(&valueBits, &floatVal, sizeof(valueBits)); return this->writeOpConstant(type, valueBits); } case Type::NumberKind::kBoolean: { return value ? this->writeOpConstantTrue(type) : this->writeOpConstantFalse(type); } default: { return this->writeOpConstant(type, (SKSL_INT)value); } } } void SPIRVCodeGenerator::writeFunctionStart(const FunctionDeclaration& f, OutputStream& out) { SpvId result = fFunctionMap[{&f, fActiveSpecializationIndex}]; SpvId returnTypeId = this->getType(f.returnType()); SpvId functionTypeId = this->getFunctionType(f); this->writeInstruction(SpvOpFunction, returnTypeId, result, SpvFunctionControlMaskNone, functionTypeId, out); std::string mangledName = f.mangledName(); // For specialized functions, tack on `_param1_param2` to the function name. Analysis::GetParameterMappingsForFunction( f, fSpecializationInfo, fActiveSpecializationIndex, [&](int, const Variable*, const Expression* expr) { std::string name = expr->description(); std::replace_if(name.begin(), name.end(), [](char c) { return !isalnum(c); }, '_'); mangledName += "_" + name; }); this->writeInstruction(SpvOpName, result, std::string_view(mangledName.c_str(), mangledName.size()), fNameBuffer); for (const Variable* parameter : f.parameters()) { const Variable* specializedVar = nullptr; if (fActiveSpecialization) { if (const Expression** specializedExpr = fActiveSpecialization->find(parameter)) { if ((*specializedExpr)->is()) { continue; } SkASSERT((*specializedExpr)->is()); specializedVar = (*specializedExpr)->as().variable(); } } if (fUseTextureSamplerPairs && parameter->type().isSampler()) { auto [texture, sampler] = this->synthesizeTextureAndSampler(*parameter); SpvId textureId = this->nextId(nullptr); fVariableMap.set(texture, textureId); SpvId textureType = this->getFunctionParameterType(texture->type(), texture->layout()); this->writeInstruction(SpvOpFunctionParameter, textureType, textureId, out); if (specializedVar) { const auto* p = fSynthesizedSamplerMap.find(specializedVar); SkASSERT(p); const SpvId* uniformId = fVariableMap.find((*p)->fSampler.get()); SkASSERT(uniformId); fVariableMap.set(sampler, *uniformId); } else { SpvId samplerId = this->nextId(nullptr); fVariableMap.set(sampler, samplerId); SpvId samplerType = this->getFunctionParameterType(sampler->type(), kDefaultTypeLayout); this->writeInstruction(SpvOpFunctionParameter, samplerType, samplerId, out); } } else { if (specializedVar) { const SpvId* uniformId = fVariableMap.find(specializedVar); SkASSERT(uniformId); fVariableMap.set(parameter, *uniformId); } else { SpvId id = this->nextId(nullptr); fVariableMap.set(parameter, id); SpvId type = this->getFunctionParameterType(parameter->type(), parameter->layout()); this->writeInstruction(SpvOpFunctionParameter, type, id, out); } } } } void SPIRVCodeGenerator::writeFunction(const FunctionDefinition& f, OutputStream& out) { if (const Analysis::Specializations* specializations = fSpecializationInfo.fSpecializationMap.find(&f.declaration())) { for (int i = 0; i < specializations->size(); i++) { this->writeFunctionInstantiation(f, i, &specializations->at(i), out); } } else { this->writeFunctionInstantiation(f, Analysis::kUnspecialized, /*specializedParams=*/nullptr, out); } } void SPIRVCodeGenerator::writeFunctionInstantiation( const FunctionDefinition& f, Analysis::SpecializationIndex specializationIndex, const Analysis::SpecializedParameters* specializedParams, OutputStream& out) { ConditionalOpCounts conditionalOps = this->getConditionalOpCounts(); fVariableBuffer.reset(); fActiveSpecialization = specializedParams; fActiveSpecializationIndex = specializationIndex; this->writeFunctionStart(f.declaration(), out); fCurrentBlock = 0; this->writeLabel(this->nextId(nullptr), kBranchlessBlock, out); StringStream bodyBuffer; this->writeBlock(f.body()->as(), bodyBuffer); fActiveSpecialization = nullptr; fActiveSpecializationIndex = Analysis::kUnspecialized; write_stringstream(fVariableBuffer, out); if (f.declaration().isMain()) { write_stringstream(fGlobalInitializersBuffer, out); } write_stringstream(bodyBuffer, out); if (fCurrentBlock) { if (f.declaration().returnType().isVoid()) { this->writeInstruction(SpvOpReturn, out); } else { this->writeInstruction(SpvOpUnreachable, out); } } this->writeInstruction(SpvOpFunctionEnd, out); this->pruneConditionalOps(conditionalOps); } void SPIRVCodeGenerator::writeLayout(const Layout& layout, SpvId target, Position pos) { bool isPushConstant = SkToBool(layout.fFlags & LayoutFlag::kPushConstant); if (layout.fLocation >= 0) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationLocation, layout.fLocation, fDecorationBuffer); } if (layout.fBinding >= 0) { if (isPushConstant) { fContext.fErrors->error(pos, "Can't apply 'binding' to push constants"); } else { this->writeInstruction(SpvOpDecorate, target, SpvDecorationBinding, layout.fBinding, fDecorationBuffer); } } if (layout.fIndex >= 0) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationIndex, layout.fIndex, fDecorationBuffer); } if (layout.fSet >= 0) { if (isPushConstant) { fContext.fErrors->error(pos, "Can't apply 'set' to push constants"); } else { this->writeInstruction(SpvOpDecorate, target, SpvDecorationDescriptorSet, layout.fSet, fDecorationBuffer); } } if (layout.fInputAttachmentIndex >= 0) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationInputAttachmentIndex, layout.fInputAttachmentIndex, fDecorationBuffer); fCapabilities |= (((uint64_t) 1) << SpvCapabilityInputAttachment); } if (layout.fBuiltin >= 0 && (layout.fBuiltin != SK_FRAGCOLOR_BUILTIN && layout.fBuiltin != SK_SECONDARYFRAGCOLOR_BUILTIN)) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationBuiltIn, layout.fBuiltin, fDecorationBuffer); } } void SPIRVCodeGenerator::writeFieldLayout(const Layout& layout, SpvId target, int member) { // 'binding' and 'set' can not be applied to struct members SkASSERT(layout.fBinding == -1); SkASSERT(layout.fSet == -1); if (layout.fLocation >= 0) { this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationLocation, layout.fLocation, fDecorationBuffer); } if (layout.fIndex >= 0) { this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationIndex, layout.fIndex, fDecorationBuffer); } if (layout.fInputAttachmentIndex >= 0) { this->writeInstruction(SpvOpDecorate, target, member, SpvDecorationInputAttachmentIndex, layout.fInputAttachmentIndex, fDecorationBuffer); } if (layout.fBuiltin >= 0) { this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationBuiltIn, layout.fBuiltin, fDecorationBuffer); } } MemoryLayout SPIRVCodeGenerator::memoryLayoutForStorageClass(StorageClass storageClass) { return storageClass == StorageClass::kPushConstant || storageClass == StorageClass::kStorageBuffer ? MemoryLayout(MemoryLayout::Standard::k430) : fDefaultMemoryLayout; } MemoryLayout SPIRVCodeGenerator::memoryLayoutForVariable(const Variable& v) const { bool pushConstant = SkToBool(v.layout().fFlags & LayoutFlag::kPushConstant); bool buffer = v.modifierFlags().isBuffer(); return pushConstant || buffer ? MemoryLayout(MemoryLayout::Standard::k430) : fDefaultMemoryLayout; } SpvId SPIRVCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf, bool appendRTFlip) { MemoryLayout memoryLayout = this->memoryLayoutForVariable(*intf.var()); SpvId result = this->nextId(nullptr); const Variable& intfVar = *intf.var(); const Type& type = intfVar.type(); if (!memoryLayout.isSupported(type)) { fContext.fErrors->error(type.fPosition, "type '" + type.displayName() + "' is not permitted here"); return this->nextId(nullptr); } StorageClass storageClass = get_storage_class_for_global_variable(intfVar, StorageClass::kFunction); if (fProgram.fInterface.fRTFlipUniform != Program::Interface::kRTFlip_None && appendRTFlip && !fWroteRTFlip && type.isStruct()) { // We can only have one interface block (because we use push_constant and that is limited // to one per program), so we need to append rtflip to this one rather than synthesize an // entirely new block when the variable is referenced. And we can't modify the existing // block, so we instead create a modified copy of it and write that. SkSpan fieldSpan = type.fields(); TArray fields(fieldSpan.data(), fieldSpan.size()); fields.emplace_back(Position(), Layout(LayoutFlag::kNone, /*location=*/-1, fProgram.fConfig->fSettings.fRTFlipOffset, /*binding=*/-1, /*index=*/-1, /*set=*/-1, /*builtin=*/-1, /*inputAttachmentIndex=*/-1), ModifierFlag::kNone, SKSL_RTFLIP_NAME, fContext.fTypes.fFloat2.get()); { AutoAttachPoolToThread attach(fProgram.fPool.get()); const Type* rtFlipStructType = fProgram.fSymbols->takeOwnershipOfSymbol( Type::MakeStructType(fContext, type.fPosition, type.name(), std::move(fields), /*interfaceBlock=*/true)); Variable* modifiedVar = fProgram.fSymbols->takeOwnershipOfSymbol( Variable::Make(intfVar.fPosition, intfVar.modifiersPosition(), intfVar.layout(), intfVar.modifierFlags(), rtFlipStructType, intfVar.name(), /*mangledName=*/"", intfVar.isBuiltin(), intfVar.storage())); InterfaceBlock modifiedCopy(intf.fPosition, modifiedVar); result = this->writeInterfaceBlock(modifiedCopy, /*appendRTFlip=*/false); fProgram.fSymbols->add(fContext, std::make_unique( Position(), modifiedVar, rtFlipStructType->fields().size() - 1)); } fVariableMap.set(&intfVar, result); fWroteRTFlip = true; return result; } SpvId typeId = this->getType(type, kDefaultTypeLayout, memoryLayout); if (intfVar.layout().fBuiltin == -1) { // Note: In SPIR-V 1.3, a storage buffer can be declared with the "StorageBuffer" // storage class and the "Block" decoration and the <1.3 approach we use here ("Uniform" // storage class and the "BufferBlock" decoration) is deprecated. Since we target SPIR-V // 1.0, we have to use the deprecated approach which is well supported in Vulkan and // addresses SkSL use cases (notably SkSL currently doesn't support pointer features that // would benefit from SPV_KHR_variable_pointers capabilities). bool isStorageBuffer = intfVar.modifierFlags().isBuffer(); this->writeInstruction(SpvOpDecorate, typeId, isStorageBuffer ? SpvDecorationBufferBlock : SpvDecorationBlock, fDecorationBuffer); } SpvId ptrType = this->nextId(nullptr); this->writeInstruction(SpvOpTypePointer, ptrType, get_storage_class_spv_id(storageClass), typeId, fConstantBuffer); this->writeInstruction(SpvOpVariable, ptrType, result, get_storage_class_spv_id(storageClass), fConstantBuffer); Layout layout = intfVar.layout(); if ((storageClass == StorageClass::kUniform || storageClass == StorageClass::kStorageBuffer) && layout.fSet < 0) { layout.fSet = fProgram.fConfig->fSettings.fDefaultUniformSet; } this->writeLayout(layout, result, intfVar.fPosition); fVariableMap.set(&intfVar, result); return result; } // This function determines whether to skip an OpVariable (of pointer type) declaration for // compile-time constant scalars and vectors which we turn into OpConstant/OpConstantComposite and // always reference by value. // // Accessing a matrix or array member with a dynamic index requires the use of OpAccessChain which // requires a base operand of pointer type. However, a vector can always be accessed by value using // OpVectorExtractDynamic (see writeIndexExpression). // // This is why we always emit an OpVariable for all non-scalar and non-vector types in case they get // accessed via a dynamic index. static bool is_vardecl_compile_time_constant(const VarDeclaration& varDecl) { return varDecl.var()->modifierFlags().isConst() && (varDecl.var()->type().isScalar() || varDecl.var()->type().isVector()) && (ConstantFolder::GetConstantValueOrNull(*varDecl.value()) || Analysis::IsCompileTimeConstant(*varDecl.value())); } bool SPIRVCodeGenerator::writeGlobalVarDeclaration(ProgramKind kind, const VarDeclaration& varDecl) { const Variable* var = varDecl.var(); const LayoutFlags backendFlags = var->layout().fFlags & LayoutFlag::kAllBackends; const LayoutFlags kPermittedBackendFlags = LayoutFlag::kVulkan | LayoutFlag::kWebGPU | LayoutFlag::kDirect3D; if (backendFlags & ~kPermittedBackendFlags) { fContext.fErrors->error(var->fPosition, "incompatible backend flag in SPIR-V codegen"); return false; } // If this global variable is a compile-time constant then we'll emit OpConstant or // OpConstantComposite later when the variable is referenced. Avoid declaring an OpVariable now. if (is_vardecl_compile_time_constant(varDecl)) { return true; } StorageClass storageClass = get_storage_class_for_global_variable(*var, StorageClass::kPrivate); if (storageClass == StorageClass::kUniform || storageClass == StorageClass::kStorageBuffer) { // Top-level uniforms are emitted in writeUniformBuffer. fTopLevelUniforms.push_back(&varDecl); return true; } if (fUseTextureSamplerPairs && var->type().isSampler()) { if (var->layout().fTexture == -1 || var->layout().fSampler == -1) { fContext.fErrors->error(var->fPosition, "selected backend requires separate texture " "and sampler indices"); return false; } SkASSERT(storageClass == StorageClass::kUniformConstant); auto [texture, sampler] = this->synthesizeTextureAndSampler(*var); this->writeGlobalVar(kind, storageClass, *texture); this->writeGlobalVar(kind, storageClass, *sampler); return true; } SpvId id = this->writeGlobalVar(kind, storageClass, *var); if (id != NA && varDecl.value()) { SkASSERT(!fCurrentBlock); fCurrentBlock = NA; SpvId value = this->writeExpression(*varDecl.value(), fGlobalInitializersBuffer); this->writeOpStore(storageClass, id, value, fGlobalInitializersBuffer); fCurrentBlock = 0; } return true; } SpvId SPIRVCodeGenerator::writeGlobalVar(ProgramKind kind, StorageClass storageClass, const Variable& var) { Layout layout = var.layout(); const ModifierFlags flags = var.modifierFlags(); const Type* type = &var.type(); switch (layout.fBuiltin) { case SK_FRAGCOLOR_BUILTIN: case SK_SECONDARYFRAGCOLOR_BUILTIN: if (!ProgramConfig::IsFragment(kind)) { SkASSERT(!fProgram.fConfig->fSettings.fFragColorIsInOut); return NA; } break; case SK_SAMPLEMASKIN_BUILTIN: case SK_SAMPLEMASK_BUILTIN: // SkSL exposes this as a `uint` but SPIR-V, like GLSL, uses an array of signed `uint` // decorated with SpvBuiltinSampleMask. type = fSynthetics.addArrayDimension(fContext, type, /*arraySize=*/1); layout.fBuiltin = SpvBuiltInSampleMask; break; } // Add this global to the variable map. SpvId id = this->nextId(type); fVariableMap.set(&var, id); if (layout.fSet < 0 && storageClass == StorageClass::kUniformConstant) { layout.fSet = fProgram.fConfig->fSettings.fDefaultUniformSet; } SpvId typeId = this->getPointerType(*type, layout, this->memoryLayoutForStorageClass(storageClass), storageClass); this->writeInstruction(SpvOpVariable, typeId, id, get_storage_class_spv_id(storageClass), fConstantBuffer); this->writeInstruction(SpvOpName, id, var.name(), fNameBuffer); this->writeLayout(layout, id, var.fPosition); if (flags & ModifierFlag::kFlat) { this->writeInstruction(SpvOpDecorate, id, SpvDecorationFlat, fDecorationBuffer); } if (flags & ModifierFlag::kNoPerspective) { this->writeInstruction(SpvOpDecorate, id, SpvDecorationNoPerspective, fDecorationBuffer); } if (flags.isWriteOnly()) { this->writeInstruction(SpvOpDecorate, id, SpvDecorationNonReadable, fDecorationBuffer); } else if (flags.isReadOnly()) { this->writeInstruction(SpvOpDecorate, id, SpvDecorationNonWritable, fDecorationBuffer); } return id; } void SPIRVCodeGenerator::writeVarDeclaration(const VarDeclaration& varDecl, OutputStream& out) { // If this variable is a compile-time constant then we'll emit OpConstant or // OpConstantComposite later when the variable is referenced. Avoid declaring an OpVariable now. if (is_vardecl_compile_time_constant(varDecl)) { return; } const Variable* var = varDecl.var(); SpvId id = this->nextId(&var->type()); fVariableMap.set(var, id); SpvId type = this->getPointerType(var->type(), StorageClass::kFunction); this->writeInstruction(SpvOpVariable, type, id, SpvStorageClassFunction, fVariableBuffer); this->writeInstruction(SpvOpName, id, var->name(), fNameBuffer); if (varDecl.value()) { SpvId value = this->writeExpression(*varDecl.value(), out); this->writeOpStore(StorageClass::kFunction, id, value, out); } } void SPIRVCodeGenerator::writeStatement(const Statement& s, OutputStream& out) { switch (s.kind()) { case Statement::Kind::kNop: break; case Statement::Kind::kBlock: this->writeBlock(s.as(), out); break; case Statement::Kind::kExpression: this->writeExpression(*s.as().expression(), out); break; case Statement::Kind::kReturn: this->writeReturnStatement(s.as(), out); break; case Statement::Kind::kVarDeclaration: this->writeVarDeclaration(s.as(), out); break; case Statement::Kind::kIf: this->writeIfStatement(s.as(), out); break; case Statement::Kind::kFor: this->writeForStatement(s.as(), out); break; case Statement::Kind::kDo: this->writeDoStatement(s.as(), out); break; case Statement::Kind::kSwitch: this->writeSwitchStatement(s.as(), out); break; case Statement::Kind::kBreak: this->writeInstruction(SpvOpBranch, fBreakTarget.back(), out); break; case Statement::Kind::kContinue: this->writeInstruction(SpvOpBranch, fContinueTarget.back(), out); break; case Statement::Kind::kDiscard: this->writeInstruction(SpvOpKill, out); break; default: SkDEBUGFAILF("unsupported statement: %s", s.description().c_str()); break; } } void SPIRVCodeGenerator::writeBlock(const Block& b, OutputStream& out) { for (const std::unique_ptr& stmt : b.children()) { this->writeStatement(*stmt, out); } } SPIRVCodeGenerator::ConditionalOpCounts SPIRVCodeGenerator::getConditionalOpCounts() { return {fReachableOps.size(), fStoreOps.size()}; } void SPIRVCodeGenerator::pruneConditionalOps(ConditionalOpCounts ops) { // Remove ops which are no longer reachable. while (fReachableOps.size() > ops.numReachableOps) { SpvId prunableSpvId = fReachableOps.back(); const Instruction* prunableOp = fSpvIdCache.find(prunableSpvId); if (prunableOp) { fOpCache.remove(*prunableOp); fSpvIdCache.remove(prunableSpvId); } else { SkDEBUGFAIL("reachable-op list contains unrecognized SpvId"); } fReachableOps.pop_back(); } // Remove any cached stores that occurred during the conditional block. while (fStoreOps.size() > ops.numStoreOps) { if (fStoreCache.find(fStoreOps.back())) { fStoreCache.remove(fStoreOps.back()); } fStoreOps.pop_back(); } } void SPIRVCodeGenerator::writeIfStatement(const IfStatement& stmt, OutputStream& out) { SpvId test = this->writeExpression(*stmt.test(), out); SpvId ifTrue = this->nextId(nullptr); SpvId ifFalse = this->nextId(nullptr); ConditionalOpCounts conditionalOps = this->getConditionalOpCounts(); if (stmt.ifFalse()) { SpvId end = this->nextId(nullptr); this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, test, ifTrue, ifFalse, out); this->writeLabel(ifTrue, kBranchIsOnPreviousLine, out); this->writeStatement(*stmt.ifTrue(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, end, out); } this->writeLabel(ifFalse, kBranchIsAbove, conditionalOps, out); this->writeStatement(*stmt.ifFalse(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, end, out); } this->writeLabel(end, kBranchIsAbove, conditionalOps, out); } else { this->writeInstruction(SpvOpSelectionMerge, ifFalse, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, test, ifTrue, ifFalse, out); this->writeLabel(ifTrue, kBranchIsOnPreviousLine, out); this->writeStatement(*stmt.ifTrue(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, ifFalse, out); } this->writeLabel(ifFalse, kBranchIsAbove, conditionalOps, out); } } void SPIRVCodeGenerator::writeForStatement(const ForStatement& f, OutputStream& out) { if (f.initializer()) { this->writeStatement(*f.initializer(), out); } ConditionalOpCounts conditionalOps = this->getConditionalOpCounts(); // The store cache isn't trustworthy in the presence of branches; store caching only makes sense // in the context of linear straight-line execution. If we wanted to be more clever, we could // only invalidate store cache entries for variables affected by the loop body, but for now we // simply clear the entire cache whenever branching occurs. SpvId header = this->nextId(nullptr); SpvId start = this->nextId(nullptr); SpvId body = this->nextId(nullptr); SpvId next = this->nextId(nullptr); fContinueTarget.push_back(next); SpvId end = this->nextId(nullptr); fBreakTarget.push_back(end); this->writeInstruction(SpvOpBranch, header, out); this->writeLabel(header, kBranchIsBelow, conditionalOps, out); this->writeInstruction(SpvOpLoopMerge, end, next, SpvLoopControlMaskNone, out); this->writeInstruction(SpvOpBranch, start, out); this->writeLabel(start, kBranchIsOnPreviousLine, out); if (f.test()) { SpvId test = this->writeExpression(*f.test(), out); this->writeInstruction(SpvOpBranchConditional, test, body, end, out); } else { this->writeInstruction(SpvOpBranch, body, out); } this->writeLabel(body, kBranchIsOnPreviousLine, out); this->writeStatement(*f.statement(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, next, out); } this->writeLabel(next, kBranchIsAbove, conditionalOps, out); if (f.next()) { this->writeExpression(*f.next(), out); } this->writeInstruction(SpvOpBranch, header, out); this->writeLabel(end, kBranchIsAbove, conditionalOps, out); fBreakTarget.pop_back(); fContinueTarget.pop_back(); } void SPIRVCodeGenerator::writeDoStatement(const DoStatement& d, OutputStream& out) { ConditionalOpCounts conditionalOps = this->getConditionalOpCounts(); // The store cache isn't trustworthy in the presence of branches; store caching only makes sense // in the context of linear straight-line execution. If we wanted to be more clever, we could // only invalidate store cache entries for variables affected by the loop body, but for now we // simply clear the entire cache whenever branching occurs. SpvId header = this->nextId(nullptr); SpvId start = this->nextId(nullptr); SpvId next = this->nextId(nullptr); SpvId continueTarget = this->nextId(nullptr); fContinueTarget.push_back(continueTarget); SpvId end = this->nextId(nullptr); fBreakTarget.push_back(end); this->writeInstruction(SpvOpBranch, header, out); this->writeLabel(header, kBranchIsBelow, conditionalOps, out); this->writeInstruction(SpvOpLoopMerge, end, continueTarget, SpvLoopControlMaskNone, out); this->writeInstruction(SpvOpBranch, start, out); this->writeLabel(start, kBranchIsOnPreviousLine, out); this->writeStatement(*d.statement(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, next, out); this->writeLabel(next, kBranchIsOnPreviousLine, out); this->writeInstruction(SpvOpBranch, continueTarget, out); } this->writeLabel(continueTarget, kBranchIsAbove, conditionalOps, out); SpvId test = this->writeExpression(*d.test(), out); this->writeInstruction(SpvOpBranchConditional, test, header, end, out); this->writeLabel(end, kBranchIsAbove, conditionalOps, out); fBreakTarget.pop_back(); fContinueTarget.pop_back(); } void SPIRVCodeGenerator::writeSwitchStatement(const SwitchStatement& s, OutputStream& out) { SpvId value = this->writeExpression(*s.value(), out); ConditionalOpCounts conditionalOps = this->getConditionalOpCounts(); // The store cache isn't trustworthy in the presence of branches; store caching only makes sense // in the context of linear straight-line execution. If we wanted to be more clever, we could // only invalidate store cache entries for variables affected by the switch body, but for now we // simply clear the entire cache whenever branching occurs. TArray labels; SpvId end = this->nextId(nullptr); SpvId defaultLabel = end; fBreakTarget.push_back(end); int size = 3; const StatementArray& cases = s.cases(); for (const std::unique_ptr& stmt : cases) { const SwitchCase& c = stmt->as(); SpvId label = this->nextId(nullptr); labels.push_back(label); if (!c.isDefault()) { size += 2; } else { defaultLabel = label; } } // We should have exactly one label for each case. SkASSERT(labels.size() == cases.size()); // Collapse adjacent switch-cases into one; that is, reduce `case 1: case 2: case 3:` into a // single OpLabel. The Tint SPIR-V reader does not support switch-case fallthrough, but it // does support multiple switch-cases branching to the same label. SkBitSet caseIsCollapsed(cases.size()); for (int index = cases.size() - 2; index >= 0; index--) { if (cases[index]->as().statement()->isEmpty()) { caseIsCollapsed.set(index); labels[index] = labels[index + 1]; } } labels.push_back(end); this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeOpCode(SpvOpSwitch, size, out); this->writeWord(value, out); this->writeWord(defaultLabel, out); for (int i = 0; i < cases.size(); ++i) { const SwitchCase& c = cases[i]->as(); if (c.isDefault()) { continue; } this->writeWord(c.value(), out); this->writeWord(labels[i], out); } for (int i = 0; i < cases.size(); ++i) { if (caseIsCollapsed.test(i)) { continue; } const SwitchCase& c = cases[i]->as(); if (i == 0) { this->writeLabel(labels[i], kBranchIsOnPreviousLine, out); } else { this->writeLabel(labels[i], kBranchIsAbove, conditionalOps, out); } this->writeStatement(*c.statement(), out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, labels[i + 1], out); } } this->writeLabel(end, kBranchIsAbove, conditionalOps, out); fBreakTarget.pop_back(); } void SPIRVCodeGenerator::writeReturnStatement(const ReturnStatement& r, OutputStream& out) { if (r.expression()) { this->writeInstruction(SpvOpReturnValue, this->writeExpression(*r.expression(), out), out); } else { this->writeInstruction(SpvOpReturn, out); } } // Given any function, returns the top-level symbol table (OUTSIDE of the function's scope). static SymbolTable* get_top_level_symbol_table(const FunctionDeclaration& anyFunc) { return anyFunc.definition()->body()->as().symbolTable()->fParent; } SPIRVCodeGenerator::EntrypointAdapter SPIRVCodeGenerator::writeEntrypointAdapter( const FunctionDeclaration& main) { // Our goal is to synthesize a tiny helper function which looks like this: // void _entrypoint() { sk_FragColor = main(); } // Fish a symbol table out of main(). SymbolTable* symbolTable = get_top_level_symbol_table(main); // Get `sk_FragColor` as a writable reference. const Symbol* skFragColorSymbol = symbolTable->find("sk_FragColor"); SkASSERT(skFragColorSymbol); const Variable& skFragColorVar = skFragColorSymbol->as(); auto skFragColorRef = std::make_unique(Position(), &skFragColorVar, VariableReference::RefKind::kWrite); // TODO get secondary frag color as one as well? // Synthesize a call to the `main()` function. if (!main.returnType().matches(skFragColorRef->type())) { fContext.fErrors->error(main.fPosition, "SPIR-V does not support returning '" + main.returnType().description() + "' from main()"); return {}; } ExpressionArray args; if (main.parameters().size() == 1) { if (!main.parameters()[0]->type().matches(*fContext.fTypes.fFloat2)) { fContext.fErrors->error(main.fPosition, "SPIR-V does not support parameter of type '" + main.parameters()[0]->type().description() + "' to main()"); return {}; } double kZero[2] = {0.0, 0.0}; args.push_back(ConstructorCompound::MakeFromConstants(fContext, Position{}, *fContext.fTypes.fFloat2, kZero)); } auto callMainFn = FunctionCall::Make(fContext, Position(), &main.returnType(), main, std::move(args)); // Synthesize `skFragColor = main()` as a BinaryExpression. auto assignmentStmt = std::make_unique(std::make_unique( Position(), std::move(skFragColorRef), Operator::Kind::EQ, std::move(callMainFn), &main.returnType())); // Function bodies are always wrapped in a Block. StatementArray entrypointStmts; entrypointStmts.push_back(std::move(assignmentStmt)); auto entrypointBlock = Block::Make(Position(), std::move(entrypointStmts), Block::Kind::kBracedScope, /*symbols=*/nullptr); // Declare an entrypoint function. EntrypointAdapter adapter; adapter.entrypointDecl = std::make_unique(fContext, Position(), ModifierFlag::kNone, "_entrypoint", /*parameters=*/TArray{}, /*returnType=*/fContext.fTypes.fVoid.get(), kNotIntrinsic); // Define it. adapter.entrypointDef = FunctionDefinition::Convert(fContext, Position(), *adapter.entrypointDecl, std::move(entrypointBlock)); adapter.entrypointDecl->setDefinition(adapter.entrypointDef.get()); return adapter; } void SPIRVCodeGenerator::writeUniformBuffer(SymbolTable* topLevelSymbolTable) { SkASSERT(!fTopLevelUniforms.empty()); static constexpr char kUniformBufferName[] = "_UniformBuffer"; // Convert the list of top-level uniforms into a matching struct named _UniformBuffer, and build // a lookup table of variables to UniformBuffer field indices. TArray fields; fields.reserve_exact(fTopLevelUniforms.size()); for (const VarDeclaration* topLevelUniform : fTopLevelUniforms) { const Variable* var = topLevelUniform->var(); fTopLevelUniformMap.set(var, (int)fields.size()); ModifierFlags flags = var->modifierFlags() & ~ModifierFlag::kUniform; fields.emplace_back(var->fPosition, var->layout(), flags, var->name(), &var->type()); } fUniformBuffer.fStruct = Type::MakeStructType(fContext, Position(), kUniformBufferName, std::move(fields), /*interfaceBlock=*/true); // Create a global variable to contain this struct. Layout layout; layout.fBinding = fProgram.fConfig->fSettings.fDefaultUniformBinding; layout.fSet = fProgram.fConfig->fSettings.fDefaultUniformSet; fUniformBuffer.fInnerVariable = Variable::Make(/*pos=*/Position(), /*modifiersPosition=*/Position(), layout, ModifierFlag::kUniform, fUniformBuffer.fStruct.get(), kUniformBufferName, /*mangledName=*/"", /*builtin=*/false, Variable::Storage::kGlobal); // Create an interface block object for this global variable. fUniformBuffer.fInterfaceBlock = std::make_unique(Position(), fUniformBuffer.fInnerVariable.get()); // Generate an interface block and hold onto its ID. fUniformBufferId = this->writeInterfaceBlock(*fUniformBuffer.fInterfaceBlock); } void SPIRVCodeGenerator::addRTFlipUniform(Position pos) { SkASSERT(!fProgram.fConfig->fSettings.fForceNoRTFlip); if (fWroteRTFlip) { return; } // Flip variable hasn't been written yet. This means we don't have an existing // interface block, so we're free to just synthesize one. fWroteRTFlip = true; TArray fields; if (fProgram.fConfig->fSettings.fRTFlipOffset < 0) { fContext.fErrors->error(pos, "RTFlipOffset is negative"); } fields.emplace_back(pos, Layout(LayoutFlag::kNone, /*location=*/-1, fProgram.fConfig->fSettings.fRTFlipOffset, /*binding=*/-1, /*index=*/-1, /*set=*/-1, /*builtin=*/-1, /*inputAttachmentIndex=*/-1), ModifierFlag::kNone, SKSL_RTFLIP_NAME, fContext.fTypes.fFloat2.get()); std::string_view name = "sksl_synthetic_uniforms"; const Type* intfStruct = fSynthetics.takeOwnershipOfSymbol(Type::MakeStructType( fContext, Position(), name, std::move(fields), /*interfaceBlock=*/true)); bool usePushConstants = fProgram.fConfig->fSettings.fUsePushConstants; int binding = -1, set = -1; if (!usePushConstants) { binding = fProgram.fConfig->fSettings.fRTFlipBinding; if (binding == -1) { fContext.fErrors->error(pos, "layout(binding=...) is required in SPIR-V"); } set = fProgram.fConfig->fSettings.fRTFlipSet; if (set == -1) { fContext.fErrors->error(pos, "layout(set=...) is required in SPIR-V"); } } Layout layout(/*flags=*/usePushConstants ? LayoutFlag::kPushConstant : LayoutFlag::kNone, /*location=*/-1, /*offset=*/-1, binding, /*index=*/-1, set, /*builtin=*/-1, /*inputAttachmentIndex=*/-1); Variable* intfVar = fSynthetics.takeOwnershipOfSymbol(Variable::Make(/*pos=*/Position(), /*modifiersPosition=*/Position(), layout, ModifierFlag::kUniform, intfStruct, name, /*mangledName=*/"", /*builtin=*/false, Variable::Storage::kGlobal)); { AutoAttachPoolToThread attach(fProgram.fPool.get()); fProgram.fSymbols->add(fContext, std::make_unique(Position(), intfVar, /*field=*/0)); } InterfaceBlock intf(Position(), intfVar); this->writeInterfaceBlock(intf, false); } std::tuple SPIRVCodeGenerator::synthesizeTextureAndSampler( const Variable& combinedSampler) { SkASSERT(fUseTextureSamplerPairs); SkASSERT(combinedSampler.type().typeKind() == Type::TypeKind::kSampler); if (std::unique_ptr* existingData = fSynthesizedSamplerMap.find(&combinedSampler)) { return {(*existingData)->fTexture.get(), (*existingData)->fSampler.get()}; } auto data = std::make_unique(); Layout texLayout = combinedSampler.layout(); texLayout.fBinding = texLayout.fTexture; data->fTextureName = std::string(combinedSampler.name()) + "_texture"; auto texture = Variable::Make(/*pos=*/Position(), /*modifiersPosition=*/Position(), texLayout, combinedSampler.modifierFlags(), &combinedSampler.type().textureType(), data->fTextureName, /*mangledName=*/"", /*builtin=*/false, Variable::Storage::kGlobal); Layout samplerLayout = combinedSampler.layout(); samplerLayout.fBinding = samplerLayout.fSampler; samplerLayout.fFlags &= ~LayoutFlag::kAllPixelFormats; data->fSamplerName = std::string(combinedSampler.name()) + "_sampler"; auto sampler = Variable::Make(/*pos=*/Position(), /*modifiersPosition=*/Position(), samplerLayout, combinedSampler.modifierFlags(), fContext.fTypes.fSampler.get(), data->fSamplerName, /*mangledName=*/"", /*builtin=*/false, Variable::Storage::kGlobal); const Variable* t = texture.get(); const Variable* s = sampler.get(); data->fTexture = std::move(texture); data->fSampler = std::move(sampler); fSynthesizedSamplerMap.set(&combinedSampler, std::move(data)); return {t, s}; } void SPIRVCodeGenerator::writeInstructions(const Program& program, OutputStream& out) { Analysis::FindFunctionsToSpecialize(program, &fSpecializationInfo, [](const Variable& param) { return param.type().isSampler() || param.type().isUnsizedArray(); }); fGLSLExtendedInstructions = this->nextId(nullptr); StringStream body; // Do an initial pass over the program elements to establish some baseline info. const FunctionDeclaration* main = nullptr; int localSizeX = 1, localSizeY = 1, localSizeZ = 1; Position combinedSamplerPos; Position separateSamplerPos; for (const ProgramElement* e : program.elements()) { switch (e->kind()) { case ProgramElement::Kind::kFunction: { // Assign SpvIds to functions. const FunctionDefinition& funcDef = e->as(); const FunctionDeclaration& funcDecl = funcDef.declaration(); if (const Analysis::Specializations* specializations = fSpecializationInfo.fSpecializationMap.find(&funcDecl)) { for (int i = 0; i < specializations->size(); i++) { fFunctionMap.set({&funcDecl, i}, this->nextId(nullptr)); } } else { fFunctionMap.set({&funcDecl, Analysis::kUnspecialized}, this->nextId(nullptr)); } if (funcDecl.isMain()) { main = &funcDecl; } break; } case ProgramElement::Kind::kGlobalVar: { // Look for sampler variables and determine whether or not this program uses // combined samplers or separate samplers. The layout backend will be marked as // WebGPU for separate samplers, or Vulkan for combined samplers. const GlobalVarDeclaration& decl = e->as(); const Variable& var = *decl.varDeclaration().var(); if (var.type().isSampler()) { if (var.layout().fFlags & LayoutFlag::kVulkan) { combinedSamplerPos = decl.position(); } if (var.layout().fFlags & (LayoutFlag::kWebGPU | LayoutFlag::kDirect3D)) { separateSamplerPos = decl.position(); } } break; } case ProgramElement::Kind::kModifiers: { // If this is a compute program, collect the local-size values. Dimensions that are // not present will be assigned a value of 1. if (ProgramConfig::IsCompute(program.fConfig->fKind)) { const ModifiersDeclaration& modifiers = e->as(); if (modifiers.layout().fLocalSizeX >= 0) { localSizeX = modifiers.layout().fLocalSizeX; } if (modifiers.layout().fLocalSizeY >= 0) { localSizeY = modifiers.layout().fLocalSizeY; } if (modifiers.layout().fLocalSizeZ >= 0) { localSizeZ = modifiers.layout().fLocalSizeZ; } } break; } default: break; } } // Make sure we have a main() function. if (!main) { fContext.fErrors->error(Position(), "program does not contain a main() function"); return; } // Make sure our program's sampler usage is consistent. if (combinedSamplerPos.valid() && separateSamplerPos.valid()) { fContext.fErrors->error(Position(), "programs cannot contain a mixture of sampler types"); fContext.fErrors->error(combinedSamplerPos, "combined sampler found here:"); fContext.fErrors->error(separateSamplerPos, "separate sampler found here:"); return; } fUseTextureSamplerPairs = separateSamplerPos.valid(); // Emit interface blocks. std::set interfaceVars; for (const ProgramElement* e : program.elements()) { if (e->is()) { const InterfaceBlock& intf = e->as(); SpvId id = this->writeInterfaceBlock(intf); if ((intf.var()->modifierFlags() & (ModifierFlag::kIn | ModifierFlag::kOut)) && intf.var()->layout().fBuiltin == -1) { interfaceVars.insert(id); } } } // If MustDeclareFragmentFrontFacing is set, the front-facing flag (sk_Clockwise) needs to be // explicitly declared in the output, whether or not the program explicitly references it. // However, if the program naturally declares it, we don't want to include it a second time; // we keep track of the real global variable declarations to see if sk_Clockwise is emitted. const VarDeclaration* missingClockwiseDecl = nullptr; if (fCaps.fMustDeclareFragmentFrontFacing) { if (const Symbol* clockwise = program.fSymbols->findBuiltinSymbol("sk_Clockwise")) { missingClockwiseDecl = clockwise->as().varDeclaration(); } } // Emit global variable declarations. for (const ProgramElement* e : program.elements()) { if (e->is()) { const VarDeclaration& decl = e->as().varDeclaration(); if (!this->writeGlobalVarDeclaration(program.fConfig->fKind, decl)) { return; } if (missingClockwiseDecl == &decl) { // We emitted an sk_Clockwise declaration naturally, so we don't need a workaround. missingClockwiseDecl = nullptr; } } } // All the global variables have been declared. If sk_Clockwise was not naturally included in // the output, but MustDeclareFragmentFrontFacing was set, we need to bodge it in ourselves. if (missingClockwiseDecl) { if (!this->writeGlobalVarDeclaration(program.fConfig->fKind, *missingClockwiseDecl)) { return; } missingClockwiseDecl = nullptr; } // Emit top-level uniforms into a dedicated uniform buffer. if (!fTopLevelUniforms.empty()) { this->writeUniformBuffer(get_top_level_symbol_table(*main)); } // If main() returns a half4, synthesize a tiny entrypoint function which invokes the real // main() and stores the result into sk_FragColor. EntrypointAdapter adapter; if (main->returnType().matches(*fContext.fTypes.fHalf4)) { adapter = this->writeEntrypointAdapter(*main); if (adapter.entrypointDecl) { fFunctionMap.set({adapter.entrypointDecl.get(), Analysis::kUnspecialized}, this->nextId(nullptr)); this->writeFunction(*adapter.entrypointDef, body); main = adapter.entrypointDecl.get(); } } // Emit all the functions. for (const ProgramElement* e : program.elements()) { if (e->is()) { this->writeFunction(e->as(), body); } } // Add global in/out variables to the list of interface variables. for (const auto& [var, spvId] : fVariableMap) { if (var->storage() == Variable::Storage::kGlobal && (var->modifierFlags() & (ModifierFlag::kIn | ModifierFlag::kOut))) { interfaceVars.insert(spvId); } } this->writeCapabilities(out); this->writeInstruction(SpvOpExtInstImport, fGLSLExtendedInstructions, "GLSL.std.450", out); this->writeInstruction(SpvOpMemoryModel, SpvAddressingModelLogical, SpvMemoryModelGLSL450, out); this->writeOpCode(SpvOpEntryPoint, (SpvId)(3 + (main->name().length() + 4) / 4) + (int32_t)interfaceVars.size(), out); if (ProgramConfig::IsVertex(program.fConfig->fKind)) { this->writeWord(SpvExecutionModelVertex, out); } else if (ProgramConfig::IsFragment(program.fConfig->fKind)) { this->writeWord(SpvExecutionModelFragment, out); } else if (ProgramConfig::IsCompute(program.fConfig->fKind)) { this->writeWord(SpvExecutionModelGLCompute, out); } else { SK_ABORT("cannot write this kind of program to SPIR-V\n"); } const Analysis::SpecializedFunctionKey mainKey{main, Analysis::kUnspecialized}; SpvId entryPoint = fFunctionMap[mainKey]; this->writeWord(entryPoint, out); this->writeString(main->name(), out); for (int var : interfaceVars) { this->writeWord(var, out); } if (ProgramConfig::IsFragment(program.fConfig->fKind)) { this->writeInstruction(SpvOpExecutionMode, fFunctionMap[mainKey], SpvExecutionModeOriginUpperLeft, out); } else if (ProgramConfig::IsCompute(program.fConfig->fKind)) { this->writeInstruction(SpvOpExecutionMode, fFunctionMap[mainKey], SpvExecutionModeLocalSize, localSizeX, localSizeY, localSizeZ, out); } for (const ProgramElement* e : program.elements()) { if (e->is()) { this->writeInstruction(SpvOpSourceExtension, e->as().name(), out); } } write_stringstream(fNameBuffer, out); write_stringstream(fDecorationBuffer, out); write_stringstream(fConstantBuffer, out); write_stringstream(body, out); } bool SPIRVCodeGenerator::generateCode() { SkASSERT(!fContext.fErrors->errorCount()); this->writeWord(SpvMagicNumber, *fOut); this->writeWord(SpvVersion, *fOut); this->writeWord(SKSL_MAGIC, *fOut); StringStream buffer; this->writeInstructions(fProgram, buffer); this->writeWord(fIdCount, *fOut); this->writeWord(0, *fOut); // reserved, always zero write_stringstream(buffer, *fOut); return fContext.fErrors->errorCount() == 0; } bool ToSPIRV(Program& program, const ShaderCaps* caps, OutputStream& out, ValidateSPIRVProc validateSPIRV) { TRACE_EVENT0("skia.shaders", "SkSL::ToSPIRV"); SkASSERT(caps != nullptr); program.fContext->fErrors->setSource(*program.fSource); bool result; if (validateSPIRV) { StringStream buffer; SPIRVCodeGenerator cg(program.fContext.get(), caps, &program, &buffer); result = cg.generateCode(); if (result && program.fConfig->fSettings.fValidateSPIRV) { std::string_view binary = buffer.str(); result = validateSPIRV(*program.fContext->fErrors, binary); out.write(binary.data(), binary.size()); } } else { SPIRVCodeGenerator cg(program.fContext.get(), caps, &program, &out); result = cg.generateCode(); } program.fContext->fErrors->setSource(std::string_view()); return result; } bool ToSPIRV(Program& program, const ShaderCaps* caps, std::string* out, ValidateSPIRVProc validateSPIRV) { StringStream buffer; if (!ToSPIRV(program, caps, buffer, validateSPIRV)) { return false; } *out = buffer.str(); return true; } } // namespace SkSL