/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkPath.h" #include "include/core/SkPoint.h" #include "include/core/SkScalar.h" #include "include/core/SkStream.h" #include "include/core/SkString.h" #include "include/core/SkTypes.h" #include "include/utils/SkParse.h" #include "include/utils/SkParsePath.h" #include "src/core/SkGeometry.h" #include enum class SkPathDirection; static inline bool is_between(int c, int min, int max) { return (unsigned)(c - min) <= (unsigned)(max - min); } static inline bool is_ws(int c) { return is_between(c, 1, 32); } static inline bool is_digit(int c) { return is_between(c, '0', '9'); } static inline bool is_sep(int c) { return is_ws(c) || c == ','; } static inline bool is_lower(int c) { return is_between(c, 'a', 'z'); } static inline int to_upper(int c) { return c - 'a' + 'A'; } static const char* skip_ws(const char str[]) { SkASSERT(str); while (is_ws(*str)) str++; return str; } static const char* skip_sep(const char str[]) { if (!str) { return nullptr; } while (is_sep(*str)) str++; return str; } // If unable to read count points from str into value, this will return nullptr // to signal the failure. Otherwise, it will return the next offset to read from. static const char* find_points(const char str[], SkPoint value[], int count, bool isRelative, SkPoint* relative) { str = SkParse::FindScalars(str, &value[0].fX, count * 2); if (isRelative) { for (int index = 0; index < count; index++) { value[index].fX += relative->fX; value[index].fY += relative->fY; } } return str; } // If unable to read a scalar from str into value, this will return nullptr // to signal the failure. Otherwise, it will return the next offset to read from. static const char* find_scalar(const char str[], SkScalar* value, bool isRelative, SkScalar relative) { str = SkParse::FindScalar(str, value); if (!str) { return nullptr; } if (isRelative) { *value += relative; } str = skip_sep(str); return str; } // https://www.w3.org/TR/SVG11/paths.html#PathDataBNF // // flag: // "0" | "1" static const char* find_flag(const char str[], bool* value) { if (!str) { return nullptr; } if (str[0] != '1' && str[0] != '0') { return nullptr; } *value = str[0] != '0'; str = skip_sep(str + 1); return str; } bool SkParsePath::FromSVGString(const char data[], SkPath* result) { // We will write all data to this local path and only write it // to result if the whole parsing succeeds. SkPath path; SkPoint first = {0, 0}; SkPoint c = {0, 0}; SkPoint lastc = {0, 0}; // We will use find_points and find_scalar to read into these. // There might not be enough data to fill them, so to avoid // MSAN warnings about using uninitialized bytes, we initialize // them there. SkPoint points[3] = {}; SkScalar scratch = 0; char op = '\0'; char previousOp = '\0'; bool relative = false; for (;;) { if (!data) { // Truncated data return false; } data = skip_ws(data); if (data[0] == '\0') { break; } char ch = data[0]; if (is_digit(ch) || ch == '-' || ch == '+' || ch == '.') { if (op == '\0' || op == 'Z') { return false; } } else if (is_sep(ch)) { data = skip_sep(data); } else { op = ch; relative = false; if (is_lower(op)) { op = (char) to_upper(op); relative = true; } data++; data = skip_sep(data); } switch (op) { case 'M': // Move data = find_points(data, points, 1, relative, &c); // find_points might have failed, so this might be the // previous point. However, data will be set to nullptr // if it failed, so we will check this at the top of the loop. path.moveTo(points[0]); previousOp = '\0'; op = 'L'; c = points[0]; break; case 'L': // Line data = find_points(data, points, 1, relative, &c); path.lineTo(points[0]); c = points[0]; break; case 'H': // Horizontal Line data = find_scalar(data, &scratch, relative, c.fX); // Similarly, if there wasn't a scalar to read, data will // be set to nullptr and this lineTo is bogus but will // be ultimately ignored when the next time through the loop // detects that and bails out. path.lineTo(scratch, c.fY); c.fX = scratch; break; case 'V': // Vertical Line data = find_scalar(data, &scratch, relative, c.fY); path.lineTo(c.fX, scratch); c.fY = scratch; break; case 'C': // Cubic Bezier Curve data = find_points(data, points, 3, relative, &c); goto cubicCommon; case 'S': // Continued "Smooth" Cubic Bezier Curve data = find_points(data, &points[1], 2, relative, &c); points[0] = c; if (previousOp == 'C' || previousOp == 'S') { points[0].fX -= lastc.fX - c.fX; points[0].fY -= lastc.fY - c.fY; } cubicCommon: path.cubicTo(points[0], points[1], points[2]); lastc = points[1]; c = points[2]; break; case 'Q': // Quadratic Bezier Curve data = find_points(data, points, 2, relative, &c); goto quadraticCommon; case 'T': // Continued Quadratic Bezier Curve data = find_points(data, &points[1], 1, relative, &c); points[0] = c; if (previousOp == 'Q' || previousOp == 'T') { points[0].fX -= lastc.fX - c.fX; points[0].fY -= lastc.fY - c.fY; } quadraticCommon: path.quadTo(points[0], points[1]); lastc = points[0]; c = points[1]; break; case 'A': { // Arc (Elliptical) SkPoint radii; SkScalar angle; bool largeArc, sweep; if ((data = find_points(data, &radii, 1, false, nullptr)) && (data = skip_sep(data)) && (data = find_scalar(data, &angle, false, 0)) && (data = skip_sep(data)) && (data = find_flag(data, &largeArc)) && (data = skip_sep(data)) && (data = find_flag(data, &sweep)) && (data = skip_sep(data)) && (data = find_points(data, &points[0], 1, relative, &c))) { path.arcTo(radii, angle, (SkPath::ArcSize) largeArc, (SkPathDirection) !sweep, points[0]); path.getLastPt(&c); } } break; case 'Z': // Close Path path.close(); c = first; break; default: return false; } if (previousOp == 0) { first = c; } previousOp = op; } // we're good, go ahead and swap in the result result->swap(path); return true; } /////////////////////////////////////////////////////////////////////////////// SkString SkParsePath::ToSVGString(const SkPath& path, PathEncoding encoding) { SkDynamicMemoryWStream stream; SkPoint current_point{0,0}; const auto rel_selector = encoding == PathEncoding::Relative; const auto append_command = [&](char cmd, const SkPoint pts[], size_t count) { // Use lower case cmds for relative encoding. cmd += 32 * rel_selector; stream.write(&cmd, 1); for (size_t i = 0; i < count; ++i) { const auto pt = pts[i] - current_point; if (i > 0) { stream.write(" ", 1); } stream.writeScalarAsText(pt.fX); stream.write(" ", 1); stream.writeScalarAsText(pt.fY); } SkASSERT(count > 0); // For relative encoding, track the current point (otherwise == origin). current_point = pts[count - 1] * rel_selector; }; SkPath::Iter iter(path, false); SkPoint pts[4]; for (;;) { switch (iter.next(pts)) { case SkPath::kConic_Verb: { const SkScalar tol = SK_Scalar1 / 1024; // how close to a quad SkAutoConicToQuads quadder; const SkPoint* quadPts = quadder.computeQuads(pts, iter.conicWeight(), tol); for (int i = 0; i < quadder.countQuads(); ++i) { append_command('Q', &quadPts[i*2 + 1], 2); } } break; case SkPath::kMove_Verb: append_command('M', &pts[0], 1); break; case SkPath::kLine_Verb: append_command('L', &pts[1], 1); break; case SkPath::kQuad_Verb: append_command('Q', &pts[1], 2); break; case SkPath::kCubic_Verb: append_command('C', &pts[1], 3); break; case SkPath::kClose_Verb: stream.write("Z", 1); break; case SkPath::kDone_Verb: { SkString str; str.resize(stream.bytesWritten()); stream.copyTo(str.data()); return str; } } } }