/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkString.h" #include "include/core/SkTypes.h" #include "include/private/base/SkAlign.h" #include "src/base/SkRandom.h" #include "src/core/SkChecksum.h" #include "tests/Test.h" #include #include #include #include #include DEF_TEST(Checksum, r) { // Put 128 random bytes into two identical buffers. Any multiple of 4 will do. const size_t kBytes = SkAlign4(128); SkRandom rand; uint32_t data[kBytes/4], tweaked[kBytes/4]; for (size_t i = 0; i < std::size(tweaked); ++i) { data[i] = tweaked[i] = rand.nextU(); } const uint32_t hash = SkChecksum::Hash32(data, kBytes); // Should be deterministic. REPORTER_ASSERT(r, hash == SkChecksum::Hash32(data, kBytes)); // Changing any single element should change the hash. for (size_t j = 0; j < std::size(tweaked); ++j) { const uint32_t saved = tweaked[j]; tweaked[j] = rand.nextU(); const uint32_t tweakedHash = SkChecksum::Hash32(tweaked, kBytes); REPORTER_ASSERT(r, tweakedHash != hash); REPORTER_ASSERT(r, tweakedHash == SkChecksum::Hash32(tweaked, kBytes)); tweaked[j] = saved; } } DEF_TEST(GoodHash, r) { // 4 bytes --> hits SkChecksum::Mix fast path. REPORTER_ASSERT(r, SkGoodHash()(( int32_t)4) == 614249093); REPORTER_ASSERT(r, SkGoodHash()((uint32_t)4) == 614249093); } DEF_TEST(ChecksumCollisions, r) { // We noticed a few workloads that would cause hash collisions due to the way // our old optimized hashes split into three concurrent hashes and merged those hashes together. // // One of these two workloads ought to cause an unintentional hash collision on very similar // data in those old algorithms, the float version on 32-bit x86 and double elsewhere. { float a[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, }; float b[9] = { 1, 2, 0, 4, 5, 3, 7, 8, 6, }; REPORTER_ASSERT(r, SkChecksum::Hash32(a, sizeof(a)) != SkChecksum::Hash32(b, sizeof(b))); } { double a[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, }; double b[9] = { 1, 2, 0, 4, 5, 3, 7, 8, 6, }; REPORTER_ASSERT(r, SkChecksum::Hash32(a, sizeof(a)) != SkChecksum::Hash32(b, sizeof(b))); } } DEF_TEST(ChecksumConsistent, r) { // We don't guarantee that SkChecksum::Hash32 will return consistent results, but it does today. // Spot check a few: uint8_t bytes[256]; for (int i = 0; i < 256; i++) { bytes[i] = i; } auto hash_bytes = [&](int n) { return SkChecksum::Hash32(bytes, n); }; REPORTER_ASSERT(r, hash_bytes( 0) == 0xe2bde459, "%08x", hash_bytes( 0)); REPORTER_ASSERT(r, hash_bytes( 1) == 0xe5f8bd85, "%08x", hash_bytes( 1)); REPORTER_ASSERT(r, hash_bytes( 2) == 0x77acd42a, "%08x", hash_bytes( 2)); REPORTER_ASSERT(r, hash_bytes( 7) == 0x78d0861f, "%08x", hash_bytes( 7)); REPORTER_ASSERT(r, hash_bytes( 32) == 0x4e73df6d, "%08x", hash_bytes( 32)); REPORTER_ASSERT(r, hash_bytes( 63) == 0x5e66a3f4, "%08x", hash_bytes( 63)); REPORTER_ASSERT(r, hash_bytes( 64) == 0x962d6746, "%08x", hash_bytes( 64)); REPORTER_ASSERT(r, hash_bytes( 99) == 0x79e09416, "%08x", hash_bytes( 99)); REPORTER_ASSERT(r, hash_bytes(255) == 0x85f837f0, "%08x", hash_bytes(255)); } DEF_TEST(ChecksumStrings, r) { constexpr char kMessage[] = "Checksums are supported for SkString, string, and string_view."; const uint32_t expectedHash = SkChecksum::Hash32(kMessage, strlen(kMessage)); REPORTER_ASSERT(r, expectedHash == SkGoodHash()(SkString(kMessage))); REPORTER_ASSERT(r, expectedHash == SkGoodHash()(std::string(kMessage))); REPORTER_ASSERT(r, expectedHash == SkGoodHash()(std::string_view(kMessage))); }