/* * Copyright 2023 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkSpan.h" #include "include/core/SkTypes.h" #include "include/private/base/SkFloatingPoint.h" #include "src/base/SkCubics.h" #include "src/base/SkUtils.h" #include "src/pathops/SkPathOpsCubic.h" #include "tests/Test.h" #include #include #include #include #include static void testCubicRootsReal(skiatest::Reporter* reporter, std::string name, double A, double B, double C, double D, SkSpan expectedRoots, bool skipPathops = false, bool skipRootValidation = false) { skiatest::ReporterContext subtest(reporter, name); // Validate test case REPORTER_ASSERT(reporter, expectedRoots.size() <= 3, "Invalid test case, up to 3 roots allowed"); for (size_t i = 0; i < expectedRoots.size(); i++) { double x = expectedRoots[i]; // A*x^3 + B*x^2 + C*x + D should equal 0 (unless floating point error causes issues) double y = A * x * x * x + B * x * x + C * x + D; if (!skipRootValidation) { REPORTER_ASSERT(reporter, sk_double_nearly_zero(y), "Invalid test case root %zu. %.16f != 0", i, y); } if (i > 0) { REPORTER_ASSERT(reporter, expectedRoots[i-1] <= expectedRoots[i], "Invalid test case root %zu. Roots should be sorted in ascending order", i); } } // The old pathops implementation sometimes gives incorrect solutions. We can opt // our tests out of checking that older implementation if that causes issues. if (!skipPathops) { skiatest::ReporterContext subsubtest(reporter, "Pathops Implementation"); double roots[3] = {0, 0, 0}; int rootCount = SkDCubic::RootsReal(A, B, C, D, roots); REPORTER_ASSERT(reporter, expectedRoots.size() == size_t(rootCount), "Wrong number of roots returned %zu != %d", expectedRoots.size(), rootCount); // We don't care which order the roots are returned from the algorithm. // For determinism, we will sort them (and ensure the provided solutions are also sorted). std::sort(std::begin(roots), std::begin(roots) + rootCount); for (int i = 0; i < rootCount; i++) { if (sk_double_nearly_zero(expectedRoots[i])) { REPORTER_ASSERT(reporter, sk_double_nearly_zero(roots[i]), "0 != %.16f at index %d", roots[i], i); } else { REPORTER_ASSERT(reporter, sk_doubles_nearly_equal_ulps(expectedRoots[i], roots[i], 64), "%.16f != %.16f at index %d", expectedRoots[i], roots[i], i); } } } { skiatest::ReporterContext subsubtest(reporter, "SkCubics Analytic Implementation"); double roots[3] = {0, 0, 0}; int rootCount = SkCubics::RootsReal(A, B, C, D, roots); REPORTER_ASSERT(reporter, expectedRoots.size() == size_t(rootCount), "Wrong number of roots returned %zu != %d", expectedRoots.size(), rootCount); // We don't care which order the roots are returned from the algorithm. // For determinism, we will sort them (and ensure the provided solutions are also sorted). std::sort(std::begin(roots), std::begin(roots) + rootCount); for (int i = 0; i < rootCount; i++) { if (sk_double_nearly_zero(expectedRoots[i])) { REPORTER_ASSERT(reporter, sk_double_nearly_zero(roots[i]), "0 != %.16f at index %d", roots[i], i); } else { REPORTER_ASSERT(reporter, sk_doubles_nearly_equal_ulps(expectedRoots[i], roots[i], 64), "%.16f != %.16f at index %d", expectedRoots[i], roots[i], i); } } } } DEF_TEST(CubicRootsReal_ActualCubics, reporter) { // All answers are given with 16 significant digits (max for a double) or as an integer // when the answer is exact. testCubicRootsReal(reporter, "one root 1x^3 + 2x^2 + 3x + 4", 1, 2, 3, 4, {-1.650629191439388}); //-1.650629191439388218880801 from Wolfram Alpha // (3x-5)(6x-10)(x+4) = 18x^3 + 12x^2 - 190x + 200 testCubicRootsReal(reporter, "touches y axis 18x^3 + 12x^2 - 190x + 200", 18, 12, -190, 200, {-4., 1.666666666666667, // 5/3 }); testCubicRootsReal(reporter, "three roots 10x^3 - 20x^2 - 30x + 40", 10, -20, -30, 40, {-1.561552812808830, //-1.561552812808830274910705 from Wolfram Alpha 1., 2.561552812808830, // 2.561552812808830274910705 from Wolfram Alpha }); testCubicRootsReal(reporter, "three roots -10x^3 + 200x^2 + 300x - 400", -10, 200, 300, -400, {-2.179884793243323, //-2.179884793243323422232630 from Wolfram Alpha 0.8607083693981839, // 0.8607083693981838897123320 from Wolfram Alpha 21.31917642384514, //21.31917642384513953252030 from Wolfram Alpha }); testCubicRootsReal(reporter, "one root -x^3 + 0x^2 + 5x - 7", -1, 0, 5, -7, {-2.747346540307211, //-2.747346540307210849971436 from Wolfram Alpha }); testCubicRootsReal(reporter, "one root 2x^3 - 3x^2 + 0x + 3", 2, -3, 0, 3, {-0.806443932358772, //-0.8064439323587723772036250 from Wolfram Alpha }); testCubicRootsReal(reporter, "one root x^3 + 0x^2 + 0x - 9", 1, 0, 0, -9, {2.080083823051904, //2.0800838230519041145300568 from Wolfram Alpha }); testCubicRootsReal(reporter, "three roots 2x^3 - 3x^2 - 4x + 0", 2, -3, -4, 0, {-0.8507810593582122, //-0.8507810593582121716220544 from Wolfram Alpha 0., 2.350781059358212 //2.350781059358212171622054 from Wolfram Alpha }); testCubicRootsReal(reporter, "R^2 and Q^3 are near zero", -0.33790159225463867, -0.81997990608215332, -0.66327774524688721, -0.17884063720703125, {-0.7995944894729731}); // The following three cases fallback to treating the cubic as a quadratic. // Otherwise, floating point error mangles the solutions near +- 1 // This means we don't find all the roots, but usually we only care about roots // in the range [0, 1], so that is ok. testCubicRootsReal(reporter, "oss-fuzz:55625 Two roots near zero, one big root", sk_bit_cast(0xbf1a8de580000000), // -0.00010129655 sk_bit_cast(0x4106c0c680000000), // 186392.8125 0.0, sk_bit_cast(0xc104c0ce80000000), // -170009.8125 { -0.9550418733785169, // Wolfram Alpha puts the root at X = 0.955042 0.9550418733785169, // (~2e7 error) // 1.84007e9 is the other root, which we do not find. }, true /* == skipPathops */, true /* == skipRootValidation */); testCubicRootsReal(reporter, "oss-fuzz:55625 Two roots near zero, one big root, near linear", sk_bit_cast(0x3c04040400000000), // -1.3563156-19 sk_bit_cast(0x4106c0c680000000), // 186392.8125 0.0, sk_bit_cast(0xc104c0ce80000000), // -170009.8125 { -0.9550418733785169, 0.9550418733785169, // 1.84007e9 is the other root, which we do not find. }, true /* == skipPathops */); testCubicRootsReal(reporter, "oss-fuzz:55680 A nearly zero, C is zero", sk_bit_cast(0x3eb0000000000000), // 9.5367431640625000e-07 sk_bit_cast(0x409278a560000000), // 1182.1614990234375 0.0, sk_bit_cast(0xc092706160000000), // -1180.0950927734375 { -0.9991256228290017, // -0.9991256232316570469050229 according to Wolfram Alpha (~1e-09 error) 0.9991256228290017, // 0.9991256224263463476403026 according to Wolfram Alpha (~1e-09 error) // 1.239586176×10^9 is the other root, which we do not find. }, true, true /* == skipRootValidation */); } DEF_TEST(CubicRootsReal_Quadratics, reporter) { testCubicRootsReal(reporter, "two roots -2x^2 + 3x + 4", 0, -2, 3, 4, {-0.8507810593582122, //-0.8507810593582121716220544 from Wolfram Alpha 2.350781059358212, // 2.350781059358212171622054 from Wolfram Alpha }); testCubicRootsReal(reporter, "touches y axis -x^2 + 3x + 4", 0, -2, 3, 4, {-0.8507810593582122, //-0.8507810593582121716220544 from Wolfram Alpha 2.350781059358212, // 2.350781059358212171622054 from Wolfram Alpha }); testCubicRootsReal(reporter, "no roots x^2 + 2x + 7", 0, 1, 2, 7, {}); // similar to oss-fuzz:55680 testCubicRootsReal(reporter, "two roots one small one big (and ignored)", 0, -0.01, 200000000000000, -120000000000000, { 0.6 }, true /* == skipPathops */); } DEF_TEST(CubicRootsReal_Linear, reporter) { testCubicRootsReal(reporter, "positive slope 3x + 4", 0, 0, 3, 4, {-1.333333333333333}); testCubicRootsReal(reporter, "negative slope -2x - 8", 0, 0, -2, -8, {-4.}); } DEF_TEST(CubicRootsReal_Constant, reporter) { testCubicRootsReal(reporter, "No intersections y = 4", 0, 0, 0, 4, {}); testCubicRootsReal(reporter, "Infinite solutions y = 0", 0, 0, 0, 0, {0.}); } DEF_TEST(CubicRootsReal_NonFiniteNumbers, reporter) { // The Pathops implementation does not check for infinities nor nans in all cases. double roots[3] = {0, 0, 0}; REPORTER_ASSERT(reporter, SkCubics::RootsReal(NAN, 1, 2, 3, roots) == 0, "Nan A" ); REPORTER_ASSERT(reporter, SkCubics::RootsReal(1, NAN, 2, 3, roots) == 0, "Nan B" ); REPORTER_ASSERT(reporter, SkCubics::RootsReal(1, 2, NAN, 3, roots) == 0, "Nan C" ); REPORTER_ASSERT(reporter, SkCubics::RootsReal(1, 2, 3, NAN, roots) == 0, "Nan D" ); { skiatest::ReporterContext subtest(reporter, "oss-fuzz:55419 C and D are large"); int numRoots = SkCubics::RootsReal( -2, 0, sk_bit_cast(0xd5422020202020ff), //-5.074559e+102 sk_bit_cast(0x600fff202020ff20), // 5.362551e+154 roots); REPORTER_ASSERT(reporter, numRoots == 0, "No finite roots expected, got %d", numRoots); } { skiatest::ReporterContext subtest(reporter, "oss-fuzz:55829 A is zero and B is NAN"); int numRoots = SkCubics::RootsReal( 0, sk_bit_cast(0xffffffffffff2020), //-nan sk_bit_cast(0x20202020202020ff), // 6.013470e-154 sk_bit_cast(0xff20202020202020), //-2.211661e+304 roots); REPORTER_ASSERT(reporter, numRoots == 0, "No finite roots expected, got %d", numRoots); } } static void testCubicValidT(skiatest::Reporter* reporter, std::string name, double A, double B, double C, double D, SkSpan expectedRoots) { skiatest::ReporterContext subtest(reporter, name); // Validate test case REPORTER_ASSERT(reporter, expectedRoots.size() <= 3, "Invalid test case, up to 3 roots allowed"); for (size_t i = 0; i < expectedRoots.size(); i++) { double x = expectedRoots[i]; REPORTER_ASSERT(reporter, x >= 0 && x <= 1, "Invalid test case root %zu. Roots must be in [0, 1]", i); // A*x^3 + B*x^2 + C*x + D should equal 0 double y = A * x * x * x + B * x * x + C * x + D; REPORTER_ASSERT(reporter, sk_double_nearly_zero(y), "Invalid test case root %zu. %.16f != 0", i, y); if (i > 0) { REPORTER_ASSERT(reporter, expectedRoots[i-1] <= expectedRoots[i], "Invalid test case root %zu. Roots should be sorted in ascending order", i); } } { skiatest::ReporterContext subsubtest(reporter, "Pathops Implementation"); double roots[3] = {0, 0, 0}; int rootCount = SkDCubic::RootsValidT(A, B, C, D, roots); REPORTER_ASSERT(reporter, expectedRoots.size() == size_t(rootCount), "Wrong number of roots returned %zu != %d", expectedRoots.size(), rootCount); // We don't care which order the roots are returned from the algorithm. // For determinism, we will sort them (and ensure the provided solutions are also sorted). std::sort(std::begin(roots), std::begin(roots) + rootCount); for (int i = 0; i < rootCount; i++) { if (sk_double_nearly_zero(expectedRoots[i])) { REPORTER_ASSERT(reporter, sk_double_nearly_zero(roots[i]), "0 != %.16f at index %d", roots[i], i); } else { REPORTER_ASSERT(reporter, sk_doubles_nearly_equal_ulps(expectedRoots[i], roots[i], 64), "%.16f != %.16f at index %d", expectedRoots[i], roots[i], i); } } } { skiatest::ReporterContext subsubtest(reporter, "SkCubics Analytic Implementation"); double roots[3] = {0, 0, 0}; int rootCount = SkCubics::RootsValidT(A, B, C, D, roots); REPORTER_ASSERT(reporter, expectedRoots.size() == size_t(rootCount), "Wrong number of roots returned %zu != %d", expectedRoots.size(), rootCount); // We don't care which order the roots are returned from the algorithm. // For determinism, we will sort them (and ensure the provided solutions are also sorted). std::sort(std::begin(roots), std::begin(roots) + rootCount); for (int i = 0; i < rootCount; i++) { if (sk_double_nearly_zero(expectedRoots[i])) { REPORTER_ASSERT(reporter, sk_double_nearly_zero(roots[i]), "0 != %.16f at index %d", roots[i], i); } else { REPORTER_ASSERT(reporter, sk_doubles_nearly_equal_ulps(expectedRoots[i], roots[i], 64), "%.16f != %.16f at index %d", expectedRoots[i], roots[i], i); } } } { skiatest::ReporterContext subsubtest(reporter, "SkCubics Binary Search Implementation"); double roots[3] = {0, 0, 0}; int rootCount = SkCubics::BinarySearchRootsValidT(A, B, C, D, roots); REPORTER_ASSERT(reporter, expectedRoots.size() == size_t(rootCount), "Wrong number of roots returned %zu != %d", expectedRoots.size(), rootCount); // We don't care which order the roots are returned from the algorithm. // For determinism, we will sort them (and ensure the provided solutions are also sorted). std::sort(std::begin(roots), std::begin(roots) + rootCount); for (int i = 0; i < rootCount; i++) { double delta = std::abs(roots[i] - expectedRoots[i]); REPORTER_ASSERT(reporter, // Binary search is not absolutely accurate all the time, but // it should be accurate enough reliably delta < 0.000001, "%.16f != %.16f at index %d", expectedRoots[i], roots[i], i); } } } DEF_TEST(CubicRootsValidT, reporter) { // All answers are given with 16 significant digits (max for a double) or as an integer // when the answer is exact. testCubicValidT(reporter, "three roots 24x^3 - 46x^2 + 29x - 6", 24, -46, 29, -6, {0.5, 0.6666666666666667, 0.75}); testCubicValidT(reporter, "three roots total, two in range 54x^3 - 117x^2 + 45x + 0", 54, -117, 45, 0, {0.0, 0.5, // 5/3 is the other root, but not in [0, 1] }); testCubicValidT(reporter, "one root = 1 10x^3 - 20x^2 - 30x + 40", 10, -20, -30, 40, {1.0}); testCubicValidT(reporter, "one root = 0 2x^3 - 3x^2 - 4x + 0", 2, -3, -4, 0, {0.0}); testCubicValidT(reporter, "three roots total, two in range -2x^3 - 3x^2 + 4x + 0", -2, -3, 4, 0, { 0.0, 0.8507810593582122, // 0.8507810593582121716220544 from Wolfram Alpha }); // x(x-1) = x^2 - x testCubicValidT(reporter, "Two roots at exactly 0 and 1", 0, 1, -1, 0, {0.0, 1.0}); testCubicValidT(reporter, "Single point has one root", 0, 0, 0, 0, {0.0}); } DEF_TEST(CubicRootsValidT_ClampToZeroAndOne, reporter) { { // (x + 0.00001)(x - 1.00005), but the answers will be 0 and 1 double A = 0.; double B = 1.; double C = -1.00004; double D = -0.0000100005; double roots[3] = {0, 0, 0}; int rootCount = SkDCubic::RootsValidT(A, B, C, D, roots); REPORTER_ASSERT(reporter, rootCount == 2); std::sort(std::begin(roots), std::begin(roots) + rootCount); REPORTER_ASSERT(reporter, sk_double_nearly_zero(roots[0]), "%.16f != 0", roots[0]); REPORTER_ASSERT(reporter, sk_doubles_nearly_equal_ulps(roots[1], 1), "%.16f != 1", roots[1]); } { // Three very small roots, all of them are nearly equal zero // (1 - 10000000000x)(1 - 20000000000x)(1 - 30000000000x) // -6000000000000000000000000000000 x^3 + 1100000000000000000000 x^2 - 60000000000 x + 1 double A = -6.0e30; double B = 1.1e21; double C = -6.0e10; double D = 1; double roots[3] = {0, 0, 0}; int rootCount = SkDCubic::RootsValidT(A, B, C, D, roots); REPORTER_ASSERT(reporter, rootCount == 1); std::sort(std::begin(roots), std::begin(roots) + rootCount); REPORTER_ASSERT(reporter, sk_double_nearly_zero(roots[0]), "%.16f != 0", roots[0]); } }