/* * Copyright 2019 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkAlphaType.h" #include "include/core/SkBlendMode.h" #include "include/core/SkBlender.h" #include "include/core/SkCanvas.h" #include "include/core/SkCapabilities.h" #include "include/core/SkColor.h" #include "include/core/SkColorFilter.h" #include "include/core/SkColorType.h" #include "include/core/SkData.h" #include "include/core/SkImageInfo.h" #include "include/core/SkPaint.h" #include "include/core/SkPixmap.h" #include "include/core/SkRefCnt.h" #include "include/core/SkScalar.h" #include "include/core/SkShader.h" #include "include/core/SkSize.h" #include "include/core/SkSpan.h" #include "include/core/SkStream.h" #include "include/core/SkString.h" #include "include/core/SkSurface.h" #include "include/core/SkTypes.h" #include "include/effects/SkBlenders.h" #include "include/effects/SkGradientShader.h" #include "include/effects/SkRuntimeEffect.h" #include "include/gpu/GpuTypes.h" #include "include/gpu/ganesh/GrDirectContext.h" #include "include/gpu/ganesh/SkSurfaceGanesh.h" #include "include/private/SkColorData.h" #include "include/private/SkSLSampleUsage.h" #include "include/private/base/SkTArray.h" #include "include/sksl/SkSLDebugTrace.h" #include "include/sksl/SkSLVersion.h" #include "src/base/SkStringView.h" #include "src/base/SkTLazy.h" #include "src/core/SkColorSpacePriv.h" #include "src/core/SkRuntimeEffectPriv.h" #include "src/gpu/KeyBuilder.h" #include "src/gpu/SkBackingFit.h" #include "src/gpu/ganesh/GrCaps.h" #include "src/gpu/ganesh/GrColor.h" #include "src/gpu/ganesh/GrDirectContextPriv.h" #include "src/gpu/ganesh/GrFragmentProcessor.h" #include "src/gpu/ganesh/GrImageInfo.h" #include "src/gpu/ganesh/GrPixmap.h" #include "src/gpu/ganesh/SurfaceFillContext.h" #include "src/gpu/ganesh/effects/GrSkSLFP.h" #include "src/sksl/SkSLString.h" #include "tests/CtsEnforcement.h" #include "tests/Test.h" #include #include #include #include #include #include #include #include using namespace skia_private; class GrRecordingContext; struct GrContextOptions; struct SkIPoint; #if defined(SK_GRAPHITE) #include "include/gpu/graphite/Context.h" #include "include/gpu/graphite/Recorder.h" #include "include/gpu/graphite/Recording.h" #include "include/gpu/graphite/Surface.h" #include "src/gpu/graphite/Surface_Graphite.h" struct GraphiteInfo { skgpu::graphite::Context* context = nullptr; skgpu::graphite::Recorder* recorder = nullptr; }; #else struct GraphiteInfo { void* context = nullptr; void* recorder = nullptr; }; #endif void test_invalid_effect(skiatest::Reporter* r, const char* src, const char* expected) { auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(src)); REPORTER_ASSERT(r, !effect); REPORTER_ASSERT(r, errorText.contains(expected), "Expected error message to contain \"%s\". Actual message: \"%s\"", expected, errorText.c_str()); } #define EMPTY_MAIN "half4 main(float2 p) { return half4(0); }" DEF_TEST(SkRuntimeEffectInvalid_NoInVariables, r) { // 'in' variables aren't allowed at all: test_invalid_effect(r, "in bool b;" EMPTY_MAIN, "'in'"); test_invalid_effect(r, "in float f;" EMPTY_MAIN, "'in'"); test_invalid_effect(r, "in float2 v;" EMPTY_MAIN, "'in'"); test_invalid_effect(r, "in half3x3 m;" EMPTY_MAIN, "'in'"); } DEF_TEST(SkRuntimeEffectInvalid_UndefinedFunction, r) { test_invalid_effect(r, "half4 missing(); half4 main(float2 p) { return missing(); }", "function 'half4 missing()' is not defined"); } DEF_TEST(SkRuntimeEffectInvalid_UndefinedMain, r) { // Shouldn't be possible to create an SkRuntimeEffect without "main" test_invalid_effect(r, "", "main"); } DEF_TEST(SkRuntimeEffectInvalid_SkCapsDisallowed, r) { // sk_Caps is an internal system. It should not be visible to runtime effects test_invalid_effect( r, "half4 main(float2 p) { return sk_Caps.floatIs32Bits ? half4(1) : half4(0); }", "name 'sk_Caps' is reserved"); } DEF_TEST(SkRuntimeEffect_DeadCodeEliminationStackOverflow, r) { // Verify that a deeply-nested loop does not cause stack overflow during dead-code elimination. auto [effect, errorText] = SkRuntimeEffect::MakeForColorFilter(SkString(R"( half4 main(half4 color) { half value = color.r; for (int a=0; a<10; ++a) { // 10 for (int b=0; b<10; ++b) { // 100 for (int c=0; c<10; ++c) { // 1000 for (int d=0; d<10; ++d) { // 10000 ++value; }}}} return value.xxxx; } )")); REPORTER_ASSERT(r, effect, "%s", errorText.c_str()); } DEF_TEST(SkRuntimeEffectCanDisableES2Restrictions, r) { auto test_valid_es3 = [](skiatest::Reporter* r, const char* sksl) { SkRuntimeEffect::Options opt = SkRuntimeEffectPriv::ES3Options(); auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(sksl), opt); REPORTER_ASSERT(r, effect, "%s", errorText.c_str()); }; test_invalid_effect(r, "float f[2] = float[2](0, 1);" EMPTY_MAIN, "construction of array type"); test_valid_es3 (r, "float f[2] = float[2](0, 1);" EMPTY_MAIN); } DEF_TEST(SkRuntimeEffectCanEnableVersion300, r) { auto test_valid = [](skiatest::Reporter* r, const char* sksl) { auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(sksl)); REPORTER_ASSERT(r, effect, "%s", errorText.c_str()); }; test_invalid_effect(r, "#version 100\nfloat f[2] = float[2](0, 1);" EMPTY_MAIN, "construction of array type"); test_valid (r, "#version 300\nfloat f[2] = float[2](0, 1);" EMPTY_MAIN); } DEF_TEST(SkRuntimeEffectUniformFlags, r) { auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(R"( uniform int simple; // should have no flags uniform float arrayOfOne[1]; // should have kArray_Flag uniform float arrayOfMultiple[2]; // should have kArray_Flag layout(color) uniform float4 color; // should have kColor_Flag uniform half3 halfPrecisionFloat; // should have kHalfPrecision_Flag layout(color) uniform half4 allFlags[2]; // should have Array | Color | HalfPrecision )" EMPTY_MAIN)); REPORTER_ASSERT(r, effect, "%s", errorText.c_str()); SkSpan uniforms = effect->uniforms(); REPORTER_ASSERT(r, uniforms.size() == 6); REPORTER_ASSERT(r, uniforms[0].flags == 0); REPORTER_ASSERT(r, uniforms[1].flags == SkRuntimeEffect::Uniform::kArray_Flag); REPORTER_ASSERT(r, uniforms[2].flags == SkRuntimeEffect::Uniform::kArray_Flag); REPORTER_ASSERT(r, uniforms[3].flags == SkRuntimeEffect::Uniform::kColor_Flag); REPORTER_ASSERT(r, uniforms[4].flags == SkRuntimeEffect::Uniform::kHalfPrecision_Flag); REPORTER_ASSERT(r, uniforms[5].flags == (SkRuntimeEffect::Uniform::kArray_Flag | SkRuntimeEffect::Uniform::kColor_Flag | SkRuntimeEffect::Uniform::kHalfPrecision_Flag)); } DEF_TEST(SkRuntimeEffectValidation, r) { auto es2Effect = SkRuntimeEffect::MakeForShader(SkString("#version 100\n" EMPTY_MAIN)).effect; auto es3Effect = SkRuntimeEffect::MakeForShader(SkString("#version 300\n" EMPTY_MAIN)).effect; REPORTER_ASSERT(r, es2Effect && es3Effect); auto es2Caps = SkCapabilities::RasterBackend(); REPORTER_ASSERT(r, es2Caps->skslVersion() == SkSL::Version::k100); REPORTER_ASSERT(r, SkRuntimeEffectPriv::CanDraw(es2Caps.get(), es2Effect.get())); REPORTER_ASSERT(r, !SkRuntimeEffectPriv::CanDraw(es2Caps.get(), es3Effect.get())); } DEF_TEST(SkRuntimeEffectForColorFilter, r) { // Tests that the color filter factory rejects or accepts certain SkSL constructs auto test_valid = [r](const char* sksl) { auto [effect, errorText] = SkRuntimeEffect::MakeForColorFilter(SkString(sksl)); REPORTER_ASSERT(r, effect, "%s", errorText.c_str()); }; auto test_invalid = [r](const char* sksl, const char* expected) { auto [effect, errorText] = SkRuntimeEffect::MakeForColorFilter(SkString(sksl)); REPORTER_ASSERT(r, !effect); REPORTER_ASSERT(r, errorText.contains(expected), "Expected error message to contain \"%s\". Actual message: \"%s\"", expected, errorText.c_str()); }; // Color filters must use the 'half4 main(half4)' signature. Either color can be float4/vec4 test_valid("half4 main(half4 c) { return c; }"); test_valid("float4 main(half4 c) { return c; }"); test_valid("half4 main(float4 c) { return c; }"); test_valid("float4 main(float4 c) { return c; }"); test_valid("vec4 main(half4 c) { return c; }"); test_valid("half4 main(vec4 c) { return c; }"); test_valid("vec4 main(vec4 c) { return c; }"); // Invalid return types test_invalid("void main(half4 c) {}", "'main' must return"); test_invalid("half3 main(half4 c) { return c.rgb; }", "'main' must return"); // Invalid argument types (some are valid as shaders, but not color filters) test_invalid("half4 main() { return half4(1); }", "'main' parameter"); test_invalid("half4 main(float2 p) { return half4(1); }", "'main' parameter"); test_invalid("half4 main(float2 p, half4 c) { return c; }", "'main' parameter"); // sk_FragCoord should not be available test_invalid("half4 main(half4 c) { return sk_FragCoord.xy01; }", "unknown identifier"); // Sampling a child shader requires that we pass explicit coords test_valid("uniform shader child;" "half4 main(half4 c) { return child.eval(c.rg); }"); // Sampling a colorFilter requires a color test_valid("uniform colorFilter child;" "half4 main(half4 c) { return child.eval(c); }"); // Sampling a blender requires two colors test_valid("uniform blender child;" "half4 main(half4 c) { return child.eval(c, c); }"); } DEF_TEST(SkRuntimeEffectForBlender, r) { // Tests that the blender factory rejects or accepts certain SkSL constructs auto test_valid = [r](const char* sksl) { auto [effect, errorText] = SkRuntimeEffect::MakeForBlender(SkString(sksl)); REPORTER_ASSERT(r, effect, "%s", errorText.c_str()); }; auto test_invalid = [r](const char* sksl, const char* expected) { auto [effect, errorText] = SkRuntimeEffect::MakeForBlender(SkString(sksl)); REPORTER_ASSERT(r, !effect); REPORTER_ASSERT(r, errorText.contains(expected), "Expected error message to contain \"%s\". Actual message: \"%s\"", expected, errorText.c_str()); }; // Blenders must use the 'half4 main(half4, half4)' signature. Any mixture of float4/vec4/half4 // is allowed. test_valid("half4 main(half4 s, half4 d) { return s; }"); test_valid("float4 main(float4 s, float4 d) { return d; }"); test_valid("float4 main(half4 s, float4 d) { return s; }"); test_valid("half4 main(float4 s, half4 d) { return d; }"); test_valid("vec4 main(half4 s, half4 d) { return s; }"); test_valid("half4 main(vec4 s, vec4 d) { return d; }"); test_valid("vec4 main(vec4 s, vec4 d) { return s; }"); // Invalid return types test_invalid("void main(half4 s, half4 d) {}", "'main' must return"); test_invalid("half3 main(half4 s, half4 d) { return s.rgb; }", "'main' must return"); // Invalid argument types (some are valid as shaders/color filters) test_invalid("half4 main() { return half4(1); }", "'main' parameter"); test_invalid("half4 main(half4 c) { return c; }", "'main' parameter"); test_invalid("half4 main(float2 p) { return half4(1); }", "'main' parameter"); test_invalid("half4 main(float2 p, half4 c) { return c; }", "'main' parameter"); test_invalid("half4 main(float2 p, half4 a, half4 b) { return a; }", "'main' parameter"); test_invalid("half4 main(half4 a, half4 b, half4 c) { return a; }", "'main' parameter"); // sk_FragCoord should not be available test_invalid("half4 main(half4 s, half4 d) { return sk_FragCoord.xy01; }", "unknown identifier"); // Sampling a child shader requires that we pass explicit coords test_valid("uniform shader child;" "half4 main(half4 s, half4 d) { return child.eval(s.rg); }"); // Sampling a colorFilter requires a color test_valid("uniform colorFilter child;" "half4 main(half4 s, half4 d) { return child.eval(d); }"); // Sampling a blender requires two colors test_valid("uniform blender child;" "half4 main(half4 s, half4 d) { return child.eval(s, d); }"); } DEF_TEST(SkRuntimeEffectForShader, r) { // Tests that the shader factory rejects or accepts certain SkSL constructs auto test_valid = [r](const char* sksl, SkRuntimeEffect::Options options = {}) { auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(sksl), options); REPORTER_ASSERT(r, effect, "%s", errorText.c_str()); }; auto test_invalid = [r](const char* sksl, const char* expected, SkRuntimeEffect::Options options = {}) { auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(sksl)); REPORTER_ASSERT(r, !effect); REPORTER_ASSERT(r, errorText.contains(expected), "Expected error message to contain \"%s\". Actual message: \"%s\"", expected, errorText.c_str()); }; // Shaders must use the 'half4 main(float2)' signature // Either color can be half4/float4/vec4, but the coords must be float2/vec2 test_valid("half4 main(float2 p) { return p.xyxy; }"); test_valid("float4 main(float2 p) { return p.xyxy; }"); test_valid("vec4 main(float2 p) { return p.xyxy; }"); test_valid("half4 main(vec2 p) { return p.xyxy; }"); test_valid("vec4 main(vec2 p) { return p.xyxy; }"); // The 'half4 main(float2, half4|float4)' signature is disallowed on both public and private // runtime effects. SkRuntimeEffect::Options options; SkRuntimeEffectPriv::AllowPrivateAccess(&options); test_invalid("half4 main(float2 p, half4 c) { return c; }", "'main' parameter"); test_invalid("half4 main(float2 p, half4 c) { return c; }", "'main' parameter", options); test_invalid("half4 main(float2 p, float4 c) { return c; }", "'main' parameter"); test_invalid("half4 main(float2 p, float4 c) { return c; }", "'main' parameter", options); test_invalid("half4 main(float2 p, vec4 c) { return c; }", "'main' parameter"); test_invalid("half4 main(float2 p, vec4 c) { return c; }", "'main' parameter", options); test_invalid("float4 main(float2 p, half4 c) { return c; }", "'main' parameter"); test_invalid("float4 main(float2 p, half4 c) { return c; }", "'main' parameter", options); test_invalid("vec4 main(float2 p, half4 c) { return c; }", "'main' parameter"); test_invalid("vec4 main(float2 p, half4 c) { return c; }", "'main' parameter", options); test_invalid("vec4 main(vec2 p, vec4 c) { return c; }", "'main' parameter"); test_invalid("vec4 main(vec2 p, vec4 c) { return c; }", "'main' parameter", options); // Invalid return types test_invalid("void main(float2 p) {}", "'main' must return"); test_invalid("half3 main(float2 p) { return p.xy1; }", "'main' must return"); // Invalid argument types (some are valid as color filters, but not shaders) test_invalid("half4 main() { return half4(1); }", "'main' parameter"); test_invalid("half4 main(half4 c) { return c; }", "'main' parameter"); // sk_FragCoord should be available, but only if we've enabled it via Options test_invalid("half4 main(float2 p) { return sk_FragCoord.xy01; }", "unknown identifier 'sk_FragCoord'"); test_valid("half4 main(float2 p) { return sk_FragCoord.xy01; }", options); // Sampling a child shader requires that we pass explicit coords test_valid("uniform shader child;" "half4 main(float2 p) { return child.eval(p); }"); // Sampling a colorFilter requires a color test_valid("uniform colorFilter child;" "half4 main(float2 p) { return child.eval(half4(1)); }"); // Sampling a blender requires two colors test_valid("uniform blender child;" "half4 main(float2 p) { return child.eval(half4(0.5), half4(0.6)); }"); } using PreTestFn = std::function; void paint_canvas(SkCanvas* canvas, SkPaint* paint, const PreTestFn& preTestCallback) { canvas->save(); if (preTestCallback) { preTestCallback(canvas, paint); } canvas->drawPaint(*paint); canvas->restore(); } static bool read_pixels(SkSurface* surface, GrColor* pixels) { SkImageInfo info = surface->imageInfo(); SkPixmap dest{info, pixels, info.minRowBytes()}; return surface->readPixels(dest, /*srcX=*/0, /*srcY=*/0); } static void verify_2x2_surface_results(skiatest::Reporter* r, const SkRuntimeEffect* effect, SkSurface* surface, std::array expected) { std::array actual; SkImageInfo info = surface->imageInfo(); if (!read_pixels(surface, actual.data())) { REPORT_FAILURE(r, "readPixels", SkString("readPixels failed")); return; } if (actual != expected) { REPORT_FAILURE(r, "Runtime effect didn't match expectations", SkStringPrintf("\n" "Expected: [ %08x %08x %08x %08x ]\n" "Got : [ %08x %08x %08x %08x ]\n" "SkSL:\n%s\n", expected[0], expected[1], expected[2], expected[3], actual[0], actual[1], actual[2], actual[3], effect->source().c_str())); } } static sk_sp make_surface(GrRecordingContext* grContext, const GraphiteInfo* graphite, SkISize size) { const SkImageInfo info = SkImageInfo::Make(size, kRGBA_8888_SkColorType, kPremul_SkAlphaType); sk_sp surface; if (graphite) { #if defined(SK_GRAPHITE) surface = SkSurfaces::RenderTarget(graphite->recorder, info); #endif } else if (grContext) { surface = SkSurfaces::RenderTarget(grContext, skgpu::Budgeted::kNo, info); } else { surface = SkSurfaces::Raster(info); } SkASSERT(surface); return surface; } class TestEffect { public: TestEffect(skiatest::Reporter* r, GrRecordingContext* grContext, const GraphiteInfo* graphite, SkISize size = {2, 2}) : fReporter(r), fGrContext(grContext), fGraphite(graphite), fSize(size) { fSurface = make_surface(fGrContext, fGraphite, fSize); } void build(const char* src) { SkRuntimeEffect::Options options; SkRuntimeEffectPriv::AllowPrivateAccess(&options); auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(src), options); if (!effect) { ERRORF(fReporter, "Effect didn't compile: %s", errorText.c_str()); return; } fBuilder.init(std::move(effect)); } SkRuntimeShaderBuilder::BuilderUniform uniform(const char* name) { return fBuilder->uniform(name); } SkRuntimeShaderBuilder::BuilderChild child(const char* name) { return fBuilder->child(name); } void test(std::array expected, PreTestFn preTestCallback = nullptr) { auto shader = fBuilder->makeShader(); if (!shader) { ERRORF(fReporter, "Effect didn't produce a shader"); return; } SkCanvas* canvas = fSurface->getCanvas(); // We shouldn't need to clear the canvas, because we are about to paint over the whole thing // with a `source` blend mode. However, there are a few devices where the background can // leak through when we paint with MSAA on. (This seems to be a driver/hardware bug.) // Graphite, at present, uses MSAA to do `drawPaint`. To avoid flakiness in this test on // those devices, we explicitly clear the canvas here. (skia:13761) canvas->clear(SK_ColorBLACK); SkPaint paint; paint.setShader(std::move(shader)); paint.setBlendMode(SkBlendMode::kSrc); paint_canvas(canvas, &paint, preTestCallback); verify_2x2_surface_results(fReporter, fBuilder->effect(), fSurface.get(), expected); } std::string trace(const SkIPoint& traceCoord) { sk_sp shader = fBuilder->makeShader(); if (!shader) { ERRORF(fReporter, "Effect didn't produce a shader"); return {}; } auto [debugShader, debugTrace] = SkRuntimeEffect::MakeTraced(std::move(shader), traceCoord); SkCanvas* canvas = fSurface->getCanvas(); SkPaint paint; paint.setShader(std::move(debugShader)); paint.setBlendMode(SkBlendMode::kSrc); paint_canvas(canvas, &paint, /*preTestCallback=*/nullptr); SkDynamicMemoryWStream wstream; debugTrace->dump(&wstream); sk_sp streamData = wstream.detachAsData(); return std::string(static_cast(streamData->data()), streamData->size()); } void test(GrColor expected, PreTestFn preTestCallback = nullptr) { this->test({expected, expected, expected, expected}, preTestCallback); } private: skiatest::Reporter* fReporter; sk_sp fSurface; GrRecordingContext* fGrContext; const GraphiteInfo* fGraphite; SkISize fSize; SkTLazy fBuilder; }; class TestBlend { public: TestBlend(skiatest::Reporter* r, GrRecordingContext* grContext, const GraphiteInfo* graphite) : fReporter(r), fGrContext(grContext), fGraphite(graphite) { fSurface = make_surface(fGrContext, fGraphite, /*size=*/{2, 2}); } void build(const char* src, bool allowPrivateAccess = false) { SkRuntimeEffect::Options options; if (allowPrivateAccess) { SkRuntimeEffectPriv::AllowPrivateAccess(&options); } auto [effect, errorText] = SkRuntimeEffect::MakeForBlender(SkString(src), options); if (!effect) { ERRORF(fReporter, "Effect didn't compile: %s", errorText.c_str()); return; } fBuilder.init(std::move(effect)); } SkSurface* surface() { return fSurface.get(); } SkRuntimeBlendBuilder::BuilderUniform uniform(const char* name) { return fBuilder->uniform(name); } SkRuntimeBlendBuilder::BuilderChild child(const char* name) { return fBuilder->child(name); } void test(std::array expected, PreTestFn preTestCallback = nullptr) { auto blender = fBuilder->makeBlender(); if (!blender) { ERRORF(fReporter, "Effect didn't produce a blender"); return; } SkCanvas* canvas = fSurface->getCanvas(); SkPaint paint; paint.setBlender(std::move(blender)); paint.setColor(SK_ColorGRAY); paint_canvas(canvas, &paint, preTestCallback); verify_2x2_surface_results(fReporter, fBuilder->effect(), fSurface.get(), expected); } void test(GrColor expected, PreTestFn preTestCallback = nullptr) { this->test({expected, expected, expected, expected}, preTestCallback); } private: skiatest::Reporter* fReporter; sk_sp fSurface; GrRecordingContext* fGrContext; const GraphiteInfo* fGraphite; SkTLazy fBuilder; }; // Produces a shader which will paint these opaque colors in a 2x2 rectangle: // [ Red, Green ] // [ Blue, White ] static sk_sp make_RGBW_shader() { static constexpr SkColor colors[] = {SK_ColorWHITE, SK_ColorWHITE, SK_ColorBLUE, SK_ColorBLUE, SK_ColorRED, SK_ColorRED, SK_ColorGREEN, SK_ColorGREEN}; static constexpr SkScalar pos[] = { 0, .25f, .25f, .50f, .50f, .75, .75, 1 }; static_assert(std::size(colors) == std::size(pos), "size mismatch"); return SkGradientShader::MakeSweep(1, 1, colors, pos, std::size(colors)); } static void test_RuntimeEffect_Shaders(skiatest::Reporter* r, GrRecordingContext* grContext, const GraphiteInfo* graphite) { TestEffect effect(r, grContext, graphite); using float4 = std::array; using int4 = std::array; // Local coords effect.build("half4 main(float2 p) { return half4(half2(p - 0.5), 0, 1); }"); effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF}); // Use of a simple uniform. (Draw twice with two values to ensure it's updated). effect.build("uniform float4 gColor; half4 main(float2 p) { return half4(gColor); }"); effect.uniform("gColor") = float4{ 0.0f, 0.25f, 0.75f, 1.0f }; effect.test(0xFFBF4000); effect.uniform("gColor") = float4{ 1.0f, 0.0f, 0.0f, 0.498f }; effect.test(0x7F0000FF); // Tests that we don't clamp to valid premul // Same, with integer uniforms effect.build("uniform int4 gColor; half4 main(float2 p) { return half4(gColor) / 255.0; }"); effect.uniform("gColor") = int4{ 0x00, 0x40, 0xBF, 0xFF }; effect.test(0xFFBF4000); effect.uniform("gColor") = int4{ 0xFF, 0x00, 0x00, 0x7F }; effect.test(0x7F0000FF); // Tests that we don't clamp to valid premul // Test sk_FragCoord (device coords). Rotate the canvas to be sure we're seeing device coords. // Since the surface is 2x2, we should see (0,0), (1,0), (0,1), (1,1). Multiply by 0.498 to // make sure we're not saturating unexpectedly. effect.build( "half4 main(float2 p) { return half4(0.498 * (half2(sk_FragCoord.xy) - 0.5), 0, 1); }"); effect.test({0xFF000000, 0xFF00007F, 0xFF007F00, 0xFF007F7F}, [](SkCanvas* canvas, SkPaint*) { canvas->rotate(45.0f); }); // Runtime effects should use relaxed precision rules by default effect.build("half4 main(float2 p) { return float4(p - 0.5, 0, 1); }"); effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF}); // ... and support *returning* float4 (aka vec4), not just half4 effect.build("float4 main(float2 p) { return float4(p - 0.5, 0, 1); }"); effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF}); effect.build("vec4 main(float2 p) { return float4(p - 0.5, 0, 1); }"); effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF}); // Mutating coords should work. (skbug.com/10918) effect.build("vec4 main(vec2 p) { p -= 0.5; return vec4(p, 0, 1); }"); effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF}); effect.build("void moveCoords(inout vec2 p) { p -= 0.5; }" "vec4 main(vec2 p) { moveCoords(p); return vec4(p, 0, 1); }"); effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF}); // // Sampling children // // Sampling a null shader should return transparent black if (!graphite) { // TODO: Graphite does not yet pass this test. effect.build("uniform shader child;" "half4 main(float2 p) { return child.eval(p); }"); effect.child("child") = nullptr; effect.test(0x00000000, [](SkCanvas*, SkPaint* paint) { paint->setColor4f({1.0f, 1.0f, 0.0f, 1.0f}); }); } // Sampling a null color-filter should return the passed-in color effect.build("uniform colorFilter child;" "half4 main(float2 p) { return child.eval(half4(1, 1, 0, 1)); }"); effect.child("child") = nullptr; effect.test(0xFF00FFFF); // Sampling a null blender should return blend_src_over(src, dest). effect.build("uniform blender child;" "half4 main(float2 p) {" " float4 src = float4(p - 0.5, 0, 1) * 0.498;" " return child.eval(src, half4(0, 0, 0, 1));" "}"); effect.child("child") = nullptr; effect.test({0xFF000000, 0xFF00007F, 0xFF007F00, 0xFF007F7F}); // Sampling a simple child at our coordinates sk_sp rgbwShader = make_RGBW_shader(); effect.build("uniform shader child;" "half4 main(float2 p) { return child.eval(p); }"); effect.child("child") = rgbwShader; effect.test({0xFF0000FF, 0xFF00FF00, 0xFFFF0000, 0xFFFFFFFF}); // Sampling with explicit coordinates (reflecting about the diagonal) effect.build("uniform shader child;" "half4 main(float2 p) { return child.eval(p.yx); }"); effect.child("child") = rgbwShader; effect.test({0xFF0000FF, 0xFFFF0000, 0xFF00FF00, 0xFFFFFFFF}); // Bind an image shader, but don't use it - ensure that we don't assert or generate bad shaders. // (skbug.com/12429) effect.build("uniform shader child;" "half4 main(float2 p) { return half4(0, 1, 0, 1); }"); effect.child("child") = rgbwShader; effect.test(0xFF00FF00); // // Helper functions // // Test case for inlining in the pipeline-stage and fragment-shader passes (skbug.com/10526): effect.build("float2 helper(float2 x) { return x + 1; }" "half4 main(float2 p) { float2 v = helper(p); return half4(half2(v), 0, 1); }"); effect.test(0xFF00FFFF); // Passing a shader to a helper function effect.build("uniform shader child; float2 position;" "noinline half4 my_eval(shader s) { return s.eval(position); }" "half4 main(float2 p) { position = p; return my_eval(child); }"); effect.child("child") = rgbwShader; effect.test({0xFF0000FF, 0xFF00FF00, 0xFFFF0000, 0xFFFFFFFF}); } DEF_TEST(SkRuntimeEffectSimple, r) { test_RuntimeEffect_Shaders(r, /*grContext=*/nullptr, /*graphite=*/nullptr); } #if defined(SK_GRAPHITE) DEF_GRAPHITE_TEST_FOR_RENDERING_CONTEXTS(SkRuntimeEffectSimple_Graphite, r, context, CtsEnforcement::kApiLevel_V) { std::unique_ptr recorder = context->makeRecorder(); GraphiteInfo graphite = {context, recorder.get()}; test_RuntimeEffect_Shaders(r, /*grContext=*/nullptr, &graphite); } #endif DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(SkRuntimeEffectSimple_GPU, r, ctxInfo, CtsEnforcement::kApiLevel_T) { test_RuntimeEffect_Shaders(r, ctxInfo.directContext(), /*graphite=*/nullptr); } static void verify_draw_obeys_capabilities(skiatest::Reporter* r, const SkRuntimeEffect* effect, SkSurface* surface, const SkPaint& paint) { // We expect the draw to do something if-and-only-if expectSuccess is true: const bool expectSuccess = surface->capabilities()->skslVersion() >= SkSL::Version::k300; constexpr GrColor kGreen = 0xFF00FF00; constexpr GrColor kRed = 0xFF0000FF; const GrColor kExpected = expectSuccess ? kGreen : kRed; surface->getCanvas()->clear(SK_ColorRED); surface->getCanvas()->drawPaint(paint); verify_2x2_surface_results(r, effect, surface, {kExpected, kExpected, kExpected, kExpected}); } static void test_RuntimeEffectObeysCapabilities(skiatest::Reporter* r, SkSurface* surface) { // This test creates shaders and blenders that target `#version 300`. If a user validates an // effect like this against a particular device, and later draws that effect to a device with // insufficient capabilities -- we want to fail gracefully (drop the draw entirely). // If the capabilities indicate that the effect is supported, we expect it to work. // // We test two different scenarios here: // 1) An effect flagged as #version 300, but actually compatible with #version 100. // 2) An effect flagged as #version 300, and using features not available in ES2. // // We expect both cases to fail cleanly on ES2-only devices -- nothing should be drawn, and // there should be no asserts or driver shader-compilation errors. // // In all tests, we first clear the canvas to RED, then draw an effect that (if it renders) // will fill the canvas with GREEN. We check that the final colors match our expectations, // based on the device capabilities. // Effect that would actually work on CPU/ES2, but should still fail on those devices: { auto effect = SkRuntimeEffect::MakeForShader(SkString(R"( #version 300 half4 main(float2 xy) { return half4(0, 1, 0, 1); } )")).effect; REPORTER_ASSERT(r, effect); SkPaint paint; paint.setShader(effect->makeShader(/*uniforms=*/nullptr, /*children=*/{})); REPORTER_ASSERT(r, paint.getShader()); verify_draw_obeys_capabilities(r, effect.get(), surface, paint); } // Effect that won't work on CPU/ES2 at all, and should fail gracefully on those devices. // We choose to use bit-pun intrinsics because SkSL doesn't automatically inject an extension // to enable them (like it does for derivatives). We pass a non-literal value so that SkSL's // constant folding doesn't elide them entirely before the driver sees the shader. { auto effect = SkRuntimeEffect::MakeForShader(SkString(R"( #version 300 half4 main(float2 xy) { half4 result = half4(0, 1, 0, 1); result.g = intBitsToFloat(floatBitsToInt(result.g)); return result; } )")).effect; REPORTER_ASSERT(r, effect); SkPaint paint; paint.setShader(effect->makeShader(/*uniforms=*/nullptr, /*children=*/{})); REPORTER_ASSERT(r, paint.getShader()); verify_draw_obeys_capabilities(r, effect.get(), surface, paint); } // // As above, but with a blender // { auto effect = SkRuntimeEffect::MakeForBlender(SkString(R"( #version 300 half4 main(half4 src, half4 dst) { return half4(0, 1, 0, 1); } )")).effect; REPORTER_ASSERT(r, effect); SkPaint paint; paint.setBlender(effect->makeBlender(/*uniforms=*/nullptr, /*children=*/{})); REPORTER_ASSERT(r, paint.getBlender()); verify_draw_obeys_capabilities(r, effect.get(), surface, paint); } { auto effect = SkRuntimeEffect::MakeForBlender(SkString(R"( #version 300 half4 main(half4 src, half4 dst) { half4 result = half4(0, 1, 0, 1); result.g = intBitsToFloat(floatBitsToInt(result.g)); return result; } )")).effect; REPORTER_ASSERT(r, effect); SkPaint paint; paint.setBlender(effect->makeBlender(/*uniforms=*/nullptr, /*children=*/{})); REPORTER_ASSERT(r, paint.getBlender()); verify_draw_obeys_capabilities(r, effect.get(), surface, paint); } } DEF_TEST(SkRuntimeEffectObeysCapabilities_CPU, r) { SkImageInfo info = SkImageInfo::Make(2, 2, kRGBA_8888_SkColorType, kPremul_SkAlphaType); sk_sp surface = SkSurfaces::Raster(info); REPORTER_ASSERT(r, surface); test_RuntimeEffectObeysCapabilities(r, surface.get()); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(SkRuntimeEffectObeysCapabilities_GPU, r, ctxInfo, CtsEnforcement::kApiLevel_U) { SkImageInfo info = SkImageInfo::Make(2, 2, kRGBA_8888_SkColorType, kPremul_SkAlphaType); sk_sp surface = SkSurfaces::RenderTarget(ctxInfo.directContext(), skgpu::Budgeted::kNo, info); REPORTER_ASSERT(r, surface); test_RuntimeEffectObeysCapabilities(r, surface.get()); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(SkRuntimeColorFilterReturningInvalidAlpha_GPU, r, ctxInfo, CtsEnforcement::kNever) { SkImageInfo info = SkImageInfo::Make(2, 2, kRGBA_8888_SkColorType, kPremul_SkAlphaType); sk_sp surface = SkSurfaces::RenderTarget(ctxInfo.directContext(), skgpu::Budgeted::kNo, info); REPORTER_ASSERT(r, surface); auto effect = SkRuntimeEffect::MakeForColorFilter(SkString(R"( half4 main(half4 color) { return half4(2); } )")).effect; REPORTER_ASSERT(r, effect); SkPaint paint; paint.setColorFilter(effect->makeColorFilter(/*uniforms=*/nullptr)); REPORTER_ASSERT(r, paint.getColorFilter()); surface->getCanvas()->drawPaint(paint); } DEF_TEST(SkRuntimeColorFilterLimitedToES2, r) { // Verify that SkSL requesting #version 300 can't be used to create a color-filter effect. // This restriction could be removed if we can find a way to implement filterColor4f for these // color filters. { auto effect = SkRuntimeEffect::MakeForColorFilter(SkString(R"( #version 300 half4 main(half4 inColor) { return half4(1, 0, 0, 1); } )")).effect; REPORTER_ASSERT(r, !effect); } { auto effect = SkRuntimeEffect::MakeForColorFilter(SkString(R"( #version 300 uniform int loops; half4 main(half4 inColor) { half4 result = half4(1, 0, 0, 1); for (int i = 0; i < loops; i++) { result = result.argb; } return result; } )")).effect; REPORTER_ASSERT(r, !effect); } } DEF_TEST(SkRuntimeEffectTraceShader, r) { for (int imageSize : {2, 80}) { TestEffect effect(r, /*grContext=*/nullptr, /*graphite=*/nullptr, SkISize{imageSize, imageSize}); effect.build(R"( half4 main(float2 p) { float2 val = p - 0.5; return val.0y01; } )"); int center = imageSize / 2; std::string dump = effect.trace({center, 1}); static constexpr char kSkRPSlotDump[] = R"($0 = p (float2 : slot 1/2, L0) $1 = p (float2 : slot 2/2, L0) $2 = [main].result (float4 : slot 1/4, L0) $3 = [main].result (float4 : slot 2/4, L0) $4 = [main].result (float4 : slot 3/4, L0) $5 = [main].result (float4 : slot 4/4, L0) $6 = val (float2 : slot 1/2, L0) $7 = val (float2 : slot 2/2, L0) F0 = half4 main(float2 p) )"; auto expectedTrace = SkSL::String::printf(R"( enter half4 main(float2 p) p.x = %d.5 p.y = 1.5 scope +1 line 3 val.x = %d val.y = 1 line 4 [main].result.x = 0 [main].result.y = 1 [main].result.z = 0 [main].result.w = 1 scope -1 exit half4 main(float2 p) )", center, center); REPORTER_ASSERT( r, skstd::starts_with(dump, kSkRPSlotDump) && skstd::ends_with(dump, expectedTrace), "Trace does not match expectation for %dx%d:\n%.*s\n", imageSize, imageSize, (int)dump.size(), dump.data()); } } DEF_TEST(SkRuntimeEffectTracesAreUnoptimized, r) { TestEffect effect(r, /*grContext=*/nullptr, /*graphite=*/nullptr); effect.build(R"( int globalUnreferencedVar = 7; half inlinableFunction() { return 1; } half4 main(float2 p) { if (true) { int localUnreferencedVar = 7; } return inlinableFunction().xxxx; } )"); std::string dump = effect.trace({1, 1}); static constexpr char kSkRPSlotDump[] = R"($0 = p (float2 : slot 1/2, L0) $1 = p (float2 : slot 2/2, L0) $2 = globalUnreferencedVar (int, L0) $3 = [main].result (float4 : slot 1/4, L0) $4 = [main].result (float4 : slot 2/4, L0) $5 = [main].result (float4 : slot 3/4, L0) $6 = [main].result (float4 : slot 4/4, L0) $7 = localUnreferencedVar (int, L0) $8 = [inlinableFunction].result (float, L0) F0 = half4 main(float2 p) F1 = half inlinableFunction() )"; static constexpr char kExpectedTrace[] = R"( globalUnreferencedVar = 7 enter half4 main(float2 p) p.x = 1.5 p.y = 1.5 scope +1 line 7 scope +1 line 8 localUnreferencedVar = 7 scope -1 line 10 enter half inlinableFunction() scope +1 line 4 [inlinableFunction].result = 1 scope -1 exit half inlinableFunction() [main].result.x = 1 [main].result.y = 1 [main].result.z = 1 [main].result.w = 1 scope -1 exit half4 main(float2 p) )"; REPORTER_ASSERT( r, skstd::starts_with(dump, kSkRPSlotDump) && skstd::ends_with(dump, kExpectedTrace), "Trace output does not match expectation:\n%.*s\n", (int)dump.size(), dump.data()); } DEF_TEST(SkRuntimeEffectTraceCodeThatCannotBeUnoptimized, r) { TestEffect effect(r, /*grContext=*/nullptr, /*graphite=*/nullptr); effect.build(R"( half4 main(float2 p) { int variableThatGetsOptimizedAway = 7; if (true) { return half4(1); } // This (unreachable) path doesn't return a value. // Without optimization, SkSL thinks this code doesn't return a value on every path. } )"); std::string dump = effect.trace({1, 1}); static constexpr char kSkRPSlotDump[] = R"($0 = p (float2 : slot 1/2, L0) $1 = p (float2 : slot 2/2, L0) $2 = [main].result (float4 : slot 1/4, L0) $3 = [main].result (float4 : slot 2/4, L0) $4 = [main].result (float4 : slot 3/4, L0) $5 = [main].result (float4 : slot 4/4, L0) F0 = half4 main(float2 p) )"; static constexpr char kExpectedTrace[] = R"( enter half4 main(float2 p) p.x = 1.5 p.y = 1.5 scope +1 scope +1 line 5 [main].result.x = 1 [main].result.y = 1 [main].result.z = 1 [main].result.w = 1 scope -1 scope -1 exit half4 main(float2 p) )"; REPORTER_ASSERT( r, skstd::starts_with(dump, kSkRPSlotDump) && skstd::ends_with(dump, kExpectedTrace), "Trace output does not match expectation:\n%.*s\n", (int)dump.size(), dump.data()); } static void test_RuntimeEffect_Blenders(skiatest::Reporter* r, GrRecordingContext* grContext, const GraphiteInfo* graphite) { TestBlend effect(r, grContext, graphite); using float2 = std::array; using float4 = std::array; using int4 = std::array; SkPaint rgbwPaint; rgbwPaint.setShader(make_RGBW_shader()); rgbwPaint.setBlendMode(SkBlendMode::kSrc); // Use of a simple uniform. (Draw twice with two values to ensure it's updated). effect.build("uniform float4 gColor; half4 main(half4 s, half4 d) { return half4(gColor); }"); effect.uniform("gColor") = float4{ 0.0f, 0.25f, 0.75f, 1.0f }; effect.test(0xFFBF4000); effect.uniform("gColor") = float4{ 1.0f, 0.0f, 0.0f, 0.498f }; effect.test(0x7F0000FF); // We don't clamp here either // Same, with integer uniforms effect.build("uniform int4 gColor;" "half4 main(half4 s, half4 d) { return half4(gColor) / 255.0; }"); effect.uniform("gColor") = int4{ 0x00, 0x40, 0xBF, 0xFF }; effect.test(0xFFBF4000); effect.uniform("gColor") = int4{ 0xFF, 0x00, 0x00, 0x7F }; effect.test(0x7F0000FF); // We don't clamp here either // Verify that mutating the source and destination colors is allowed effect.build("half4 main(half4 s, half4 d) { s += d; d += s; return half4(1); }"); effect.test(0xFFFFFFFF); // Verify that we can write out the source color (ignoring the dest color) // This is equivalent to the kSrc blend mode. effect.build("half4 main(half4 s, half4 d) { return s; }"); effect.test(0xFF888888); // Fill the destination with a variety of colors (using the RGBW shader) effect.surface()->getCanvas()->drawPaint(rgbwPaint); // Verify that we can read back the dest color exactly as-is (ignoring the source color) // This is equivalent to the kDst blend mode. effect.build("half4 main(half4 s, half4 d) { return d; }"); effect.test({0xFF0000FF, 0xFF00FF00, 0xFFFF0000, 0xFFFFFFFF}); // Verify that we can invert the destination color (including the alpha channel). // The expected outputs are the exact inverse of the previous test. effect.build("half4 main(half4 s, half4 d) { return half4(1) - d; }"); effect.test({0x00FFFF00, 0x00FF00FF, 0x0000FFFF, 0x00000000}); // Verify that color values are clamped to 0 and 1. effect.build("half4 main(half4 s, half4 d) { return half4(-1); }"); effect.test(0x00000000); effect.build("half4 main(half4 s, half4 d) { return half4(2); }"); effect.test(0xFFFFFFFF); // // Sampling children // // Sampling a null shader should return transparent black. effect.build("uniform shader child;" "half4 main(half4 s, half4 d) { return child.eval(s.rg); }"); effect.child("child") = nullptr; effect.test(0x00000000, [](SkCanvas*, SkPaint* paint) { paint->setColor4f({1.0f, 1.0f, 0.0f, 1.0f}); }); effect.build("uniform colorFilter child;" "half4 main(half4 s, half4 d) { return child.eval(s); }"); effect.child("child") = nullptr; effect.test(0xFF00FFFF, [](SkCanvas*, SkPaint* paint) { paint->setColor4f({1.0f, 1.0f, 0.0f, 1.0f}); }); // Sampling a null blender should do a src-over blend. Draw 50% black over RGBW to verify this. effect.surface()->getCanvas()->drawPaint(rgbwPaint); effect.build("uniform blender child;" "half4 main(half4 s, half4 d) { return child.eval(s, d); }"); effect.child("child") = nullptr; effect.test({0xFF000080, 0xFF008000, 0xFF800000, 0xFF808080}, [](SkCanvas*, SkPaint* paint) { paint->setColor4f({0.0f, 0.0f, 0.0f, 0.497f}); }); // Sampling a shader at various coordinates effect.build("uniform shader child;" "uniform half2 pos;" "half4 main(half4 s, half4 d) { return child.eval(pos); }"); effect.child("child") = make_RGBW_shader(); effect.uniform("pos") = float2{0.5, 0.5}; effect.test(0xFF0000FF); effect.uniform("pos") = float2{1.5, 0.5}; effect.test(0xFF00FF00); effect.uniform("pos") = float2{0.5, 1.5}; effect.test(0xFFFF0000); effect.uniform("pos") = float2{1.5, 1.5}; effect.test(0xFFFFFFFF); // Sampling a shader as above, but via a helper function effect.build("uniform shader child;" "uniform half2 pos;" "half4 eval_at_pos(shader x) { return x.eval(pos); }" "half4 main(half4 s, half4 d) { return eval_at_pos(child); }", /*allowPrivateAccess=*/true); effect.child("child") = make_RGBW_shader(); effect.uniform("pos") = float2{0.5, 0.5}; effect.test(0xFF0000FF); effect.uniform("pos") = float2{1.5, 0.5}; effect.test(0xFF00FF00); effect.uniform("pos") = float2{0.5, 1.5}; effect.test(0xFFFF0000); effect.uniform("pos") = float2{1.5, 1.5}; effect.test(0xFFFFFFFF); // Sampling a color filter effect.build("uniform colorFilter child;" "half4 main(half4 s, half4 d) { return child.eval(half4(1)); }"); effect.child("child") = SkColorFilters::Blend(0xFF012345, SkBlendMode::kSrc); effect.test(0xFF452301); // Sampling a built-in blender effect.surface()->getCanvas()->drawPaint(rgbwPaint); effect.build("uniform blender child;" "half4 main(half4 s, half4 d) { return child.eval(s, d); }"); effect.child("child") = SkBlender::Mode(SkBlendMode::kPlus); effect.test({0xFF4523FF, 0xFF45FF01, 0xFFFF2301, 0xFFFFFFFF}, [](SkCanvas*, SkPaint* paint) { paint->setColor(0xFF012345); }); // Sampling a runtime-effect blender effect.surface()->getCanvas()->drawPaint(rgbwPaint); effect.build("uniform blender child;" "half4 main(half4 s, half4 d) { return child.eval(s, d); }"); effect.child("child") = SkBlenders::Arithmetic(0, 1, 1, 0, /*enforcePremul=*/false); effect.test({0xFF4523FF, 0xFF45FF01, 0xFFFF2301, 0xFFFFFFFF}, [](SkCanvas*, SkPaint* paint) { paint->setColor(0xFF012345); }); } DEF_TEST(SkRuntimeEffect_Blender_CPU, r) { test_RuntimeEffect_Blenders(r, /*grContext=*/nullptr, /*graphite=*/nullptr); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(SkRuntimeEffect_Blender_GPU, r, ctxInfo, CtsEnforcement::kApiLevel_T) { test_RuntimeEffect_Blenders(r, ctxInfo.directContext(), /*graphite=*/nullptr); } DEF_TEST(SkRuntimeShaderBuilderReuse, r) { const char* kSource = R"( uniform half x; half4 main(float2 p) { return half4(x); } )"; sk_sp effect = SkRuntimeEffect::MakeForShader(SkString(kSource)).effect; REPORTER_ASSERT(r, effect); // Test passes if this sequence doesn't assert. skbug.com/10667 SkRuntimeShaderBuilder b(std::move(effect)); b.uniform("x") = 0.0f; auto shader_0 = b.makeShader(); b.uniform("x") = 1.0f; auto shader_1 = b.makeShader(); } DEF_TEST(SkRuntimeBlendBuilderReuse, r) { const char* kSource = R"( uniform half x; half4 main(half4 s, half4 d) { return half4(x); } )"; sk_sp effect = SkRuntimeEffect::MakeForBlender(SkString(kSource)).effect; REPORTER_ASSERT(r, effect); // We should be able to construct multiple SkBlenders in a row without asserting. SkRuntimeBlendBuilder b(std::move(effect)); for (float x = 0.0f; x <= 2.0f; x += 2.0f) { b.uniform("x") = x; sk_sp blender = b.makeBlender(); } } DEF_TEST(SkRuntimeShaderBuilderSetUniforms, r) { const char* kSource = R"( uniform half x; uniform vec2 offset; half4 main(float2 p) { return half4(x); } )"; sk_sp effect = SkRuntimeEffect::MakeForShader(SkString(kSource)).effect; REPORTER_ASSERT(r, effect); SkRuntimeShaderBuilder b(std::move(effect)); // Test passes if this sequence doesn't assert. float x = 1.0f; REPORTER_ASSERT(r, b.uniform("x").set(&x, 1)); // add extra value to ensure that set doesn't try to use sizeof(array) float origin[] = { 2.0f, 3.0f, 4.0f }; REPORTER_ASSERT(r, b.uniform("offset").set(origin, 2)); #ifndef SK_DEBUG REPORTER_ASSERT(r, !b.uniform("offset").set(origin, 1)); REPORTER_ASSERT(r, !b.uniform("offset").set(origin, 3)); #endif auto shader = b.makeShader(); } DEF_TEST(SkRuntimeEffectThreaded, r) { // This tests that we can safely use SkRuntimeEffect::MakeForShader from more than one thread, // and also that programs don't refer to shared structures owned by the compiler. // skbug.com/10589 static constexpr char kSource[] = "half4 main(float2 p) { return sk_FragCoord.xyxy; }"; std::thread threads[16]; for (auto& thread : threads) { thread = std::thread([r]() { SkRuntimeEffect::Options options; SkRuntimeEffectPriv::AllowPrivateAccess(&options); auto [effect, error] = SkRuntimeEffect::MakeForShader(SkString(kSource), options); REPORTER_ASSERT(r, effect); }); } for (auto& thread : threads) { thread.join(); } } DEF_TEST(SkRuntimeEffectAllowsPrivateAccess, r) { SkRuntimeEffect::Options defaultOptions; SkRuntimeEffect::Options optionsWithAccess; SkRuntimeEffectPriv::AllowPrivateAccess(&optionsWithAccess); // Confirm that shaders can only access $private_functions when private access is allowed. { static constexpr char kShader[] = "half4 main(float2 p) { return $hsl_to_rgb(p.xxx, p.y); }"; SkRuntimeEffect::Result normal = SkRuntimeEffect::MakeForShader(SkString(kShader), defaultOptions); REPORTER_ASSERT(r, !normal.effect); SkRuntimeEffect::Result privileged = SkRuntimeEffect::MakeForShader(SkString(kShader), optionsWithAccess); REPORTER_ASSERT(r, privileged.effect, "%s", privileged.errorText.c_str()); } // Confirm that color filters can only access $private_functions when private access is allowed. { static constexpr char kColorFilter[] = "half4 main(half4 c) { return $hsl_to_rgb(c.rgb, c.a); }"; SkRuntimeEffect::Result normal = SkRuntimeEffect::MakeForColorFilter(SkString(kColorFilter), defaultOptions); REPORTER_ASSERT(r, !normal.effect); SkRuntimeEffect::Result privileged = SkRuntimeEffect::MakeForColorFilter(SkString(kColorFilter), optionsWithAccess); REPORTER_ASSERT(r, privileged.effect, "%s", privileged.errorText.c_str()); } // Confirm that blenders can only access $private_functions when private access is allowed. { static constexpr char kBlender[] = "half4 main(half4 s, half4 d) { return $hsl_to_rgb(s.rgb, d.a); }"; SkRuntimeEffect::Result normal = SkRuntimeEffect::MakeForBlender(SkString(kBlender), defaultOptions); REPORTER_ASSERT(r, !normal.effect); SkRuntimeEffect::Result privileged = SkRuntimeEffect::MakeForBlender(SkString(kBlender), optionsWithAccess); REPORTER_ASSERT(r, privileged.effect, "%s", privileged.errorText.c_str()); } } DEF_TEST(SkRuntimeColorFilterSingleColor, r) { // Test runtime colorfilters support filterColor4f(). auto [effect, err] = SkRuntimeEffect::MakeForColorFilter(SkString{"half4 main(half4 c) { return c*c; }"}); REPORTER_ASSERT(r, effect); REPORTER_ASSERT(r, err.isEmpty()); sk_sp cf = effect->makeColorFilter(SkData::MakeEmpty()); REPORTER_ASSERT(r, cf); SkColor4f c = cf->filterColor4f({0.25, 0.5, 0.75, 1.0}, sk_srgb_singleton(), sk_srgb_singleton()); REPORTER_ASSERT(r, c.fR == 0.0625f); REPORTER_ASSERT(r, c.fG == 0.25f); REPORTER_ASSERT(r, c.fB == 0.5625f); REPORTER_ASSERT(r, c.fA == 1.0f); } static void test_RuntimeEffectStructNameReuse(skiatest::Reporter* r, GrRecordingContext* rContext) { // Test that two different runtime effects can reuse struct names in a single paint operation auto [childEffect, err] = SkRuntimeEffect::MakeForShader(SkString( "uniform shader paint;" "struct S { half4 rgba; };" "void process(inout S s) { s.rgba.rgb *= 0.5; }" "half4 main(float2 p) { S s; s.rgba = paint.eval(p); process(s); return s.rgba; }" )); REPORTER_ASSERT(r, childEffect, "%s\n", err.c_str()); sk_sp sourceColor = SkShaders::Color({0.99608f, 0.50196f, 0.0f, 1.0f}, nullptr); const GrColor kExpected = 0xFF00407F; sk_sp child = childEffect->makeShader(/*uniforms=*/nullptr, &sourceColor, /*childCount=*/1); TestEffect effect(r, /*grContext=*/nullptr, /*graphite=*/nullptr); effect.build( "uniform shader child;" "struct S { float2 coord; };" "void process(inout S s) { s.coord = s.coord.yx; }" "half4 main(float2 p) { S s; s.coord = p; process(s); return child.eval(s.coord); " "}"); effect.child("child") = child; effect.test(kExpected, [](SkCanvas*, SkPaint* paint) {}); } DEF_TEST(SkRuntimeStructNameReuse, r) { test_RuntimeEffectStructNameReuse(r, nullptr); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(SkRuntimeStructNameReuse_GPU, r, ctxInfo, CtsEnforcement::kApiLevel_T) { test_RuntimeEffectStructNameReuse(r, ctxInfo.directContext()); } DEF_TEST(SkRuntimeColorFilterFlags, r) { auto expectAlphaUnchanged = [&](const char* shader) { auto [effect, err] = SkRuntimeEffect::MakeForColorFilter(SkString{shader}); REPORTER_ASSERT(r, effect && err.isEmpty(), "%s", shader); sk_sp filter = effect->makeColorFilter(SkData::MakeEmpty()); REPORTER_ASSERT(r, filter && filter->isAlphaUnchanged(), "%s", shader); }; auto expectAlphaChanged = [&](const char* shader) { auto [effect, err] = SkRuntimeEffect::MakeForColorFilter(SkString{shader}); REPORTER_ASSERT(r, effect && err.isEmpty(), "%s", shader); sk_sp filter = effect->makeColorFilter(SkData::MakeEmpty()); REPORTER_ASSERT(r, filter && !filter->isAlphaUnchanged(), "%s", shader); }; // We expect these patterns to be detected as alpha-unchanged. expectAlphaUnchanged("half4 main(half4 color) { return color; }"); expectAlphaUnchanged("half4 main(half4 color) { return color.aaaa; }"); expectAlphaUnchanged("half4 main(half4 color) { return color.bgra; }"); expectAlphaUnchanged("half4 main(half4 color) { return color.rraa; }"); expectAlphaUnchanged("half4 main(half4 color) { return color.010a; }"); expectAlphaUnchanged("half4 main(half4 color) { return half4(0, 0, 0, color.a); }"); expectAlphaUnchanged("half4 main(half4 color) { return half4(half2(1), color.ba); }"); expectAlphaUnchanged("half4 main(half4 color) { return half4(half2(1), half2(color.a)); }"); expectAlphaUnchanged("half4 main(half4 color) { return half4(color.a); }"); expectAlphaUnchanged("half4 main(half4 color) { return half4(float4(color.baba)); }"); expectAlphaUnchanged("half4 main(half4 color) { return color.r != color.g ? color :" " color.000a; }"); expectAlphaUnchanged("half4 main(half4 color) { return color.a == color.r ? color.rrra : " "color.g == color.b ? color.ggga : " " color.bbba; }"); // Modifying the input color invalidates the check. expectAlphaChanged("half4 main(half4 color) { color.a = 0; return color; }"); // These swizzles don't end in alpha. expectAlphaChanged("half4 main(half4 color) { return color.argb; }"); expectAlphaChanged("half4 main(half4 color) { return color.rrrr; }"); // This compound constructor doesn't end in alpha. expectAlphaChanged("half4 main(half4 color) { return half4(1, 1, 1, color.r); }"); // This splat constructor doesn't use alpha. expectAlphaChanged("half4 main(half4 color) { return half4(color.r); }"); // These ternaries don't return alpha on both sides expectAlphaChanged("half4 main(half4 color) { return color.a > 0 ? half4(0) : color; }"); expectAlphaChanged("half4 main(half4 color) { return color.g < 1 ? color.bgra : color.abgr; }"); expectAlphaChanged("half4 main(half4 color) { return color.b > 0.5 ? half4(0) : half4(1); }"); // Performing arithmetic on the input causes it to report as "alpha changed" even if the // arithmetic is a no-op; we aren't smart enough to see through it. expectAlphaChanged("half4 main(half4 color) { return color + half4(1,1,1,0); }"); expectAlphaChanged("half4 main(half4 color) { return color + half4(0,0,0,4); }"); // All exit paths are checked. expectAlphaChanged("half4 main(half4 color) { " " if (color.r > 0.5) { return color; }" " return half4(0);" "}"); expectAlphaChanged("half4 main(half4 color) { " " if (color.r > 0.5) { return half4(0); }" " return color;" "}"); } DEF_TEST(SkRuntimeShaderSampleCoords, r) { // This test verifies that we detect calls to sample where the coords are the same as those // passed to main. In those cases, it's safe to turn the "explicit" sampling into "passthrough" // sampling. This optimization is implemented very conservatively. // // It also checks that we correctly set the "referencesSampleCoords" bit on the runtime effect // FP, depending on how the coords parameter to main is used. auto test = [&](const char* src, bool expectExplicit, bool expectReferencesSampleCoords) { auto [effect, err] = SkRuntimeEffect::MakeForShader(SkStringPrintf("uniform shader child; %s", src)); REPORTER_ASSERT(r, effect); auto child = GrFragmentProcessor::MakeColor({ 1, 1, 1, 1 }); auto fp = GrSkSLFP::Make(effect.get(), "test_fp", /*inputFP=*/nullptr, GrSkSLFP::OptFlags::kNone, "child", std::move(child)); REPORTER_ASSERT(r, fp); REPORTER_ASSERT(r, fp->childProcessor(0)->sampleUsage().isExplicit() == expectExplicit); REPORTER_ASSERT(r, fp->usesSampleCoords() == expectReferencesSampleCoords); }; // Cases where our optimization is valid, and works: // Direct use of passed-in coords. Here, the only use of sample coords is for a sample call // converted to passthrough, so referenceSampleCoords is *false*, despite appearing in main. test("half4 main(float2 xy) { return child.eval(xy); }", false, false); // Sample with passed-in coords, read (but don't write) sample coords elsewhere test("half4 main(float2 xy) { return child.eval(xy) + sin(xy.x); }", false, true); // Cases where our optimization is not valid, and does not happen: // Sampling with values completely unrelated to passed-in coords test("half4 main(float2 xy) { return child.eval(float2(0, 0)); }", true, false); // Use of expression involving passed in coords test("half4 main(float2 xy) { return child.eval(xy * 0.5); }", true, true); // Use of coords after modification test("half4 main(float2 xy) { xy *= 2; return child.eval(xy); }", true, true); // Use of coords after modification via out-param call test("void adjust(inout float2 xy) { xy *= 2; }" "half4 main(float2 xy) { adjust(xy); return child.eval(xy); }", true, true); // There should (must) not be any false-positive cases. There are false-negatives. // In all of these cases, our optimization would be valid, but does not happen: // Direct use of passed-in coords, modified after use test("half4 main(float2 xy) { half4 c = child.eval(xy); xy *= 2; return c; }", true, true); // Passed-in coords copied to a temp variable test("half4 main(float2 xy) { float2 p = xy; return child.eval(p); }", true, true); // Use of coords passed to helper function test("half4 helper(float2 xy) { return child.eval(xy); }" "half4 main(float2 xy) { return helper(xy); }", true, true); } DEF_TEST(SkRuntimeShaderIsOpaque, r) { // This test verifies that we detect certain simple patterns in runtime shaders, and can deduce // (via code in SkSL::Analysis::ReturnsOpaqueColor) that the resulting shader is always opaque. // That logic is conservative, and the tests below reflect this. auto test = [&](const char* body, bool expectOpaque) { auto [effect, err] = SkRuntimeEffect::MakeForShader(SkStringPrintf(R"( uniform shader cOnes; uniform shader cZeros; uniform float4 uOnes; uniform float4 uZeros; half4 main(float2 xy) { %s })", body)); REPORTER_ASSERT(r, effect); auto cOnes = SkShaders::Color(SK_ColorWHITE); auto cZeros = SkShaders::Color(SK_ColorTRANSPARENT); SkASSERT(cOnes->isOpaque()); SkASSERT(!cZeros->isOpaque()); SkRuntimeShaderBuilder builder(effect); builder.child("cOnes") = std::move(cOnes); builder.child("cZeros") = std::move(cZeros); builder.uniform("uOnes") = SkColors::kWhite; builder.uniform("uZeros") = SkColors::kTransparent; auto shader = builder.makeShader(); REPORTER_ASSERT(r, shader->isOpaque() == expectOpaque); }; // Cases where our optimization is valid, and works: // Returning opaque literals test("return half4(1);", true); test("return half4(0, 1, 0, 1);", true); test("return half4(0, 0, 0, 1);", true); // Simple expressions involving uniforms test("return uZeros.rgb1;", true); test("return uZeros.bgra.rgb1;", true); test("return half4(uZeros.rgb, 1);", true); // Simple expressions involving child.eval test("return cZeros.eval(xy).rgb1;", true); test("return cZeros.eval(xy).bgra.rgb1;", true); test("return half4(cZeros.eval(xy).rgb, 1);", true); // Multiple returns test("if (xy.x < 100) { return uZeros.rgb1; } else { return cZeros.eval(xy).rgb1; }", true); // More expression cases: test("return (cZeros.eval(xy) * uZeros).rgb1;", true); test("return half4(1, 1, 1, 0.5 + 0.5);", true); // Constant variable propagation test("const half4 kWhite = half4(1); return kWhite;", true); // Cases where our optimization is not valid, and does not happen: // Returning non-opaque literals test("return half4(0);", false); test("return half4(1, 1, 1, 0);", false); // Returning non-opaque uniforms or children test("return uZeros;", false); test("return cZeros.eval(xy);", false); // Multiple returns test("if (xy.x < 100) { return uZeros; } else { return cZeros.eval(xy).rgb1; }", false); test("if (xy.x < 100) { return uZeros.rgb1; } else { return cZeros.eval(xy); }", false); // There should (must) not be any false-positive cases. There are false-negatives. // In these cases, our optimization would be valid, but does not happen: // More complex expressions that can't be simplified test("return xy.x < 100 ? uZeros.rgb1 : cZeros.eval(xy).rgb1;", false); // Finally, there are cases that are conditional on the uniforms and children. These *could* // determine dynamically if the uniform and/or child being referenced is opaque, and use that // information. Today, we don't do this, so we pessimistically assume they're transparent: test("return uOnes;", false); test("return cOnes.eval(xy);", false); } DEF_GANESH_TEST_FOR_ALL_CONTEXTS(GrSkSLFP_Specialized, r, ctxInfo, CtsEnforcement::kApiLevel_T) { struct FpAndKey { std::unique_ptr fp; TArray key; }; // Constant color, but with an 'specialize' option that decides if the color is inserted in the // SkSL as a literal, or left as a uniform auto make_color_fp = [&](SkPMColor4f color, bool specialize) { static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, "uniform half4 color;" "half4 main(float2 xy) { return color; }" ); FpAndKey result; result.fp = GrSkSLFP::Make(effect, "color_fp", /*inputFP=*/nullptr, GrSkSLFP::OptFlags::kNone, "color", GrSkSLFP::SpecializeIf(specialize, color)); skgpu::KeyBuilder builder(&result.key); result.fp->addToKey(*ctxInfo.directContext()->priv().caps()->shaderCaps(), &builder); builder.flush(); return result; }; FpAndKey uRed = make_color_fp({1, 0, 0, 1}, false), uGreen = make_color_fp({0, 1, 0, 1}, false), sRed = make_color_fp({1, 0, 0, 1}, true), sGreen = make_color_fp({0, 1, 0, 1}, true); // uRed and uGreen should have the same key - they just have different uniforms SkASSERT(uRed.key == uGreen.key); // sRed and sGreen should have keys that are different from the uniform case, and each other SkASSERT(sRed.key != uRed.key); SkASSERT(sGreen.key != uRed.key); SkASSERT(sRed.key != sGreen.key); } DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(GrSkSLFP_UniformArray, r, ctxInfo, CtsEnforcement::kApiLevel_T) { // Make a fill-context to draw into. GrDirectContext* directContext = ctxInfo.directContext(); SkImageInfo info = SkImageInfo::Make(1, 1, kRGBA_8888_SkColorType, kPremul_SkAlphaType); std::unique_ptr testCtx = directContext->priv().makeSFC(info, /*label=*/{}, SkBackingFit::kExact); // Make an effect that takes a uniform array as input. static constexpr std::array kRed {1.0f, 0.0f, 0.0f, 1.0f}; static constexpr std::array kGreen{0.0f, 1.0f, 0.0f, 1.0f}; static constexpr std::array kBlue {0.0f, 0.0f, 1.0f, 1.0f}; static constexpr std::array kGray {0.499f, 0.499f, 0.499f, 1.0f}; for (const auto& colorArray : {kRed, kGreen, kBlue, kGray}) { // Compile our runtime effect. static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, "uniform half color[4];" "half4 main(float2 xy) { return half4(color[0], color[1], color[2], color[3]); }" ); // Render our shader into the fill-context with our various input colors. testCtx->fillWithFP(GrSkSLFP::Make(effect, "test_fp", /*inputFP=*/nullptr, GrSkSLFP::OptFlags::kNone, "color", SkSpan(colorArray))); // Read our color back and ensure it matches. GrColor actual; GrPixmap pixmap(info, &actual, sizeof(GrColor)); if (!testCtx->readPixels(directContext, pixmap, /*srcPt=*/{0, 0})) { REPORT_FAILURE(r, "readPixels", SkString("readPixels failed")); break; } if (actual != GrColorPackRGBA(255 * colorArray[0], 255 * colorArray[1], 255 * colorArray[2], 255 * colorArray[3])) { REPORT_FAILURE(r, "Uniform array didn't match expectations", SkStringPrintf("\n" "Expected: [ %g %g %g %g ]\n" "Got : [ %08x ]\n", colorArray[0], colorArray[1], colorArray[2], colorArray[3], actual)); break; } } }