/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/codec/SkCodec.h" #include "include/core/SkAlphaType.h" #include "include/core/SkColorType.h" #include "include/core/SkImageInfo.h" #include "include/core/SkSwizzle.h" #include "src/codec/SkSampler.h" #include "src/core/SkSwizzlePriv.h" #include "tests/Test.h" #include #include #include static void check_fill(skiatest::Reporter* r, const SkImageInfo& imageInfo, uint32_t startRow, uint32_t endRow, size_t rowBytes, uint32_t offset) { // Calculate the total size of the image in bytes. Use the smallest possible size. // The offset value tells us to adjust the pointer from the memory we allocate in order // to test on different memory alignments. If offset is nonzero, we need to increase the // size of the memory we allocate in order to make sure that we have enough. We are // still allocating the smallest possible size. const size_t totalBytes = imageInfo.computeByteSize(rowBytes) + offset; // Create fake image data where every byte has a value of 0 std::unique_ptr storage(new uint8_t[totalBytes]); memset(storage.get(), 0, totalBytes); // Adjust the pointer in order to test on different memory alignments uint8_t* imageData = storage.get() + offset; uint8_t* imageStart = imageData + rowBytes * startRow; const SkImageInfo fillInfo = imageInfo.makeWH(imageInfo.width(), endRow - startRow + 1); SkSampler::Fill(fillInfo, imageStart, rowBytes, SkCodec::kNo_ZeroInitialized); // Ensure that the pixels are filled properly // The bots should catch any memory corruption uint8_t* indexPtr = imageData + startRow * rowBytes; uint8_t* grayPtr = indexPtr; uint32_t* colorPtr = (uint32_t*) indexPtr; uint16_t* color565Ptr = (uint16_t*) indexPtr; for (uint32_t y = startRow; y <= endRow; y++) { for (int32_t x = 0; x < imageInfo.width(); x++) { switch (imageInfo.colorType()) { case kN32_SkColorType: REPORTER_ASSERT(r, 0 == colorPtr[x]); break; case kGray_8_SkColorType: REPORTER_ASSERT(r, 0 == grayPtr[x]); break; case kRGB_565_SkColorType: REPORTER_ASSERT(r, 0 == color565Ptr[x]); break; default: REPORTER_ASSERT(r, false); break; } } indexPtr += rowBytes; colorPtr = (uint32_t*) indexPtr; } } // Test Fill() with different combinations of dimensions, alignment, and padding DEF_TEST(SwizzlerFill, r) { // Test on an invalid width and representative widths const uint32_t widths[] = { 0, 10, 50 }; // In order to call Fill(), there must be at least one row to fill // Test on the smallest possible height and representative heights const uint32_t heights[] = { 1, 5, 10 }; // Test on interesting possibilities for row padding const uint32_t paddings[] = { 0, 4 }; // Iterate over test dimensions for (uint32_t width : widths) { for (uint32_t height : heights) { // Create image info objects const SkImageInfo colorInfo = SkImageInfo::MakeN32(width, height, kUnknown_SkAlphaType); const SkImageInfo grayInfo = colorInfo.makeColorType(kGray_8_SkColorType); const SkImageInfo color565Info = colorInfo.makeColorType(kRGB_565_SkColorType); for (uint32_t padding : paddings) { // Calculate row bytes const size_t colorRowBytes = SkColorTypeBytesPerPixel(kN32_SkColorType) * width + padding; const size_t indexRowBytes = width + padding; const size_t grayRowBytes = indexRowBytes; const size_t color565RowBytes = SkColorTypeBytesPerPixel(kRGB_565_SkColorType) * width + padding; // If there is padding, we can invent an offset to change the memory alignment for (uint32_t offset = 0; offset <= padding; offset += 4) { // Test all possible start rows with all possible end rows for (uint32_t startRow = 0; startRow < height; startRow++) { for (uint32_t endRow = startRow; endRow < height; endRow++) { // Test fill with each color type check_fill(r, colorInfo, startRow, endRow, colorRowBytes, offset); check_fill(r, grayInfo, startRow, endRow, grayRowBytes, offset); check_fill(r, color565Info, startRow, endRow, color565RowBytes, offset); } } } } } } } DEF_TEST(SwizzleOpts, r) { uint32_t dst, src; // forall c, c*255 == c, c*0 == 0 for (int c = 0; c <= 255; c++) { src = (255<<24) | c; SkOpts::RGBA_to_rgbA(&dst, &src, 1); REPORTER_ASSERT(r, dst == src); SkOpts::RGBA_to_bgrA(&dst, &src, 1); REPORTER_ASSERT(r, dst == (uint32_t)((255<<24) | (c<<16))); src = (0<<24) | c; SkOpts::RGBA_to_rgbA(&dst, &src, 1); REPORTER_ASSERT(r, dst == 0); SkOpts::RGBA_to_bgrA(&dst, &src, 1); REPORTER_ASSERT(r, dst == 0); } // check a totally arbitrary color src = 0xFACEB004; SkOpts::RGBA_to_rgbA(&dst, &src, 1); REPORTER_ASSERT(r, dst == 0xFACAAD04); // swap red and blue SkOpts::RGBA_to_BGRA(&dst, &src, 1); REPORTER_ASSERT(r, dst == 0xFA04B0CE); // all together now SkOpts::RGBA_to_bgrA(&dst, &src, 1); REPORTER_ASSERT(r, dst == 0xFA04ADCA); } DEF_TEST(PublicSwizzleOpts, r) { uint32_t dst, src; // check a totally arbitrary color src = 0xFACEB004; SkSwapRB(&dst, &src, 1); REPORTER_ASSERT(r, dst == 0xFA04B0CE); } using fn_reciprocal = float (*)(float); static void test_reciprocal_alpha( skiatest::Reporter* reporter, fn_reciprocal test255, fn_reciprocal test1) { REPORTER_ASSERT(reporter, test255(0) == 0); for (uint32_t i = 1; i < 256; ++i) { const float r = test255(i); const float e = (255.0f / i); REPORTER_ASSERT(reporter, r == e); } REPORTER_ASSERT(reporter, test1(0) == 0); for (uint32_t i = 1; i < 256; ++i) { const float normalized = i / 255.0f; const float r = test1(normalized); const float e = (1.0f / normalized); REPORTER_ASSERT(reporter, r == e); } } #define SK_OPTS_NS test #define SK_OPTS_TARGET SK_OPTS_TARGET_DEFAULT #include "src/opts/SkOpts_SetTarget.h" #include "src/opts/SkSwizzler_opts.inc" DEF_TEST(ReciprocalAlphaOptimized, reporter) { test_reciprocal_alpha(reporter, SK_OPTS_NS::reciprocal_alpha_times_255, SK_OPTS_NS::reciprocal_alpha); } DEF_TEST(ReciprocalAlphaPortable, reporter) { test_reciprocal_alpha(reporter, SK_OPTS_NS::reciprocal_alpha_times_255_portable, SK_OPTS_NS::reciprocal_alpha_portable); } // The stages of RasterPipeline unpremul calcExpected needs to simulate. // SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) { // *r = cast((_8888 ) & 0xff) * (1/255.0f); // *g = cast((_8888 >> 8) & 0xff) * (1/255.0f); // *b = cast((_8888 >> 16) & 0xff) * (1/255.0f); // *a = cast((_8888 >> 24) ) * (1/255.0f); // } // STAGE(unpremul, NoCtx) { // float inf = sk_bit_cast(0x7f800000); // auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0.0f); // r *= scale; // g *= scale; // b *= scale; // } // STAGE(store_8888, const SkRasterPipeline_MemoryCtx* ctx) { // auto ptr = ptr_at_xy(ctx, dx,dy); // // U32 px = to_unorm(r, 255) // | to_unorm(g, 255) << 8 // | to_unorm(b, 255) << 16 // | to_unorm(a, 255) << 24; // store(ptr, px); // } uint32_t calcExpected(float alpha, float comp) { if (alpha == 0) { return 0; } const float normalized = comp * (1.0f / 255.0f); const float normalizedA = alpha * (1.0f / 255.0f); const float inverseAlpha = 1.0f / normalizedA; const float unpremul = normalized * inverseAlpha; const float scaledAndPinned = std::min(255.0f, unpremul * 255.0f); return SK_OPTS_NS::pixel_round_as_RP(scaledAndPinned); }; DEF_TEST(UnpremulSimulatingRP, reporter) { for (uint32_t a = 0; a < 256; ++a) { for (uint32_t c = 0; c < 256; ++c) { const uint32_t expected = calcExpected(a, c); const float normalizedA = a * (1.0f / 255.0f); const float invA = SK_OPTS_NS::reciprocal_alpha(normalizedA); const uint32_t actual = SK_OPTS_NS::unpremul_simulating_RP(invA, c); if (actual != expected) { SkDebugf("a: %u c: %u expected: %u actual: %u\n", a, c, expected, actual); } REPORTER_ASSERT(reporter, actual == expected); } } } #include "src/opts/SkOpts_RestoreTarget.h"