/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wconversion" #pragma clang diagnostic ignored "-Wextra" //#define LOG_NDEBUG 0 #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include "SurfaceFlinger.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ActivePictureUpdater.h" #include "BackgroundExecutor.h" #include "Client.h" #include "ClientCache.h" #include "Colorizer.h" #include "DisplayDevice.h" #include "DisplayHardware/ComposerHal.h" #include "DisplayHardware/FramebufferSurface.h" #include "DisplayHardware/HWComposer.h" #include "DisplayHardware/Hal.h" #include "DisplayHardware/VirtualDisplaySurface.h" #include "DisplayRenderArea.h" #include "Effects/Daltonizer.h" #include "FpsReporter.h" #include "FrameTimeline/FrameTimeline.h" #include "FrameTracer/FrameTracer.h" #include "FrontEnd/LayerCreationArgs.h" #include "FrontEnd/LayerHandle.h" #include "FrontEnd/LayerLifecycleManager.h" #include "FrontEnd/LayerLog.h" #include "FrontEnd/LayerSnapshot.h" #include "HdrLayerInfoReporter.h" #include "Jank/JankTracker.h" #include "Layer.h" #include "LayerProtoHelper.h" #include "LayerRenderArea.h" #include "LayerVector.h" #include "MutexUtils.h" #include "NativeWindowSurface.h" #include "PowerAdvisor/PowerAdvisor.h" #include "RegionSamplingThread.h" #include "RenderAreaBuilder.h" #include "Scheduler/EventThread.h" #include "Scheduler/LayerHistory.h" #include "Scheduler/Scheduler.h" #include "Scheduler/VsyncConfiguration.h" #include "Scheduler/VsyncModulator.h" #include "ScreenCaptureOutput.h" #include "SurfaceFlingerProperties.h" #include "TimeStats/TimeStats.h" #include "TunnelModeEnabledReporter.h" #include "Utils/Dumper.h" #include "WindowInfosListenerInvoker.h" #include #include #include #include #undef NO_THREAD_SAFETY_ANALYSIS #define NO_THREAD_SAFETY_ANALYSIS \ _Pragma("GCC error \"Prefer or MutexUtils.h helpers.\"") namespace android { using namespace std::chrono_literals; using namespace std::string_literals; using namespace std::string_view_literals; using namespace hardware::configstore; using namespace hardware::configstore::V1_0; using namespace sysprop; using ftl::Flags; using namespace ftl::flag_operators; using aidl::android::hardware::graphics::common::DisplayDecorationSupport; using aidl::android::hardware::graphics::composer3::Capability; using aidl::android::hardware::graphics::composer3::DisplayCapability; using CompositionStrategyPredictionState = android::compositionengine::impl:: OutputCompositionState::CompositionStrategyPredictionState; using base::StringAppendF; using display::PhysicalDisplay; using display::PhysicalDisplays; using frontend::TransactionHandler; using gui::DisplayInfo; using gui::GameMode; using gui::IDisplayEventConnection; using gui::IWindowInfosListener; using gui::LayerMetadata; using gui::WindowInfo; using gui::aidl_utils::binderStatusFromStatusT; using scheduler::VsyncModulator; using ui::Dataspace; using ui::DisplayPrimaries; using ui::RenderIntent; namespace hal = android::hardware::graphics::composer::hal; namespace { static constexpr int FOUR_K_WIDTH = 3840; static constexpr int FOUR_K_HEIGHT = 2160; // TODO(b/141333600): Consolidate with DisplayMode::Builder::getDefaultDensity. constexpr float FALLBACK_DENSITY = ACONFIGURATION_DENSITY_TV; float getDensityFromProperty(const char* property, bool required) { char value[PROPERTY_VALUE_MAX]; const float density = property_get(property, value, nullptr) > 0 ? std::atof(value) : 0.f; if (!density && required) { ALOGE("%s must be defined as a build property", property); return FALLBACK_DENSITY; } return density; } // Currently we only support V0_SRGB and DISPLAY_P3 as composition preference. bool validateCompositionDataspace(Dataspace dataspace) { return dataspace == Dataspace::V0_SRGB || dataspace == Dataspace::DISPLAY_P3; } std::chrono::milliseconds getIdleTimerTimeout(PhysicalDisplayId displayId) { if (const int32_t displayIdleTimerMs = base::GetIntProperty("debug.sf.set_idle_timer_ms_"s + std::to_string(displayId.value), 0); displayIdleTimerMs > 0) { return std::chrono::milliseconds(displayIdleTimerMs); } const int32_t setIdleTimerMs = base::GetIntProperty("debug.sf.set_idle_timer_ms"s, 0); const int32_t millis = setIdleTimerMs ? setIdleTimerMs : sysprop::set_idle_timer_ms(0); return std::chrono::milliseconds(millis); } bool getKernelIdleTimerSyspropConfig(PhysicalDisplayId displayId) { const bool displaySupportKernelIdleTimer = base::GetBoolProperty("debug.sf.support_kernel_idle_timer_"s + std::to_string(displayId.value), false); return displaySupportKernelIdleTimer || sysprop::support_kernel_idle_timer(false); } bool isAbove4k30(const ui::DisplayMode& outMode) { using fps_approx_ops::operator>; Fps refreshRate = Fps::fromValue(outMode.peakRefreshRate); return outMode.resolution.getWidth() >= FOUR_K_WIDTH && outMode.resolution.getHeight() >= FOUR_K_HEIGHT && refreshRate > 30_Hz; } void excludeDolbyVisionIf4k30Present(const std::vector& displayHdrTypes, ui::DisplayMode& outMode) { if (isAbove4k30(outMode) && std::any_of(displayHdrTypes.begin(), displayHdrTypes.end(), [](ui::Hdr type) { return type == ui::Hdr::DOLBY_VISION_4K30; })) { for (ui::Hdr type : displayHdrTypes) { if (type != ui::Hdr::DOLBY_VISION_4K30 && type != ui::Hdr::DOLBY_VISION) { outMode.supportedHdrTypes.push_back(type); } } } else { for (ui::Hdr type : displayHdrTypes) { if (type != ui::Hdr::DOLBY_VISION_4K30) { outMode.supportedHdrTypes.push_back(type); } } } } HdrCapabilities filterOut4k30(const HdrCapabilities& displayHdrCapabilities) { std::vector hdrTypes; for (ui::Hdr type : displayHdrCapabilities.getSupportedHdrTypes()) { if (type != ui::Hdr::DOLBY_VISION_4K30) { hdrTypes.push_back(type); } } return {hdrTypes, displayHdrCapabilities.getDesiredMaxLuminance(), displayHdrCapabilities.getDesiredMaxAverageLuminance(), displayHdrCapabilities.getDesiredMinLuminance()}; } uint32_t getLayerIdFromSurfaceControl(sp surfaceControl) { if (!surfaceControl) { return UNASSIGNED_LAYER_ID; } return LayerHandle::getLayerId(surfaceControl->getHandle()); } /** * Returns true if the file at path exists and is newer than duration. */ bool fileNewerThan(const std::string& path, std::chrono::minutes duration) { using Clock = std::filesystem::file_time_type::clock; std::error_code error; std::filesystem::file_time_type updateTime = std::filesystem::last_write_time(path, error); if (error) { return false; } return duration > (Clock::now() - updateTime); } bool isFrameIntervalOnCadence(TimePoint expectedPresentTime, TimePoint lastExpectedPresentTimestamp, Fps lastFrameInterval, Period timeout, Duration threshold) { if (lastFrameInterval.getPeriodNsecs() == 0) { return false; } const auto expectedPresentTimeDeltaNs = expectedPresentTime.ns() - lastExpectedPresentTimestamp.ns(); if (expectedPresentTimeDeltaNs > timeout.ns()) { return false; } const auto expectedPresentPeriods = static_cast( std::round(static_cast(expectedPresentTimeDeltaNs) / static_cast(lastFrameInterval.getPeriodNsecs()))); const auto calculatedPeriodsOutNs = lastFrameInterval.getPeriodNsecs() * expectedPresentPeriods; const auto calculatedExpectedPresentTimeNs = lastExpectedPresentTimestamp.ns() + calculatedPeriodsOutNs; const auto presentTimeDelta = std::abs(expectedPresentTime.ns() - calculatedExpectedPresentTimeNs); return presentTimeDelta < threshold.ns(); } bool isExpectedPresentWithinTimeout(TimePoint expectedPresentTime, TimePoint lastExpectedPresentTimestamp, std::optional timeoutOpt, Duration threshold) { if (!timeoutOpt) { // Always within timeout if timeoutOpt is absent and don't send hint // for the timeout return true; } if (timeoutOpt->ns() == 0) { // Always outside timeout if timeoutOpt is 0 and always send // the hint for the timeout. return false; } if (expectedPresentTime.ns() < lastExpectedPresentTimestamp.ns() + timeoutOpt->ns()) { return true; } // Check if within the threshold as it can be just outside the timeout return std::abs(expectedPresentTime.ns() - (lastExpectedPresentTimestamp.ns() + timeoutOpt->ns())) < threshold.ns(); } } // namespace anonymous // --------------------------------------------------------------------------- const String16 sHardwareTest("android.permission.HARDWARE_TEST"); const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER"); const String16 sRotateSurfaceFlinger("android.permission.ROTATE_SURFACE_FLINGER"); const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER"); const String16 sControlDisplayBrightness("android.permission.CONTROL_DISPLAY_BRIGHTNESS"); const String16 sObservePictureProfiles("android.permission.OBSERVE_PICTURE_PROFILES"); const String16 sDump("android.permission.DUMP"); const String16 sCaptureBlackoutContent("android.permission.CAPTURE_BLACKOUT_CONTENT"); const String16 sInternalSystemWindow("android.permission.INTERNAL_SYSTEM_WINDOW"); const String16 sWakeupSurfaceFlinger("android.permission.WAKEUP_SURFACE_FLINGER"); // --------------------------------------------------------------------------- int64_t SurfaceFlinger::dispSyncPresentTimeOffset; bool SurfaceFlinger::useHwcForRgbToYuv; bool SurfaceFlinger::hasSyncFramework; int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers; int64_t SurfaceFlinger::minAcquiredBuffers = 1; uint32_t SurfaceFlinger::maxGraphicsWidth; uint32_t SurfaceFlinger::maxGraphicsHeight; bool SurfaceFlinger::useContextPriority; Dataspace SurfaceFlinger::defaultCompositionDataspace = Dataspace::V0_SRGB; ui::PixelFormat SurfaceFlinger::defaultCompositionPixelFormat = ui::PixelFormat::RGBA_8888; Dataspace SurfaceFlinger::wideColorGamutCompositionDataspace = Dataspace::V0_SRGB; ui::PixelFormat SurfaceFlinger::wideColorGamutCompositionPixelFormat = ui::PixelFormat::RGBA_8888; LatchUnsignaledConfig SurfaceFlinger::enableLatchUnsignaledConfig; std::string decodeDisplayColorSetting(DisplayColorSetting displayColorSetting) { switch(displayColorSetting) { case DisplayColorSetting::kManaged: return std::string("Managed"); case DisplayColorSetting::kUnmanaged: return std::string("Unmanaged"); case DisplayColorSetting::kEnhanced: return std::string("Enhanced"); default: return std::string("Unknown ") + std::to_string(static_cast(displayColorSetting)); } } bool callingThreadHasPermission(const String16& permission) { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); return uid == AID_GRAPHICS || uid == AID_SYSTEM || PermissionCache::checkPermission(permission, pid, uid); } ui::Transform::RotationFlags SurfaceFlinger::sActiveDisplayRotationFlags = ui::Transform::ROT_0; SurfaceFlinger::SurfaceFlinger(Factory& factory, SkipInitializationTag) : mFactory(factory), mPid(getpid()), mTimeStats(std::make_shared()), mFrameTracer(mFactory.createFrameTracer()), mFrameTimeline(mFactory.createFrameTimeline(mTimeStats, mPid)), mCompositionEngine(mFactory.createCompositionEngine()), mHwcServiceName(base::GetProperty("debug.sf.hwc_service_name"s, "default"s)), mTunnelModeEnabledReporter(sp::make()), mEmulatedDisplayDensity(getDensityFromProperty("qemu.sf.lcd_density", false)), mInternalDisplayDensity( getDensityFromProperty("ro.sf.lcd_density", !mEmulatedDisplayDensity)), mPowerAdvisor(std::make_unique< adpf::impl::PowerAdvisor>([this] { disableExpensiveRendering(); }, std::chrono::milliseconds( sysprop::display_update_imminent_timeout_ms( 80)))), mWindowInfosListenerInvoker(sp::make()), mSkipPowerOnForQuiescent(base::GetBoolProperty("ro.boot.quiescent"s, false)) { ALOGI("Using HWComposer service: %s", mHwcServiceName.c_str()); } SurfaceFlinger::SurfaceFlinger(Factory& factory) : SurfaceFlinger(factory, SkipInitialization) { SFTRACE_CALL(); ALOGI("SurfaceFlinger is starting"); hasSyncFramework = running_without_sync_framework(true); dispSyncPresentTimeOffset = present_time_offset_from_vsync_ns(0); useHwcForRgbToYuv = force_hwc_copy_for_virtual_displays(false); maxFrameBufferAcquiredBuffers = max_frame_buffer_acquired_buffers(2); minAcquiredBuffers = SurfaceFlingerProperties::min_acquired_buffers().value_or(minAcquiredBuffers); maxGraphicsWidth = std::max(max_graphics_width(0), 0); maxGraphicsHeight = std::max(max_graphics_height(0), 0); mSupportsWideColor = has_wide_color_display(false); mDefaultCompositionDataspace = static_cast(default_composition_dataspace(Dataspace::V0_SRGB)); mWideColorGamutCompositionDataspace = static_cast(wcg_composition_dataspace( mSupportsWideColor ? Dataspace::DISPLAY_P3 : Dataspace::V0_SRGB)); defaultCompositionDataspace = mDefaultCompositionDataspace; wideColorGamutCompositionDataspace = mWideColorGamutCompositionDataspace; defaultCompositionPixelFormat = static_cast( default_composition_pixel_format(ui::PixelFormat::RGBA_8888)); wideColorGamutCompositionPixelFormat = static_cast(wcg_composition_pixel_format(ui::PixelFormat::RGBA_8888)); mLayerCachingEnabled = base::GetBoolProperty("debug.sf.enable_layer_caching"s, sysprop::SurfaceFlingerProperties::enable_layer_caching() .value_or(false)); useContextPriority = use_context_priority(true); mInternalDisplayPrimaries = sysprop::getDisplayNativePrimaries(); // debugging stuff... char value[PROPERTY_VALUE_MAX]; property_get("ro.build.type", value, "user"); mIsUserBuild = strcmp(value, "user") == 0; mDebugFlashDelay = base::GetUintProperty("debug.sf.showupdates"s, 0u); mBackpressureGpuComposition = base::GetBoolProperty("debug.sf.enable_gl_backpressure"s, true); ALOGI_IF(mBackpressureGpuComposition, "Enabling backpressure for GPU composition"); property_get("ro.surface_flinger.supports_background_blur", value, "0"); bool supportsBlurs = atoi(value); mSupportsBlur = supportsBlurs; ALOGI_IF(!mSupportsBlur, "Disabling blur effects, they are not supported."); property_get("debug.sf.luma_sampling", value, "1"); mLumaSampling = atoi(value); property_get("debug.sf.disable_client_composition_cache", value, "0"); mDisableClientCompositionCache = atoi(value); property_get("debug.sf.predict_hwc_composition_strategy", value, "1"); mPredictCompositionStrategy = atoi(value); property_get("debug.sf.treat_170m_as_sRGB", value, "0"); mTreat170mAsSrgb = atoi(value); property_get("debug.sf.dim_in_gamma_in_enhanced_screenshots", value, 0); mDimInGammaSpaceForEnhancedScreenshots = atoi(value); mIgnoreHwcPhysicalDisplayOrientation = base::GetBoolProperty("debug.sf.ignore_hwc_physical_display_orientation"s, false); // We should be reading 'persist.sys.sf.color_saturation' here // but since /data may be encrypted, we need to wait until after vold // comes online to attempt to read the property. The property is // instead read after the boot animation if (base::GetBoolProperty("debug.sf.treble_testing_override"s, false)) { // Without the override SurfaceFlinger cannot connect to HIDL // services that are not listed in the manifests. Considered // deriving the setting from the set service name, but it // would be brittle if the name that's not 'default' is used // for production purposes later on. ALOGI("Enabling Treble testing override"); android::hardware::details::setTrebleTestingOverride(true); } // TODO (b/270966065) Update the HWC based refresh rate overlay to support spinner mRefreshRateOverlaySpinner = property_get_bool("debug.sf.show_refresh_rate_overlay_spinner", 0); mRefreshRateOverlayRenderRate = property_get_bool("debug.sf.show_refresh_rate_overlay_render_rate", 0); mRefreshRateOverlayShowInMiddle = property_get_bool("debug.sf.show_refresh_rate_overlay_in_middle", 0); if (!mIsUserBuild && base::GetBoolProperty("debug.sf.enable_transaction_tracing"s, true)) { mTransactionTracing.emplace(); mLayerTracing.setTransactionTracing(*mTransactionTracing); } mIgnoreHdrCameraLayers = ignore_hdr_camera_layers(false); // These are set by the HWC implementation to indicate that they will use the workarounds. mIsHdcpViaNegVsync = base::GetBoolProperty("debug.sf.hwc_hdcp_via_neg_vsync"s, false); } LatchUnsignaledConfig SurfaceFlinger::getLatchUnsignaledConfig() { if (base::GetBoolProperty("debug.sf.auto_latch_unsignaled"s, true)) { return LatchUnsignaledConfig::AutoSingleLayer; } return LatchUnsignaledConfig::Disabled; } SurfaceFlinger::~SurfaceFlinger() = default; void SurfaceFlinger::binderDied(const wp&) { // the window manager died on us. prepare its eulogy. mBootFinished = false; static_cast(mScheduler->schedule([this]() FTL_FAKE_GUARD(kMainThreadContext) { // Sever the link to inputflinger since it's gone as well. mInputFlinger.clear(); initializeDisplays(); })); mInitBootPropsFuture.callOnce([this] { return std::async(std::launch::async, &SurfaceFlinger::initBootProperties, this); }); mInitBootPropsFuture.wait(); } void SurfaceFlinger::run() { mScheduler->run(); } sp SurfaceFlinger::createVirtualDisplay(const std::string& displayName, bool isSecure, const std::string& uniqueId, float requestedRefreshRate) { // SurfaceComposerAIDL checks for some permissions, but adding an additional check here. // This is to ensure that only root, system, and graphics can request to create a secure // display. Secure displays can show secure content so we add an additional restriction on it. const uid_t uid = IPCThreadState::self()->getCallingUid(); if (isSecure && uid != AID_ROOT && uid != AID_GRAPHICS && uid != AID_SYSTEM) { ALOGE("Only privileged processes can create a secure display"); return nullptr; } class DisplayToken : public BBinder { sp flinger; virtual ~DisplayToken() { // no more references, this display must be terminated Mutex::Autolock _l(flinger->mStateLock); flinger->mCurrentState.displays.removeItem(wp::fromExisting(this)); flinger->setTransactionFlags(eDisplayTransactionNeeded); } public: explicit DisplayToken(const sp& flinger) : flinger(flinger) { } }; sp token = sp::make(sp::fromExisting(this)); Mutex::Autolock _l(mStateLock); // Display ID is assigned when virtual display is allocated by HWC. DisplayDeviceState state; state.isSecure = isSecure; // Set display as protected when marked as secure to ensure no behavior change // TODO (b/314820005): separate as a different arg when creating the display. state.isProtected = isSecure; state.displayName = displayName; state.uniqueId = uniqueId; state.requestedRefreshRate = Fps::fromValue(requestedRefreshRate); mCurrentState.displays.add(token, state); return token; } status_t SurfaceFlinger::destroyVirtualDisplay(const sp& displayToken) { Mutex::Autolock lock(mStateLock); const ssize_t index = mCurrentState.displays.indexOfKey(displayToken); if (index < 0) { ALOGE("%s: Invalid display token %p", __func__, displayToken.get()); return NAME_NOT_FOUND; } const DisplayDeviceState& state = mCurrentState.displays.valueAt(index); if (state.physical) { ALOGE("%s: Invalid operation on physical display", __func__); return INVALID_OPERATION; } mCurrentState.displays.removeItemsAt(index); setTransactionFlags(eDisplayTransactionNeeded); return NO_ERROR; } void SurfaceFlinger::enableHalVirtualDisplays(bool enable) { auto& generator = mVirtualDisplayIdGenerators.hal; if (!generator && enable) { ALOGI("Enabling HAL virtual displays"); generator.emplace(getHwComposer().getMaxVirtualDisplayCount()); } else if (generator && !enable) { ALOGW_IF(generator->inUse(), "Disabling HAL virtual displays while in use"); generator.reset(); } } VirtualDisplayId SurfaceFlinger::acquireVirtualDisplay(ui::Size resolution, ui::PixelFormat format, const std::string& uniqueId) { if (auto& generator = mVirtualDisplayIdGenerators.hal) { if (const auto id = generator->generateId()) { if (getHwComposer().allocateVirtualDisplay(*id, resolution, &format)) { acquireVirtualDisplaySnapshot(*id, uniqueId); return *id; } generator->releaseId(*id); } else { ALOGW("%s: Exhausted HAL virtual displays", __func__); } ALOGW("%s: Falling back to GPU virtual display", __func__); } const auto id = mVirtualDisplayIdGenerators.gpu.generateId(); LOG_ALWAYS_FATAL_IF(!id, "Failed to generate ID for GPU virtual display"); acquireVirtualDisplaySnapshot(*id, uniqueId); return *id; } void SurfaceFlinger::releaseVirtualDisplay(VirtualDisplayId displayId) { if (const auto id = HalVirtualDisplayId::tryCast(displayId)) { if (auto& generator = mVirtualDisplayIdGenerators.hal) { generator->releaseId(*id); releaseVirtualDisplaySnapshot(*id); } return; } const auto id = GpuVirtualDisplayId::tryCast(displayId); LOG_ALWAYS_FATAL_IF(!id); mVirtualDisplayIdGenerators.gpu.releaseId(*id); releaseVirtualDisplaySnapshot(*id); } void SurfaceFlinger::releaseVirtualDisplaySnapshot(VirtualDisplayId displayId) { std::lock_guard lock(mVirtualDisplaysMutex); if (!mVirtualDisplays.erase(displayId)) { ALOGW("%s: Virtual display snapshot was not removed", __func__); } } std::vector SurfaceFlinger::getPhysicalDisplayIdsLocked() const { std::vector displayIds; displayIds.reserve(mPhysicalDisplays.size()); const auto defaultDisplayId = getDefaultDisplayDeviceLocked()->getPhysicalId(); displayIds.push_back(defaultDisplayId); for (const auto& [id, display] : mPhysicalDisplays) { if (id != defaultDisplayId) { displayIds.push_back(id); } } return displayIds; } std::optional SurfaceFlinger::getPhysicalDisplayIdLocked( const sp& displayToken) const { return ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken)) .transform(&ftl::to_key); } sp SurfaceFlinger::getPhysicalDisplayToken(PhysicalDisplayId displayId) const { Mutex::Autolock lock(mStateLock); return getPhysicalDisplayTokenLocked(displayId); } HWComposer& SurfaceFlinger::getHwComposer() const { return mCompositionEngine->getHwComposer(); } renderengine::RenderEngine& SurfaceFlinger::getRenderEngine() const { return *mRenderEngine; } compositionengine::CompositionEngine& SurfaceFlinger::getCompositionEngine() const { return *mCompositionEngine.get(); } void SurfaceFlinger::bootFinished() { if (mBootFinished == true) { ALOGE("Extra call to bootFinished"); return; } mBootFinished = true; FlagManager::getMutableInstance().markBootCompleted(); ::tracing_perfetto::registerWithPerfetto(); mInitBootPropsFuture.wait(); mRenderEnginePrimeCacheFuture.wait(); const nsecs_t now = systemTime(); const nsecs_t duration = now - mBootTime; ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) ); mFrameTracer->initialize(); mFrameTimeline->onBootFinished(); getRenderEngine().setEnableTracing(FlagManager::getInstance().use_skia_tracing()); // wait patiently for the window manager death const String16 name("window"); mWindowManager = defaultServiceManager()->waitForService(name); if (mWindowManager != 0) { mWindowManager->linkToDeath(sp::fromExisting(this)); } // stop boot animation // formerly we would just kill the process, but we now ask it to exit so it // can choose where to stop the animation. property_set("service.bootanim.exit", "1"); const int LOGTAG_SF_STOP_BOOTANIM = 60110; LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM, ns2ms(systemTime(SYSTEM_TIME_MONOTONIC))); sp input(defaultServiceManager()->waitForService(String16("inputflinger"))); static_cast(mScheduler->schedule([=, this]() FTL_FAKE_GUARD(kMainThreadContext) { if (input == nullptr) { ALOGE("Failed to link to input service"); } else { mInputFlinger = interface_cast(input); } readPersistentProperties(); const bool hintSessionEnabled = FlagManager::getInstance().use_adpf_cpu_hint(); mPowerAdvisor->enablePowerHintSession(hintSessionEnabled); const bool hintSessionUsed = mPowerAdvisor->usePowerHintSession(); // Ordering is important here, as onBootFinished signals to PowerAdvisor that concurrency // is safe because its variables are initialized. mPowerAdvisor->onBootFinished(); ALOGD("Power hint is %s", hintSessionUsed ? "supported" : (hintSessionEnabled ? "unsupported" : "disabled")); if (hintSessionUsed) { std::optional renderEngineTid = getRenderEngine().getRenderEngineTid(); std::vector tidList; tidList.emplace_back(gettid()); if (renderEngineTid.has_value()) { tidList.emplace_back(*renderEngineTid); } if (!mPowerAdvisor->startPowerHintSession(std::move(tidList))) { ALOGW("Cannot start power hint session"); } } mBootStage = BootStage::FINISHED; if (base::GetBoolProperty("sf.debug.show_refresh_rate_overlay"s, false)) { ftl::FakeGuard guard(mStateLock); enableRefreshRateOverlay(true); } })); } bool shouldUseGraphiteIfCompiledAndSupported() { return FlagManager::getInstance().graphite_renderengine() || (FlagManager::getInstance().graphite_renderengine_preview_rollout() && base::GetBoolProperty(PROPERTY_DEBUG_RENDERENGINE_GRAPHITE_PREVIEW_OPTIN, false)); } void chooseRenderEngineType(renderengine::RenderEngineCreationArgs::Builder& builder) { char prop[PROPERTY_VALUE_MAX]; property_get(PROPERTY_DEBUG_RENDERENGINE_BACKEND, prop, ""); // TODO: b/293371537 - Once GraphiteVk is deemed relatively stable, log a warning that // PROPERTY_DEBUG_RENDERENGINE_BACKEND is deprecated if (strcmp(prop, "skiagl") == 0) { builder.setThreaded(renderengine::RenderEngine::Threaded::NO) .setGraphicsApi(renderengine::RenderEngine::GraphicsApi::GL); } else if (strcmp(prop, "skiaglthreaded") == 0) { builder.setThreaded(renderengine::RenderEngine::Threaded::YES) .setGraphicsApi(renderengine::RenderEngine::GraphicsApi::GL); } else if (strcmp(prop, "skiavk") == 0) { builder.setThreaded(renderengine::RenderEngine::Threaded::NO) .setGraphicsApi(renderengine::RenderEngine::GraphicsApi::VK); } else if (strcmp(prop, "skiavkthreaded") == 0) { builder.setThreaded(renderengine::RenderEngine::Threaded::YES) .setGraphicsApi(renderengine::RenderEngine::GraphicsApi::VK); } else { const auto kVulkan = renderengine::RenderEngine::GraphicsApi::VK; // TODO: b/341728634 - Clean up conditional compilation. // Note: this guard in particular must check e.g. // COM_ANDROID_GRAPHICS_SURFACEFLINGER_FLAGS_GRAPHITE_RENDERENGINE directly (instead of calling e.g. // COM_ANDROID_GRAPHICS_SURFACEFLINGER_FLAGS(GRAPHITE_RENDERENGINE)) because that macro is undefined // in the libsurfaceflingerflags_test variant of com_android_graphics_surfaceflinger_flags.h, which // is used by layertracegenerator (which also needs SurfaceFlinger.cpp). :) #if COM_ANDROID_GRAPHICS_SURFACEFLINGER_FLAGS_GRAPHITE_RENDERENGINE || \ COM_ANDROID_GRAPHICS_SURFACEFLINGER_FLAGS_FORCE_COMPILE_GRAPHITE_RENDERENGINE const bool useGraphite = shouldUseGraphiteIfCompiledAndSupported() && renderengine::RenderEngine::canSupport(kVulkan); #else const bool useGraphite = false; if (shouldUseGraphiteIfCompiledAndSupported()) { ALOGE("RenderEngine's Graphite Skia backend was requested, but it is not compiled in " "this build! Falling back to Ganesh backend selection logic."); } #endif const bool useVulkan = useGraphite || (FlagManager::getInstance().vulkan_renderengine() && renderengine::RenderEngine::canSupport(kVulkan)); builder.setSkiaBackend(useGraphite ? renderengine::RenderEngine::SkiaBackend::GRAPHITE : renderengine::RenderEngine::SkiaBackend::GANESH); builder.setGraphicsApi(useVulkan ? kVulkan : renderengine::RenderEngine::GraphicsApi::GL); } } /** * Choose a suggested blurring algorithm if supportsBlur is true. By default Kawase will be * suggested as it's faster than a full Gaussian blur and looks close enough. */ renderengine::RenderEngine::BlurAlgorithm chooseBlurAlgorithm(bool supportsBlur) { if (!supportsBlur) { return renderengine::RenderEngine::BlurAlgorithm::NONE; } auto const algorithm = base::GetProperty(PROPERTY_DEBUG_RENDERENGINE_BLUR_ALGORITHM, ""); if (algorithm == "gaussian") { return renderengine::RenderEngine::BlurAlgorithm::GAUSSIAN; } else if (algorithm == "kawase2") { return renderengine::RenderEngine::BlurAlgorithm::KAWASE_DUAL_FILTER; } else { if (FlagManager::getInstance().window_blur_kawase2()) { return renderengine::RenderEngine::BlurAlgorithm::KAWASE_DUAL_FILTER; } return renderengine::RenderEngine::BlurAlgorithm::KAWASE; } } void SurfaceFlinger::init() FTL_FAKE_GUARD(kMainThreadContext) { SFTRACE_CALL(); ALOGI( "SurfaceFlinger's main thread ready to run. " "Initializing graphics H/W..."); addTransactionReadyFilters(); Mutex::Autolock lock(mStateLock); // Get a RenderEngine for the given display / config (can't fail) // TODO(b/77156734): We need to stop casting and use HAL types when possible. // Sending maxFrameBufferAcquiredBuffers as the cache size is tightly tuned to single-display. auto builder = renderengine::RenderEngineCreationArgs::Builder() .setPixelFormat(static_cast(defaultCompositionPixelFormat)) .setImageCacheSize(maxFrameBufferAcquiredBuffers) .setEnableProtectedContext(enable_protected_contents(false)) .setPrecacheToneMapperShaderOnly(false) .setBlurAlgorithm(chooseBlurAlgorithm(mSupportsBlur)) .setContextPriority( useContextPriority ? renderengine::RenderEngine::ContextPriority::REALTIME : renderengine::RenderEngine::ContextPriority::MEDIUM); chooseRenderEngineType(builder); mRenderEngine = renderengine::RenderEngine::create(builder.build()); mCompositionEngine->setRenderEngine(mRenderEngine.get()); mMaxRenderTargetSize = std::min(getRenderEngine().getMaxTextureSize(), getRenderEngine().getMaxViewportDims()); // Set SF main policy after initializing RenderEngine which has its own policy. if (!SetTaskProfiles(0, {"SFMainPolicy"})) { ALOGW("Failed to set main task profile"); } mCompositionEngine->setTimeStats(mTimeStats); mCompositionEngine->setHwComposer(getFactory().createHWComposer(mHwcServiceName)); auto& composer = mCompositionEngine->getHwComposer(); composer.setCallback(*this); mDisplayModeController.setHwComposer(&composer); ClientCache::getInstance().setRenderEngine(&getRenderEngine()); mHasReliablePresentFences = !getHwComposer().hasCapability(Capability::PRESENT_FENCE_IS_NOT_RELIABLE); enableLatchUnsignaledConfig = getLatchUnsignaledConfig(); if (base::GetBoolProperty("debug.sf.enable_hwc_vds"s, false)) { enableHalVirtualDisplays(true); } // Process hotplug for displays connected at boot. LOG_ALWAYS_FATAL_IF(!configureLocked(), "Initial display configuration failed: HWC did not hotplug"); mActiveDisplayId = getPrimaryDisplayIdLocked(); // Commit primary display. sp display; if (const auto indexOpt = mCurrentState.getDisplayIndex(mActiveDisplayId)) { const auto& displays = mCurrentState.displays; const auto& token = displays.keyAt(*indexOpt); const auto& state = displays.valueAt(*indexOpt); processDisplayAdded(token, state); mDrawingState.displays.add(token, state); display = getDefaultDisplayDeviceLocked(); } LOG_ALWAYS_FATAL_IF(!display, "Failed to configure the primary display"); LOG_ALWAYS_FATAL_IF(!getHwComposer().isConnected(display->getPhysicalId()), "Primary display is disconnected"); // TODO(b/241285876): The Scheduler needlessly depends on creating the CompositionEngine part of // the DisplayDevice, hence the above commit of the primary display. Remove that special case by // initializing the Scheduler after configureLocked, once decoupled from DisplayDevice. initScheduler(display); // Start listening after creating the Scheduler, since the listener calls into it. mDisplayModeController.setActiveModeListener( display::DisplayModeController::ActiveModeListener::make( [this](PhysicalDisplayId displayId, Fps vsyncRate, Fps renderRate) { // This callback cannot lock mStateLock, as some callers already lock it. // Instead, switch context to the main thread. static_cast(mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) { if (const auto display = getDisplayDeviceLocked(displayId)) { display->updateRefreshRateOverlayRate(vsyncRate, renderRate); } })); })); mLayerTracing.setTakeLayersSnapshotProtoFunction( [&](uint32_t traceFlags, const LayerTracing::OnLayersSnapshotCallback& onLayersSnapshot) { // Do not wait the future to avoid deadlocks // between main and Perfetto threads (b/313130597) static_cast(mScheduler->schedule( [&, traceFlags, onLayersSnapshot]() FTL_FAKE_GUARD(mStateLock) FTL_FAKE_GUARD(kMainThreadContext) { auto snapshot = takeLayersSnapshotProto(traceFlags, TimePoint::now(), mLastCommittedVsyncId, true); onLayersSnapshot(std::move(snapshot)); })); }); // Commit secondary display(s). processDisplayChangesLocked(); // initialize our drawing state mDrawingState = mCurrentState; onActiveDisplayChangedLocked(nullptr, *display); static_cast(mScheduler->schedule( [this]() FTL_FAKE_GUARD(kMainThreadContext) { initializeDisplays(); })); mPowerAdvisor->init(); if (base::GetBoolProperty("service.sf.prime_shader_cache"s, true)) { if (setSchedFifo(false) != NO_ERROR) { ALOGW("Can't set SCHED_OTHER for primeCache"); } mRenderEnginePrimeCacheFuture.callOnce([this] { renderengine::PrimeCacheConfig config; config.cacheHolePunchLayer = base::GetBoolProperty("debug.sf.prime_shader_cache.hole_punch"s, true); config.cacheSolidLayers = base::GetBoolProperty("debug.sf.prime_shader_cache.solid_layers"s, true); config.cacheSolidDimmedLayers = base::GetBoolProperty("debug.sf.prime_shader_cache.solid_dimmed_layers"s, true); config.cacheImageLayers = base::GetBoolProperty("debug.sf.prime_shader_cache.image_layers"s, true); config.cacheImageDimmedLayers = base::GetBoolProperty("debug.sf.prime_shader_cache.image_dimmed_layers"s, true); config.cacheClippedLayers = base::GetBoolProperty("debug.sf.prime_shader_cache.clipped_layers"s, true); config.cacheShadowLayers = base::GetBoolProperty("debug.sf.prime_shader_cache.shadow_layers"s, true); config.cachePIPImageLayers = base::GetBoolProperty("debug.sf.prime_shader_cache.pip_image_layers"s, true); config.cacheTransparentImageDimmedLayers = base:: GetBoolProperty("debug.sf.prime_shader_cache.transparent_image_dimmed_layers"s, true); config.cacheClippedDimmedImageLayers = base:: GetBoolProperty("debug.sf.prime_shader_cache.clipped_dimmed_image_layers"s, true); // ro.surface_flinger.prime_chader_cache.ultrahdr exists as a previous ro property // which we maintain for backwards compatibility. config.cacheUltraHDR = base::GetBoolProperty("ro.surface_flinger.prime_shader_cache.ultrahdr"s, false); config.cacheEdgeExtension = base::GetBoolProperty("debug.sf.prime_shader_cache.edge_extension_shader"s, true); return getRenderEngine().primeCache(config); }); if (setSchedFifo(true) != NO_ERROR) { ALOGW("Can't set SCHED_FIFO after primeCache"); } } // Avoid blocking the main thread on `init` to set properties. mInitBootPropsFuture.callOnce([this] { return std::async(std::launch::async, &SurfaceFlinger::initBootProperties, this); }); initTransactionTraceWriter(); ALOGV("Done initializing"); } // During boot, offload `initBootProperties` to another thread. `property_set` depends on // `property_service`, which may be delayed by slow operations like `mount_all --late` in // the `init` process. See b/34499826 and b/63844978. void SurfaceFlinger::initBootProperties() { property_set("service.sf.present_timestamp", mHasReliablePresentFences ? "1" : "0"); if (base::GetBoolProperty("debug.sf.boot_animation"s, true)) { // Reset and (if needed) start BootAnimation. property_set("service.bootanim.exit", "0"); property_set("service.bootanim.progress", "0"); property_set("ctl.start", "bootanim"); } } void SurfaceFlinger::initTransactionTraceWriter() { if (!mTransactionTracing) { return; } TransactionTraceWriter::getInstance().setWriterFunction( [&](const std::string& filename, bool overwrite) { auto writeFn = [&]() { if (!overwrite && fileNewerThan(filename, std::chrono::minutes{10})) { ALOGD("TransactionTraceWriter: file=%s already exists", filename.c_str()); return; } ALOGD("TransactionTraceWriter: writing file=%s", filename.c_str()); mTransactionTracing->writeToFile(filename); mTransactionTracing->flush(); }; if (std::this_thread::get_id() == mMainThreadId) { writeFn(); } else { mScheduler->schedule(writeFn).get(); } }); } void SurfaceFlinger::readPersistentProperties() { Mutex::Autolock _l(mStateLock); char value[PROPERTY_VALUE_MAX]; property_get("persist.sys.sf.color_saturation", value, "1.0"); mGlobalSaturationFactor = atof(value); updateColorMatrixLocked(); ALOGV("Saturation is set to %.2f", mGlobalSaturationFactor); property_get("persist.sys.sf.native_mode", value, "0"); mDisplayColorSetting = static_cast(atoi(value)); mForceColorMode = static_cast(base::GetIntProperty("persist.sys.sf.color_mode"s, 0)); } status_t SurfaceFlinger::getSupportedFrameTimestamps( std::vector* outSupported) const { *outSupported = { FrameEvent::REQUESTED_PRESENT, FrameEvent::ACQUIRE, FrameEvent::LATCH, FrameEvent::FIRST_REFRESH_START, FrameEvent::LAST_REFRESH_START, FrameEvent::GPU_COMPOSITION_DONE, FrameEvent::DEQUEUE_READY, FrameEvent::RELEASE, }; if (mHasReliablePresentFences) { outSupported->push_back(FrameEvent::DISPLAY_PRESENT); } return NO_ERROR; } status_t SurfaceFlinger::getDisplayState(const sp& displayToken, ui::DisplayState* state) { if (!displayToken || !state) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } state->layerStack = display->getLayerStack(); state->orientation = display->getOrientation(); const Rect layerStackRect = display->getLayerStackSpaceRect(); state->layerStackSpaceRect = layerStackRect.isValid() ? layerStackRect.getSize() : display->getSize(); return NO_ERROR; } status_t SurfaceFlinger::getStaticDisplayInfo(int64_t displayId, ui::StaticDisplayInfo* info) { if (!info) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto id = DisplayId::fromValue(static_cast(displayId)); const auto displayOpt = mPhysicalDisplays.get(*id).and_then(getDisplayDeviceAndSnapshot()); if (!displayOpt) { return NAME_NOT_FOUND; } const auto& [display, snapshotRef] = *displayOpt; const auto& snapshot = snapshotRef.get(); info->connectionType = snapshot.connectionType(); info->deviceProductInfo = snapshot.deviceProductInfo(); if (mEmulatedDisplayDensity) { info->density = mEmulatedDisplayDensity; } else { info->density = info->connectionType == ui::DisplayConnectionType::Internal ? mInternalDisplayDensity : FALLBACK_DENSITY; } info->density /= ACONFIGURATION_DENSITY_MEDIUM; info->secure = display->isSecure(); info->installOrientation = display->getPhysicalOrientation(); return NO_ERROR; } void SurfaceFlinger::getDynamicDisplayInfoInternal(ui::DynamicDisplayInfo*& info, const sp& display, const display::DisplaySnapshot& snapshot) { const auto& displayModes = snapshot.displayModes(); info->supportedDisplayModes.clear(); info->supportedDisplayModes.reserve(displayModes.size()); for (const auto& [id, mode] : displayModes) { ui::DisplayMode outMode; outMode.id = ftl::to_underlying(id); auto [width, height] = mode->getResolution(); auto [xDpi, yDpi] = mode->getDpi(); if (const auto physicalOrientation = display->getPhysicalOrientation(); physicalOrientation == ui::ROTATION_90 || physicalOrientation == ui::ROTATION_270) { std::swap(width, height); std::swap(xDpi, yDpi); } outMode.resolution = ui::Size(width, height); outMode.xDpi = xDpi; outMode.yDpi = yDpi; const auto peakFps = mode->getPeakFps(); outMode.peakRefreshRate = peakFps.getValue(); outMode.vsyncRate = mode->getVsyncRate().getValue(); const auto vsyncConfigSet = mScheduler->getVsyncConfiguration().getConfigsForRefreshRate( Fps::fromValue(outMode.peakRefreshRate)); outMode.appVsyncOffset = vsyncConfigSet.late.appOffset; outMode.sfVsyncOffset = vsyncConfigSet.late.sfOffset; outMode.group = mode->getGroup(); // This is how far in advance a buffer must be queued for // presentation at a given time. If you want a buffer to appear // on the screen at time N, you must submit the buffer before // (N - presentationDeadline). // // Normally it's one full refresh period (to give SF a chance to // latch the buffer), but this can be reduced by configuring a // VsyncController offset. Any additional delays introduced by the hardware // composer or panel must be accounted for here. // // We add an additional 1ms to allow for processing time and // differences between the ideal and actual refresh rate. outMode.presentationDeadline = peakFps.getPeriodNsecs() - outMode.sfVsyncOffset + 1000000; excludeDolbyVisionIf4k30Present(display->getHdrCapabilities().getSupportedHdrTypes(), outMode); info->supportedDisplayModes.push_back(outMode); } info->supportedColorModes = snapshot.filterColorModes(mSupportsWideColor); const PhysicalDisplayId displayId = snapshot.displayId(); const auto mode = display->refreshRateSelector().getActiveMode(); info->activeDisplayModeId = ftl::to_underlying(mode.modePtr->getId()); info->renderFrameRate = mode.fps.getValue(); info->hasArrSupport = mode.modePtr->getVrrConfig() && FlagManager::getInstance().vrr_config(); const auto [normal, high] = display->refreshRateSelector().getFrameRateCategoryRates(); ui::FrameRateCategoryRate frameRateCategoryRate(normal.getValue(), high.getValue()); info->frameRateCategoryRate = frameRateCategoryRate; info->supportedRefreshRates = display->refreshRateSelector().getSupportedFrameRates(); info->activeColorMode = display->getCompositionDisplay()->getState().colorMode; info->hdrCapabilities = filterOut4k30(display->getHdrCapabilities()); info->autoLowLatencyModeSupported = getHwComposer().hasDisplayCapability(displayId, DisplayCapability::AUTO_LOW_LATENCY_MODE); info->gameContentTypeSupported = getHwComposer().supportsContentType(displayId, hal::ContentType::GAME); info->preferredBootDisplayMode = static_cast(-1); if (getHwComposer().hasCapability(Capability::BOOT_DISPLAY_CONFIG)) { if (const auto hwcId = getHwComposer().getPreferredBootDisplayMode(displayId)) { if (const auto modeId = snapshot.translateModeId(*hwcId)) { info->preferredBootDisplayMode = ftl::to_underlying(*modeId); } } } } status_t SurfaceFlinger::getDynamicDisplayInfoFromId(int64_t physicalDisplayId, ui::DynamicDisplayInfo* info) { if (!info) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto id_ = DisplayId::fromValue(static_cast(physicalDisplayId)); const auto displayOpt = mPhysicalDisplays.get(*id_).and_then(getDisplayDeviceAndSnapshot()); if (!displayOpt) { return NAME_NOT_FOUND; } const auto& [display, snapshotRef] = *displayOpt; getDynamicDisplayInfoInternal(info, display, snapshotRef.get()); return NO_ERROR; } status_t SurfaceFlinger::getDynamicDisplayInfoFromToken(const sp& displayToken, ui::DynamicDisplayInfo* info) { if (!displayToken || !info) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto displayOpt = ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken)) .transform(&ftl::to_mapped_ref) .and_then(getDisplayDeviceAndSnapshot()); if (!displayOpt) { return NAME_NOT_FOUND; } const auto& [display, snapshotRef] = *displayOpt; getDynamicDisplayInfoInternal(info, display, snapshotRef.get()); return NO_ERROR; } status_t SurfaceFlinger::getDisplayStats(const sp& displayToken, DisplayStatInfo* outStats) { if (!outStats) { return BAD_VALUE; } // TODO: b/277364366 - Require a display token from clients and remove fallback to pacesetter. std::optional displayIdOpt; if (displayToken) { Mutex::Autolock lock(mStateLock); displayIdOpt = getPhysicalDisplayIdLocked(displayToken); if (!displayIdOpt) { ALOGW("%s: Invalid physical display token %p", __func__, displayToken.get()); return NAME_NOT_FOUND; } } const auto schedule = mScheduler->getVsyncSchedule(displayIdOpt); if (!schedule) { ALOGE("%s: Missing VSYNC schedule for display %s!", __func__, to_string(*displayIdOpt).c_str()); return NAME_NOT_FOUND; } outStats->vsyncTime = schedule->vsyncDeadlineAfter(TimePoint::now()).ns(); outStats->vsyncPeriod = schedule->period().ns(); return NO_ERROR; } void SurfaceFlinger::setDesiredMode(display::DisplayModeRequest&& desiredMode) { const auto mode = desiredMode.mode; const auto displayId = mode.modePtr->getPhysicalDisplayId(); SFTRACE_NAME(ftl::Concat(__func__, ' ', displayId.value).c_str()); const bool emitEvent = desiredMode.emitEvent; using DesiredModeAction = display::DisplayModeController::DesiredModeAction; switch (mDisplayModeController.setDesiredMode(displayId, std::move(desiredMode))) { case DesiredModeAction::InitiateDisplayModeSwitch: { const auto selectorPtr = mDisplayModeController.selectorPtrFor(displayId); if (!selectorPtr) break; const Fps renderRate = selectorPtr->getActiveMode().fps; // DisplayModeController::setDesiredMode updated the render rate, so inform Scheduler. mScheduler->setRenderRate(displayId, renderRate, true /* applyImmediately */); // Schedule a new frame to initiate the display mode switch. scheduleComposite(FrameHint::kNone); // Start receiving vsync samples now, so that we can detect a period // switch. mScheduler->resyncToHardwareVsync(displayId, true /* allowToEnable */, mode.modePtr.get()); // As we called to set period, we will call to onRefreshRateChangeCompleted once // VsyncController model is locked. mScheduler->modulateVsync(displayId, &VsyncModulator::onRefreshRateChangeInitiated); mScheduler->updatePhaseConfiguration(displayId, mode.fps); mScheduler->setModeChangePending(true); break; } case DesiredModeAction::InitiateRenderRateSwitch: mScheduler->setRenderRate(displayId, mode.fps, /*applyImmediately*/ false); mScheduler->updatePhaseConfiguration(displayId, mode.fps); if (emitEvent) { mScheduler->onDisplayModeChanged(displayId, mode, /*clearContentRequirements*/ false); } break; case DesiredModeAction::None: break; } } status_t SurfaceFlinger::setActiveModeFromBackdoor(const sp& displayToken, DisplayModeId modeId, Fps minFps, Fps maxFps) { SFTRACE_CALL(); if (!displayToken) { return BAD_VALUE; } const char* const whence = __func__; auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(kMainThreadContext) -> status_t { const auto displayOpt = FTL_FAKE_GUARD(mStateLock, ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken)) .transform(&ftl::to_mapped_ref) .and_then(getDisplayDeviceAndSnapshot())); if (!displayOpt) { ALOGE("%s: Invalid physical display token %p", whence, displayToken.get()); return NAME_NOT_FOUND; } const auto& [display, snapshotRef] = *displayOpt; const auto& snapshot = snapshotRef.get(); const auto fpsOpt = snapshot.displayModes().get(modeId).transform( [](const DisplayModePtr& mode) { return mode->getPeakFps(); }); if (!fpsOpt) { ALOGE("%s: Invalid mode %d for display %s", whence, ftl::to_underlying(modeId), to_string(snapshot.displayId()).c_str()); return BAD_VALUE; } const Fps fps = *fpsOpt; const FpsRange physical = {fps, fps}; const FpsRange render = {minFps.isValid() ? minFps : fps, maxFps.isValid() ? maxFps : fps}; const FpsRanges ranges = {physical, render}; // Keep the old switching type. const bool allowGroupSwitching = display->refreshRateSelector().getCurrentPolicy().allowGroupSwitching; const scheduler::RefreshRateSelector::DisplayManagerPolicy policy{modeId, ranges, ranges, allowGroupSwitching}; return setDesiredDisplayModeSpecsInternal(display, policy); }); return future.get(); } void SurfaceFlinger::finalizeDisplayModeChange(PhysicalDisplayId displayId) { SFTRACE_NAME(ftl::Concat(__func__, ' ', displayId.value).c_str()); const auto pendingModeOpt = mDisplayModeController.getPendingMode(displayId); if (!pendingModeOpt) { // There is no pending mode change. This can happen if the active // display changed and the mode change happened on a different display. return; } const auto& activeMode = pendingModeOpt->mode; if (const auto oldResolution = mDisplayModeController.getActiveMode(displayId).modePtr->getResolution(); oldResolution != activeMode.modePtr->getResolution()) { auto& state = mCurrentState.displays.editValueFor(getPhysicalDisplayTokenLocked(displayId)); // We need to generate new sequenceId in order to recreate the display (and this // way the framebuffer). state.sequenceId = DisplayDeviceState{}.sequenceId; state.physical->activeMode = activeMode.modePtr.get(); processDisplayChangesLocked(); // processDisplayChangesLocked will update all necessary components so we're done here. return; } mDisplayModeController.finalizeModeChange(displayId, activeMode.modePtr->getId(), activeMode.modePtr->getVsyncRate(), activeMode.fps); mScheduler->updatePhaseConfiguration(displayId, activeMode.fps); if (pendingModeOpt->emitEvent) { mScheduler->onDisplayModeChanged(displayId, activeMode, /*clearContentRequirements*/ true); } } void SurfaceFlinger::dropModeRequest(PhysicalDisplayId displayId) { mDisplayModeController.clearDesiredMode(displayId); if (displayId == mActiveDisplayId) { // TODO(b/255635711): Check for pending mode changes on other displays. mScheduler->setModeChangePending(false); } } void SurfaceFlinger::applyActiveMode(PhysicalDisplayId displayId) { const auto activeModeOpt = mDisplayModeController.getDesiredMode(displayId); auto activeModePtr = activeModeOpt->mode.modePtr; const auto renderFps = activeModeOpt->mode.fps; dropModeRequest(displayId); constexpr bool kAllowToEnable = true; mScheduler->resyncToHardwareVsync(displayId, kAllowToEnable, std::move(activeModePtr).take()); mScheduler->setRenderRate(displayId, renderFps, /*applyImmediately*/ true); mScheduler->updatePhaseConfiguration(displayId, renderFps); } void SurfaceFlinger::initiateDisplayModeChanges() { SFTRACE_CALL(); for (const auto& [displayId, physical] : mPhysicalDisplays) { auto desiredModeOpt = mDisplayModeController.getDesiredMode(displayId); if (!desiredModeOpt) { continue; } const auto desiredModeId = desiredModeOpt->mode.modePtr->getId(); const auto displayModePtrOpt = physical.snapshot().displayModes().get(desiredModeId); if (!displayModePtrOpt) { ALOGW("Desired display mode is no longer supported. Mode ID = %d", ftl::to_underlying(desiredModeId)); continue; } ALOGV("%s changing active mode to %d(%s) for display %s", __func__, ftl::to_underlying(desiredModeId), to_string(displayModePtrOpt->get()->getVsyncRate()).c_str(), to_string(displayId).c_str()); if ((!FlagManager::getInstance().connected_display() || !desiredModeOpt->force) && mDisplayModeController.getActiveMode(displayId) == desiredModeOpt->mode) { applyActiveMode(displayId); continue; } const auto selectorPtr = mDisplayModeController.selectorPtrFor(displayId); // Desired active mode was set, it is different than the mode currently in use, however // allowed modes might have changed by the time we process the refresh. // Make sure the desired mode is still allowed if (!selectorPtr->isModeAllowed(desiredModeOpt->mode)) { dropModeRequest(displayId); continue; } // TODO(b/142753666) use constrains hal::VsyncPeriodChangeConstraints constraints; constraints.desiredTimeNanos = systemTime(); constraints.seamlessRequired = false; hal::VsyncPeriodChangeTimeline outTimeline; const auto error = mDisplayModeController.initiateModeChange(displayId, std::move(*desiredModeOpt), constraints, outTimeline); if (error != display::DisplayModeController::ModeChangeResult::Changed) { dropModeRequest(displayId); if (FlagManager::getInstance().display_config_error_hal() && error == display::DisplayModeController::ModeChangeResult::Rejected) { mScheduler->onDisplayModeRejected(displayId, desiredModeId); } continue; } selectorPtr->onModeChangeInitiated(); mScheduler->onNewVsyncPeriodChangeTimeline(outTimeline); if (outTimeline.refreshRequired) { scheduleComposite(FrameHint::kNone); } else { // HWC has requested to apply the mode change immediately rather than on the next frame. finalizeDisplayModeChange(displayId); const auto desiredModeOpt = mDisplayModeController.getDesiredMode(displayId); if (desiredModeOpt && mDisplayModeController.getActiveMode(displayId) == desiredModeOpt->mode) { applyActiveMode(displayId); } } } } void SurfaceFlinger::disableExpensiveRendering() { const char* const whence = __func__; auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) { SFTRACE_NAME(whence); if (mPowerAdvisor->isUsingExpensiveRendering()) { for (const auto& [_, display] : mDisplays) { constexpr bool kDisable = false; mPowerAdvisor->setExpensiveRenderingExpected(display->getId(), kDisable); } } }); future.wait(); } status_t SurfaceFlinger::getDisplayNativePrimaries(const sp& displayToken, ui::DisplayPrimaries& primaries) { if (!displayToken) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken)) .transform(&ftl::to_mapped_ref); if (!display) { return NAME_NOT_FOUND; } if (!display.transform(&PhysicalDisplay::isInternal).value()) { return INVALID_OPERATION; } // TODO(b/229846990): For now, assume that all internal displays have the same primaries. primaries = mInternalDisplayPrimaries; return NO_ERROR; } status_t SurfaceFlinger::setActiveColorMode(const sp& displayToken, ui::ColorMode mode) { if (!displayToken) { return BAD_VALUE; } const char* const whence = __func__; auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) -> status_t { const auto displayOpt = ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken)) .transform(&ftl::to_mapped_ref) .and_then(getDisplayDeviceAndSnapshot()); if (!displayOpt) { ALOGE("%s: Invalid physical display token %p", whence, displayToken.get()); return NAME_NOT_FOUND; } const auto& [display, snapshotRef] = *displayOpt; const auto& snapshot = snapshotRef.get(); const auto modes = snapshot.filterColorModes(mSupportsWideColor); const bool exists = std::find(modes.begin(), modes.end(), mode) != modes.end(); if (mode < ui::ColorMode::NATIVE || !exists) { ALOGE("%s: Invalid color mode %s (%d) for display %s", whence, decodeColorMode(mode).c_str(), mode, to_string(snapshot.displayId()).c_str()); return BAD_VALUE; } display->getCompositionDisplay()->setColorProfile( {mode, Dataspace::UNKNOWN, RenderIntent::COLORIMETRIC}); return NO_ERROR; }); // TODO(b/195698395): Propagate error. future.wait(); return NO_ERROR; } status_t SurfaceFlinger::getBootDisplayModeSupport(bool* outSupport) const { auto future = mScheduler->schedule( [this] { return getHwComposer().hasCapability(Capability::BOOT_DISPLAY_CONFIG); }); *outSupport = future.get(); return NO_ERROR; } status_t SurfaceFlinger::getOverlaySupport(gui::OverlayProperties* outProperties) const { const auto& aidlProperties = getHwComposer().getOverlaySupport(); // convert aidl OverlayProperties to gui::OverlayProperties outProperties->combinations.reserve(aidlProperties.combinations.size()); for (const auto& combination : aidlProperties.combinations) { std::vector pixelFormats; pixelFormats.reserve(combination.pixelFormats.size()); std::transform(combination.pixelFormats.cbegin(), combination.pixelFormats.cend(), std::back_inserter(pixelFormats), [](const auto& val) { return static_cast(val); }); std::vector standards; standards.reserve(combination.standards.size()); std::transform(combination.standards.cbegin(), combination.standards.cend(), std::back_inserter(standards), [](const auto& val) { return static_cast(val); }); std::vector transfers; transfers.reserve(combination.transfers.size()); std::transform(combination.transfers.cbegin(), combination.transfers.cend(), std::back_inserter(transfers), [](const auto& val) { return static_cast(val); }); std::vector ranges; ranges.reserve(combination.ranges.size()); std::transform(combination.ranges.cbegin(), combination.ranges.cend(), std::back_inserter(ranges), [](const auto& val) { return static_cast(val); }); gui::OverlayProperties::SupportedBufferCombinations outCombination; outCombination.pixelFormats = std::move(pixelFormats); outCombination.standards = std::move(standards); outCombination.transfers = std::move(transfers); outCombination.ranges = std::move(ranges); outProperties->combinations.emplace_back(outCombination); } outProperties->supportMixedColorSpaces = aidlProperties.supportMixedColorSpaces; if (aidlProperties.lutProperties) { std::vector outLutProperties; for (auto properties : *aidlProperties.lutProperties) { if (!properties) { gui::LutProperties currentProperties; currentProperties.dimension = static_cast(properties->dimension); currentProperties.size = properties->size; currentProperties.samplingKeys.reserve(properties->samplingKeys.size()); std::transform(properties->samplingKeys.cbegin(), properties->samplingKeys.cend(), std::back_inserter(currentProperties.samplingKeys), [](const auto& val) { return static_cast(val); }); outLutProperties.push_back(std::move(currentProperties)); } } outProperties->lutProperties.emplace(outLutProperties.begin(), outLutProperties.end()); } return NO_ERROR; } status_t SurfaceFlinger::setBootDisplayMode(const sp& displayToken, DisplayModeId modeId) { const char* const whence = __func__; auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) -> status_t { const auto snapshotOpt = ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken)) .transform(&ftl::to_mapped_ref) .transform(&PhysicalDisplay::snapshotRef); if (!snapshotOpt) { ALOGE("%s: Invalid physical display token %p", whence, displayToken.get()); return NAME_NOT_FOUND; } const auto& snapshot = snapshotOpt->get(); const auto hwcIdOpt = snapshot.displayModes().get(modeId).transform( [](const DisplayModePtr& mode) { return mode->getHwcId(); }); if (!hwcIdOpt) { ALOGE("%s: Invalid mode %d for display %s", whence, ftl::to_underlying(modeId), to_string(snapshot.displayId()).c_str()); return BAD_VALUE; } return getHwComposer().setBootDisplayMode(snapshot.displayId(), *hwcIdOpt); }); return future.get(); } status_t SurfaceFlinger::clearBootDisplayMode(const sp& displayToken) { const char* const whence = __func__; auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) -> status_t { if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) { return getHwComposer().clearBootDisplayMode(*displayId); } else { ALOGE("%s: Invalid display token %p", whence, displayToken.get()); return BAD_VALUE; } }); return future.get(); } status_t SurfaceFlinger::getHdrConversionCapabilities( std::vector* hdrConversionCapabilities) const { bool hdrOutputConversionSupport; getHdrOutputConversionSupport(&hdrOutputConversionSupport); if (hdrOutputConversionSupport == false) { ALOGE("hdrOutputConversion is not supported by this device."); return INVALID_OPERATION; } const auto aidlConversionCapability = getHwComposer().getHdrConversionCapabilities(); for (auto capability : aidlConversionCapability) { gui::HdrConversionCapability tempCapability; tempCapability.sourceType = static_cast(capability.sourceType); tempCapability.outputType = static_cast(capability.outputType); tempCapability.addsLatency = capability.addsLatency; hdrConversionCapabilities->push_back(tempCapability); } return NO_ERROR; } status_t SurfaceFlinger::setHdrConversionStrategy( const gui::HdrConversionStrategy& hdrConversionStrategy, int32_t* outPreferredHdrOutputType) { bool hdrOutputConversionSupport; getHdrOutputConversionSupport(&hdrOutputConversionSupport); if (hdrOutputConversionSupport == false) { ALOGE("hdrOutputConversion is not supported by this device."); return INVALID_OPERATION; } auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) mutable -> status_t { using AidlHdrConversionStrategy = aidl::android::hardware::graphics::common::HdrConversionStrategy; using GuiHdrConversionStrategyTag = gui::HdrConversionStrategy::Tag; AidlHdrConversionStrategy aidlConversionStrategy; status_t status; aidl::android::hardware::graphics::common::Hdr aidlPreferredHdrOutputType; switch (hdrConversionStrategy.getTag()) { case GuiHdrConversionStrategyTag::passthrough: { aidlConversionStrategy.set( hdrConversionStrategy.get()); status = getHwComposer().setHdrConversionStrategy(aidlConversionStrategy, &aidlPreferredHdrOutputType); *outPreferredHdrOutputType = static_cast(aidlPreferredHdrOutputType); return status; } case GuiHdrConversionStrategyTag::autoAllowedHdrTypes: { auto autoHdrTypes = hdrConversionStrategy .get(); std::vector aidlAutoHdrTypes; for (auto type : autoHdrTypes) { aidlAutoHdrTypes.push_back( static_cast(type)); } aidlConversionStrategy.set( aidlAutoHdrTypes); status = getHwComposer().setHdrConversionStrategy(aidlConversionStrategy, &aidlPreferredHdrOutputType); *outPreferredHdrOutputType = static_cast(aidlPreferredHdrOutputType); return status; } case GuiHdrConversionStrategyTag::forceHdrConversion: { auto forceHdrConversion = hdrConversionStrategy .get(); aidlConversionStrategy.set( static_cast( forceHdrConversion)); status = getHwComposer().setHdrConversionStrategy(aidlConversionStrategy, &aidlPreferredHdrOutputType); *outPreferredHdrOutputType = static_cast(aidlPreferredHdrOutputType); return status; } } }); return future.get(); } status_t SurfaceFlinger::getHdrOutputConversionSupport(bool* outSupport) const { auto future = mScheduler->schedule([this] { return getHwComposer().hasCapability(Capability::HDR_OUTPUT_CONVERSION_CONFIG); }); *outSupport = future.get(); return NO_ERROR; } void SurfaceFlinger::setAutoLowLatencyMode(const sp& displayToken, bool on) { const char* const whence = __func__; static_cast(mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) { if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) { getHwComposer().setAutoLowLatencyMode(*displayId, on); } else { ALOGE("%s: Invalid display token %p", whence, displayToken.get()); } })); } void SurfaceFlinger::setGameContentType(const sp& displayToken, bool on) { const char* const whence = __func__; static_cast(mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) { if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) { const auto type = on ? hal::ContentType::GAME : hal::ContentType::NONE; getHwComposer().setContentType(*displayId, type); } else { ALOGE("%s: Invalid display token %p", whence, displayToken.get()); } })); } status_t SurfaceFlinger::getMaxLayerPictureProfiles(const sp& displayToken, int32_t* outMaxProfiles) { const char* const whence = __func__; auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) { const ssize_t index = mCurrentState.displays.indexOfKey(displayToken); if (index < 0) { ALOGE("%s: Invalid display token %p", whence, displayToken.get()); return 0; } const DisplayDeviceState& state = mCurrentState.displays.valueAt(index); return state.maxLayerPictureProfiles > 0 ? state.maxLayerPictureProfiles : state.hasPictureProcessing ? 1 : 0; }); *outMaxProfiles = future.get(); return NO_ERROR; } status_t SurfaceFlinger::overrideHdrTypes(const sp& displayToken, const std::vector& hdrTypes) { Mutex::Autolock lock(mStateLock); auto display = getDisplayDeviceLocked(displayToken); if (!display) { ALOGE("%s: Invalid display token %p", __func__, displayToken.get()); return NAME_NOT_FOUND; } display->overrideHdrTypes(hdrTypes); mScheduler->dispatchHotplug(display->getPhysicalId(), scheduler::Scheduler::Hotplug::Connected); return NO_ERROR; } status_t SurfaceFlinger::onPullAtom(const int32_t atomId, std::vector* pulledData, bool* success) { *success = mTimeStats->onPullAtom(atomId, pulledData); return NO_ERROR; } status_t SurfaceFlinger::getDisplayedContentSamplingAttributes(const sp& displayToken, ui::PixelFormat* outFormat, ui::Dataspace* outDataspace, uint8_t* outComponentMask) const { if (!outFormat || !outDataspace || !outComponentMask) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto displayId = getPhysicalDisplayIdLocked(displayToken); if (!displayId) { return NAME_NOT_FOUND; } return getHwComposer().getDisplayedContentSamplingAttributes(*displayId, outFormat, outDataspace, outComponentMask); } status_t SurfaceFlinger::setDisplayContentSamplingEnabled(const sp& displayToken, bool enable, uint8_t componentMask, uint64_t maxFrames) { const char* const whence = __func__; auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) -> status_t { if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) { return getHwComposer().setDisplayContentSamplingEnabled(*displayId, enable, componentMask, maxFrames); } else { ALOGE("%s: Invalid display token %p", whence, displayToken.get()); return NAME_NOT_FOUND; } }); return future.get(); } status_t SurfaceFlinger::getDisplayedContentSample(const sp& displayToken, uint64_t maxFrames, uint64_t timestamp, DisplayedFrameStats* outStats) const { Mutex::Autolock lock(mStateLock); const auto displayId = getPhysicalDisplayIdLocked(displayToken); if (!displayId) { return NAME_NOT_FOUND; } return getHwComposer().getDisplayedContentSample(*displayId, maxFrames, timestamp, outStats); } status_t SurfaceFlinger::getProtectedContentSupport(bool* outSupported) const { if (!outSupported) { return BAD_VALUE; } *outSupported = getRenderEngine().supportsProtectedContent(); return NO_ERROR; } status_t SurfaceFlinger::isWideColorDisplay(const sp& displayToken, bool* outIsWideColorDisplay) const { if (!displayToken || !outIsWideColorDisplay) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } *outIsWideColorDisplay = display->isPrimary() ? mSupportsWideColor : display->hasWideColorGamut(); return NO_ERROR; } status_t SurfaceFlinger::getCompositionPreference( Dataspace* outDataspace, ui::PixelFormat* outPixelFormat, Dataspace* outWideColorGamutDataspace, ui::PixelFormat* outWideColorGamutPixelFormat) const { *outDataspace = mDefaultCompositionDataspace; *outPixelFormat = defaultCompositionPixelFormat; *outWideColorGamutDataspace = mWideColorGamutCompositionDataspace; *outWideColorGamutPixelFormat = wideColorGamutCompositionPixelFormat; return NO_ERROR; } status_t SurfaceFlinger::addRegionSamplingListener(const Rect& samplingArea, const sp& stopLayerHandle, const sp& listener) { if (!listener || samplingArea == Rect::INVALID_RECT || samplingArea.isEmpty()) { return BAD_VALUE; } // LayerHandle::getLayer promotes the layer object in a binder thread but we will not destroy // the layer here since the caller has a strong ref to the layer's handle. const sp stopLayer = LayerHandle::getLayer(stopLayerHandle); mRegionSamplingThread->addListener(samplingArea, stopLayer ? stopLayer->getSequence() : UNASSIGNED_LAYER_ID, listener); return NO_ERROR; } status_t SurfaceFlinger::removeRegionSamplingListener(const sp& listener) { if (!listener) { return BAD_VALUE; } mRegionSamplingThread->removeListener(listener); return NO_ERROR; } status_t SurfaceFlinger::addFpsListener(int32_t taskId, const sp& listener) { if (!listener) { return BAD_VALUE; } mFpsReporter->addListener(listener, taskId); return NO_ERROR; } status_t SurfaceFlinger::removeFpsListener(const sp& listener) { if (!listener) { return BAD_VALUE; } mFpsReporter->removeListener(listener); return NO_ERROR; } status_t SurfaceFlinger::addTunnelModeEnabledListener( const sp& listener) { if (!listener) { return BAD_VALUE; } mTunnelModeEnabledReporter->addListener(listener); return NO_ERROR; } status_t SurfaceFlinger::removeTunnelModeEnabledListener( const sp& listener) { if (!listener) { return BAD_VALUE; } mTunnelModeEnabledReporter->removeListener(listener); return NO_ERROR; } status_t SurfaceFlinger::getDisplayBrightnessSupport(const sp& displayToken, bool* outSupport) const { if (!displayToken || !outSupport) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto displayId = getPhysicalDisplayIdLocked(displayToken); if (!displayId) { return NAME_NOT_FOUND; } *outSupport = getHwComposer().hasDisplayCapability(*displayId, DisplayCapability::BRIGHTNESS); return NO_ERROR; } status_t SurfaceFlinger::setDisplayBrightness(const sp& displayToken, const gui::DisplayBrightness& brightness) { if (!displayToken) { return BAD_VALUE; } const char* const whence = __func__; return ftl::Future(mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) { // TODO(b/241285876): Validate that the display is physical instead of failing later. if (const auto display = getDisplayDeviceLocked(displayToken)) { const bool supportsDisplayBrightnessCommand = getHwComposer().getComposer()->isSupported( Hwc2::Composer::OptionalFeature::DisplayBrightnessCommand); // If we support applying display brightness as a command, then we also support // dimming SDR layers. if (supportsDisplayBrightnessCommand) { auto compositionDisplay = display->getCompositionDisplay(); float currentDimmingRatio = compositionDisplay->editState().sdrWhitePointNits / compositionDisplay->editState().displayBrightnessNits; static constexpr float kDimmingThreshold = 0.02f; if (brightness.sdrWhitePointNits == 0.f || abs(brightness.sdrWhitePointNits - brightness.displayBrightnessNits) / brightness.sdrWhitePointNits >= kDimmingThreshold) { // to optimize, skip brightness setter if the brightness difference ratio // is lower than threshold compositionDisplay ->setDisplayBrightness(brightness.sdrWhitePointNits, brightness.displayBrightnessNits); } else { compositionDisplay->setDisplayBrightness(brightness.sdrWhitePointNits, brightness.sdrWhitePointNits); } FTL_FAKE_GUARD(kMainThreadContext, display->stageBrightness(brightness.displayBrightness)); float currentHdrSdrRatio = compositionDisplay->editState().displayBrightnessNits / compositionDisplay->editState().sdrWhitePointNits; FTL_FAKE_GUARD(kMainThreadContext, display->updateHdrSdrRatioOverlayRatio(currentHdrSdrRatio)); if (brightness.sdrWhitePointNits / brightness.displayBrightnessNits != currentDimmingRatio) { scheduleComposite(FrameHint::kNone); } else { scheduleCommit(FrameHint::kNone); } return ftl::yield(OK); } else { return getHwComposer() .setDisplayBrightness(display->getPhysicalId(), brightness.displayBrightness, brightness.displayBrightnessNits, Hwc2::Composer::DisplayBrightnessOptions{ .applyImmediately = true}); } } else { ALOGE("%s: Invalid display token %p", whence, displayToken.get()); return ftl::yield(NAME_NOT_FOUND); } })) .then([](ftl::Future task) { return task; }) .get(); } status_t SurfaceFlinger::addHdrLayerInfoListener(const sp& displayToken, const sp& listener) { if (!displayToken) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } const auto displayId = display->getId(); sp& hdrInfoReporter = mHdrLayerInfoListeners[displayId]; if (!hdrInfoReporter) { hdrInfoReporter = sp::make(); } hdrInfoReporter->addListener(listener); mAddingHDRLayerInfoListener = true; return OK; } status_t SurfaceFlinger::removeHdrLayerInfoListener( const sp& displayToken, const sp& listener) { if (!displayToken) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } const auto displayId = display->getId(); sp& hdrInfoReporter = mHdrLayerInfoListeners[displayId]; if (hdrInfoReporter) { hdrInfoReporter->removeListener(listener); } return OK; } status_t SurfaceFlinger::notifyPowerBoost(int32_t boostId) { using aidl::android::hardware::power::Boost; Boost powerBoost = static_cast(boostId); if (powerBoost == Boost::INTERACTION) { mScheduler->onTouchHint(); } return NO_ERROR; } status_t SurfaceFlinger::getDisplayDecorationSupport( const sp& displayToken, std::optional* outSupport) const { if (!displayToken || !outSupport) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto displayId = getPhysicalDisplayIdLocked(displayToken); if (!displayId) { return NAME_NOT_FOUND; } getHwComposer().getDisplayDecorationSupport(*displayId, outSupport); return NO_ERROR; } // ---------------------------------------------------------------------------- sp SurfaceFlinger::createDisplayEventConnection( gui::ISurfaceComposer::VsyncSource vsyncSource, EventRegistrationFlags eventRegistration, const sp& layerHandle) { const auto cycle = [&] { if (FlagManager::getInstance().deprecate_vsync_sf()) { ALOGW_IF(vsyncSource == gui::ISurfaceComposer::VsyncSource::eVsyncSourceSurfaceFlinger, "requested unsupported config eVsyncSourceSurfaceFlinger"); return scheduler::Cycle::Render; } return vsyncSource == gui::ISurfaceComposer::VsyncSource::eVsyncSourceSurfaceFlinger ? scheduler::Cycle::LastComposite : scheduler::Cycle::Render; }(); return mScheduler->createDisplayEventConnection(cycle, eventRegistration, layerHandle); } void SurfaceFlinger::scheduleCommit(FrameHint hint, Duration workDurationSlack) { if (hint == FrameHint::kActive) { mScheduler->resetIdleTimer(); } mPowerAdvisor->notifyDisplayUpdateImminentAndCpuReset(); mScheduler->scheduleFrame(workDurationSlack); } void SurfaceFlinger::scheduleComposite(FrameHint hint) { mMustComposite = true; scheduleCommit(hint); } void SurfaceFlinger::scheduleRepaint() { mGeometryDirty = true; scheduleComposite(FrameHint::kActive); } void SurfaceFlinger::scheduleSample() { static_cast(mScheduler->schedule([this] { sample(); })); } void SurfaceFlinger::onComposerHalVsync(hal::HWDisplayId hwcDisplayId, int64_t timestamp, std::optional vsyncPeriod) { if (FlagManager::getInstance().connected_display() && timestamp < 0 && vsyncPeriod.has_value()) { if (mIsHdcpViaNegVsync && vsyncPeriod.value() == ~1) { const int32_t value = static_cast(-timestamp); // one byte is good enough to encode android.hardware.drm.HdcpLevel const int32_t maxLevel = (value >> 8) & 0xFF; const int32_t connectedLevel = value & 0xFF; ALOGD("%s: HDCP levels changed (connected=%d, max=%d) for hwcDisplayId %" PRIu64, __func__, connectedLevel, maxLevel, hwcDisplayId); updateHdcpLevels(hwcDisplayId, connectedLevel, maxLevel); return; } } SFTRACE_NAME(vsyncPeriod ? ftl::Concat(__func__, ' ', hwcDisplayId, ' ', *vsyncPeriod, "ns").c_str() : ftl::Concat(__func__, ' ', hwcDisplayId).c_str()); Mutex::Autolock lock(mStateLock); if (const auto displayIdOpt = getHwComposer().onVsync(hwcDisplayId, timestamp)) { if (mScheduler->addResyncSample(*displayIdOpt, timestamp, vsyncPeriod)) { // period flushed mScheduler->modulateVsync(displayIdOpt, &VsyncModulator::onRefreshRateChangeCompleted); } } } void SurfaceFlinger::onComposerHalHotplugEvent(hal::HWDisplayId hwcDisplayId, DisplayHotplugEvent event) { if (event == DisplayHotplugEvent::CONNECTED || event == DisplayHotplugEvent::DISCONNECTED) { hal::Connection connection = (event == DisplayHotplugEvent::CONNECTED) ? hal::Connection::CONNECTED : hal::Connection::DISCONNECTED; { std::lock_guard lock(mHotplugMutex); mPendingHotplugEvents.push_back(HotplugEvent{hwcDisplayId, connection}); } if (mScheduler) { mScheduler->scheduleConfigure(); } return; } if (event < DisplayHotplugEvent::ERROR_LINK_UNSTABLE) { // This needs to be kept in sync with DisplayHotplugEvent to prevent passing new errors. const auto errorCode = static_cast(event); ALOGW("%s: Unknown hotplug error %d for hwcDisplayId %" PRIu64, __func__, errorCode, hwcDisplayId); return; } if (event == DisplayHotplugEvent::ERROR_LINK_UNSTABLE && !FlagManager::getInstance().display_config_error_hal()) { return; } // TODO(b/311403559): use enum type instead of int const auto errorCode = static_cast(event); ALOGD("%s: Hotplug error %d for hwcDisplayId %" PRIu64, __func__, errorCode, hwcDisplayId); mScheduler->dispatchHotplugError(errorCode); } void SurfaceFlinger::onComposerHalVsyncPeriodTimingChanged( hal::HWDisplayId, const hal::VsyncPeriodChangeTimeline& timeline) { Mutex::Autolock lock(mStateLock); mScheduler->onNewVsyncPeriodChangeTimeline(timeline); if (timeline.refreshRequired) { scheduleComposite(FrameHint::kNone); } } void SurfaceFlinger::onComposerHalSeamlessPossible(hal::HWDisplayId) { // TODO(b/142753666): use constraints when calling to setActiveModeWithConstraints and // use this callback to know when to retry in case of SEAMLESS_NOT_POSSIBLE. } void SurfaceFlinger::onComposerHalRefresh(hal::HWDisplayId) { Mutex::Autolock lock(mStateLock); scheduleComposite(FrameHint::kNone); } void SurfaceFlinger::onComposerHalVsyncIdle(hal::HWDisplayId) { SFTRACE_CALL(); mScheduler->forceNextResync(); } void SurfaceFlinger::onRefreshRateChangedDebug(const RefreshRateChangedDebugData& data) { SFTRACE_CALL(); const char* const whence = __func__; static_cast(mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) FTL_FAKE_GUARD( kMainThreadContext) { if (const auto displayIdOpt = getHwComposer().toPhysicalDisplayId(data.display)) { if (const auto display = getDisplayDeviceLocked(*displayIdOpt)) { const Fps refreshRate = Fps::fromPeriodNsecs( getHwComposer().getComposer()->isVrrSupported() ? data.refreshPeriodNanos : data.vsyncPeriodNanos); SFTRACE_FORMAT("%s refresh rate = %d", whence, refreshRate.getIntValue()); const auto renderRate = mDisplayModeController.getActiveMode(*displayIdOpt).fps; constexpr bool kSetByHwc = true; display->updateRefreshRateOverlayRate(refreshRate, renderRate, kSetByHwc); } } })); } void SurfaceFlinger::onComposerHalHdcpLevelsChanged(hal::HWDisplayId hwcDisplayId, const HdcpLevels& levels) { if (FlagManager::getInstance().hdcp_level_hal()) { // TODO(b/362270040): propagate enum constants const int32_t maxLevel = static_cast(levels.maxLevel); const int32_t connectedLevel = static_cast(levels.connectedLevel); ALOGD("%s: HDCP levels changed (connected=%d, max=%d) for hwcDisplayId %" PRIu64, __func__, connectedLevel, maxLevel, hwcDisplayId); updateHdcpLevels(hwcDisplayId, connectedLevel, maxLevel); } } void SurfaceFlinger::configure() { Mutex::Autolock lock(mStateLock); if (configureLocked()) { setTransactionFlags(eDisplayTransactionNeeded); } } void SurfaceFlinger::updateLayerHistory(nsecs_t now) { for (const auto& snapshot : mLayerSnapshotBuilder.getSnapshots()) { using Changes = frontend::RequestedLayerState::Changes; if (snapshot->path.isClone()) { continue; } const bool updateSmallDirty = FlagManager::getInstance().enable_small_area_detection() && ((snapshot->clientChanges & layer_state_t::eSurfaceDamageRegionChanged) || snapshot->changes.any(Changes::Geometry)); const bool hasChanges = snapshot->changes.any(Changes::FrameRate | Changes::Buffer | Changes::Animation | Changes::Geometry | Changes::Visibility) || (snapshot->clientChanges & layer_state_t::eDefaultFrameRateCompatibilityChanged) != 0; if (!updateSmallDirty && !hasChanges) { continue; } auto it = mLegacyLayers.find(snapshot->sequence); LLOG_ALWAYS_FATAL_WITH_TRACE_IF(it == mLegacyLayers.end(), "Couldn't find layer object for %s", snapshot->getDebugString().c_str()); if (updateSmallDirty) { // Update small dirty flag while surface damage region or geometry changed it->second->setIsSmallDirty(snapshot.get()); } if (!hasChanges) { continue; } const auto layerProps = scheduler::LayerProps{ .visible = snapshot->isVisible, .bounds = snapshot->geomLayerBounds, .transform = snapshot->geomLayerTransform, .setFrameRateVote = snapshot->frameRate, .frameRateSelectionPriority = snapshot->frameRateSelectionPriority, .isSmallDirty = snapshot->isSmallDirty, .isFrontBuffered = snapshot->isFrontBuffered(), }; if (snapshot->changes.any(Changes::Geometry | Changes::Visibility)) { mScheduler->setLayerProperties(snapshot->sequence, layerProps); } if (snapshot->clientChanges & layer_state_t::eDefaultFrameRateCompatibilityChanged) { mScheduler->setDefaultFrameRateCompatibility(snapshot->sequence, snapshot->defaultFrameRateCompatibility); } if (snapshot->changes.test(Changes::Animation)) { it->second->recordLayerHistoryAnimationTx(layerProps, now); } if (snapshot->changes.test(Changes::FrameRate)) { it->second->setFrameRateForLayerTree(snapshot->frameRate, layerProps, now); } if (snapshot->changes.test(Changes::Buffer)) { it->second->recordLayerHistoryBufferUpdate(layerProps, now); } } } bool SurfaceFlinger::updateLayerSnapshots(VsyncId vsyncId, nsecs_t frameTimeNs, bool flushTransactions, bool& outTransactionsAreEmpty) { using Changes = frontend::RequestedLayerState::Changes; SFTRACE_CALL(); frontend::Update update; if (flushTransactions) { SFTRACE_NAME("TransactionHandler:flushTransactions"); // Locking: // 1. to prevent onHandleDestroyed from being called while the state lock is held, // we must keep a copy of the transactions (specifically the composer // states) around outside the scope of the lock. // 2. Transactions and created layers do not share a lock. To prevent applying // transactions with layers still in the createdLayer queue, collect the transactions // before committing the created layers. // 3. Transactions can only be flushed after adding layers, since the layer can be a newly // created one mTransactionHandler.collectTransactions(); { // TODO(b/238781169) lockless queue this and keep order. std::scoped_lock lock(mCreatedLayersLock); update.legacyLayers = std::move(mCreatedLayers); mCreatedLayers.clear(); update.newLayers = std::move(mNewLayers); mNewLayers.clear(); update.layerCreationArgs = std::move(mNewLayerArgs); mNewLayerArgs.clear(); update.destroyedHandles = std::move(mDestroyedHandles); mDestroyedHandles.clear(); } mLayerLifecycleManager.addLayers(std::move(update.newLayers)); update.transactions = mTransactionHandler.flushTransactions(); if (mTransactionTracing) { mTransactionTracing->addCommittedTransactions(ftl::to_underlying(vsyncId), frameTimeNs, update, mFrontEndDisplayInfos, mFrontEndDisplayInfosChanged); } mLayerLifecycleManager.applyTransactions(update.transactions); mLayerLifecycleManager.onHandlesDestroyed(update.destroyedHandles); for (auto& legacyLayer : update.legacyLayers) { mLegacyLayers[legacyLayer->sequence] = legacyLayer; } mLayerHierarchyBuilder.update(mLayerLifecycleManager); } // Keep a copy of the drawing state (that is going to be overwritten // by commitTransactionsLocked) outside of mStateLock so that the side // effects of the State assignment don't happen with mStateLock held, // which can cause deadlocks. State drawingState(mDrawingState); Mutex::Autolock lock(mStateLock); bool mustComposite = false; mustComposite |= applyAndCommitDisplayTransactionStatesLocked(update.transactions); { SFTRACE_NAME("LayerSnapshotBuilder:update"); frontend::LayerSnapshotBuilder::Args args{.root = mLayerHierarchyBuilder.getHierarchy(), .layerLifecycleManager = mLayerLifecycleManager, .includeMetadata = mCompositionEngine->getFeatureFlags().test( compositionengine::Feature::kSnapshotLayerMetadata), .displays = mFrontEndDisplayInfos, .displayChanges = mFrontEndDisplayInfosChanged, .globalShadowSettings = mDrawingState.globalShadowSettings, .supportsBlur = mSupportsBlur, .forceFullDamage = mForceFullDamage, .supportedLayerGenericMetadata = getHwComposer().getSupportedLayerGenericMetadata(), .genericLayerMetadataKeyMap = getGenericLayerMetadataKeyMap(), .skipRoundCornersWhenProtected = !getRenderEngine().supportsProtectedContent()}; mLayerSnapshotBuilder.update(args); } if (mLayerLifecycleManager.getGlobalChanges().any(Changes::Geometry | Changes::Input | Changes::Hierarchy | Changes::Visibility)) { mUpdateInputInfo = true; } if (mLayerLifecycleManager.getGlobalChanges().any(Changes::VisibleRegion | Changes::Hierarchy | Changes::Visibility | Changes::Geometry)) { mVisibleRegionsDirty = true; } if (mLayerLifecycleManager.getGlobalChanges().any(Changes::Hierarchy | Changes::FrameRate)) { // The frame rate of attached choreographers can only change as a result of a // FrameRate change (including when Hierarchy changes). mUpdateAttachedChoreographer = true; } outTransactionsAreEmpty = mLayerLifecycleManager.getGlobalChanges().get() == 0; if (FlagManager::getInstance().vrr_bugfix_24q4()) { mustComposite |= mLayerLifecycleManager.getGlobalChanges().any( frontend::RequestedLayerState::kMustComposite); } else { mustComposite |= mLayerLifecycleManager.getGlobalChanges().get() != 0; } bool newDataLatched = false; SFTRACE_NAME("DisplayCallbackAndStatsUpdates"); mustComposite |= applyTransactionsLocked(update.transactions); traverseLegacyLayers([&](Layer* layer) { layer->commitTransaction(); }); const nsecs_t latchTime = systemTime(); bool unused = false; for (auto& layer : mLayerLifecycleManager.getLayers()) { if (layer->changes.test(frontend::RequestedLayerState::Changes::Created) && layer->bgColorLayer) { sp bgColorLayer = getFactory().createEffectLayer( LayerCreationArgs(this, nullptr, layer->name, ISurfaceComposerClient::eFXSurfaceEffect, LayerMetadata(), std::make_optional(layer->id), true)); mLegacyLayers[bgColorLayer->sequence] = bgColorLayer; } const bool willReleaseBufferOnLatch = layer->willReleaseBufferOnLatch(); auto it = mLegacyLayers.find(layer->id); if (it == mLegacyLayers.end() && layer->changes.test(frontend::RequestedLayerState::Changes::Destroyed)) { // Layer handle was created and immediately destroyed. It was destroyed before it // was added to the map. continue; } LLOG_ALWAYS_FATAL_WITH_TRACE_IF(it == mLegacyLayers.end(), "Couldnt find layer object for %s", layer->getDebugString().c_str()); if (!layer->hasReadyFrame() && !willReleaseBufferOnLatch) { if (!it->second->hasBuffer()) { // The last latch time is used to classify a missed frame as buffer stuffing // instead of a missed frame. This is used to identify scenarios where we // could not latch a buffer or apply a transaction due to backpressure. // We only update the latch time for buffer less layers here, the latch time // is updated for buffer layers when the buffer is latched. it->second->updateLastLatchTime(latchTime); } continue; } const bool bgColorOnly = !layer->externalTexture && (layer->bgColorLayerId != UNASSIGNED_LAYER_ID); if (willReleaseBufferOnLatch) { mLayersWithBuffersRemoved.emplace(it->second); } it->second->latchBufferImpl(unused, latchTime, bgColorOnly); newDataLatched = true; frontend::LayerSnapshot* snapshot = mLayerSnapshotBuilder.getSnapshot(it->second->sequence); gui::GameMode gameMode = (snapshot) ? snapshot->gameMode : gui::GameMode::Unsupported; mLayersWithQueuedFrames.emplace(it->second, gameMode); } updateLayerHistory(latchTime); mLayerSnapshotBuilder.forEachSnapshot([&](const frontend::LayerSnapshot& snapshot) { // update output's dirty region if a snapshot is visible and its // content is dirty or if a snapshot recently became invisible if ((snapshot.isVisible && snapshot.contentDirty) || (!snapshot.isVisible && snapshot.changes.test(Changes::Visibility))) { Region visibleReg; visibleReg.set(snapshot.transformedBoundsWithoutTransparentRegion); invalidateLayerStack(snapshot.outputFilter, visibleReg); } }); for (auto& destroyedLayer : mLayerLifecycleManager.getDestroyedLayers()) { mLegacyLayers.erase(destroyedLayer->id); } { SFTRACE_NAME("LayerLifecycleManager:commitChanges"); mLayerLifecycleManager.commitChanges(); } // enter boot animation on first buffer latch if (CC_UNLIKELY(mBootStage == BootStage::BOOTLOADER && newDataLatched)) { ALOGI("Enter boot animation"); mBootStage = BootStage::BOOTANIMATION; } mustComposite |= (getTransactionFlags() & ~eTransactionFlushNeeded) || newDataLatched; if (mustComposite) { commitTransactions(); } return mustComposite; } bool SurfaceFlinger::commit(PhysicalDisplayId pacesetterId, const scheduler::FrameTargets& frameTargets) { const scheduler::FrameTarget& pacesetterFrameTarget = *frameTargets.get(pacesetterId)->get(); const VsyncId vsyncId = pacesetterFrameTarget.vsyncId(); SFTRACE_NAME(ftl::Concat(__func__, ' ', ftl::to_underlying(vsyncId)).c_str()); if (pacesetterFrameTarget.didMissFrame()) { mTimeStats->incrementMissedFrames(); } // If a mode set is pending and the fence hasn't fired yet, wait for the next commit. if (std::any_of(frameTargets.begin(), frameTargets.end(), [this](const auto& pair) FTL_FAKE_GUARD(kMainThreadContext) { const auto [displayId, target] = pair; return target->isFramePending() && mDisplayModeController.isModeSetPending(displayId); })) { mScheduler->scheduleFrame(); return false; } { Mutex::Autolock lock(mStateLock); for (const auto [displayId, _] : frameTargets) { if (mDisplayModeController.isModeSetPending(displayId)) { finalizeDisplayModeChange(displayId); } } } if (pacesetterFrameTarget.wouldBackpressureHwc()) { if (mBackpressureGpuComposition || pacesetterFrameTarget.didMissHwcFrame()) { if (FlagManager::getInstance().vrr_config()) { mScheduler->getVsyncSchedule()->getTracker().onFrameMissed( pacesetterFrameTarget.expectedPresentTime()); } const Duration slack = FlagManager::getInstance().allow_n_vsyncs_in_targeter() ? TimePoint::now() - pacesetterFrameTarget.frameBeginTime() : Duration::fromNs(0); scheduleCommit(FrameHint::kNone, slack); return false; } } const Period vsyncPeriod = mScheduler->getVsyncSchedule()->period(); // Save this once per commit + composite to ensure consistency // TODO (b/240619471): consider removing active display check once AOD is fixed const auto activeDisplay = FTL_FAKE_GUARD(mStateLock, getDisplayDeviceLocked(mActiveDisplayId)); mPowerHintSessionEnabled = mPowerAdvisor->usePowerHintSession() && activeDisplay && activeDisplay->getPowerMode() == hal::PowerMode::ON; if (mPowerHintSessionEnabled) { mPowerAdvisor->setCommitStart(pacesetterFrameTarget.frameBeginTime()); mPowerAdvisor->setExpectedPresentTime(pacesetterFrameTarget.expectedPresentTime()); // Frame delay is how long we should have minus how long we actually have. const Duration idealSfWorkDuration = mScheduler->vsyncModulator().getVsyncConfig().sfWorkDuration; const Duration frameDelay = idealSfWorkDuration - pacesetterFrameTarget.expectedFrameDuration(); mPowerAdvisor->setFrameDelay(frameDelay); mPowerAdvisor->setTotalFrameTargetWorkDuration(idealSfWorkDuration); const Period idealVsyncPeriod = mDisplayModeController.getActiveMode(pacesetterId).fps.getPeriod(); mPowerAdvisor->updateTargetWorkDuration(idealVsyncPeriod); } if (mRefreshRateOverlaySpinner || mHdrSdrRatioOverlay) { Mutex::Autolock lock(mStateLock); if (const auto display = getDefaultDisplayDeviceLocked()) { display->animateOverlay(); } } // Composite if transactions were committed, or if requested by HWC. bool mustComposite = mMustComposite.exchange(false); { mFrameTimeline->setSfWakeUp(ftl::to_underlying(vsyncId), pacesetterFrameTarget.frameBeginTime().ns(), Fps::fromPeriodNsecs(vsyncPeriod.ns()), mScheduler->getPacesetterRefreshRate()); const bool flushTransactions = clearTransactionFlags(eTransactionFlushNeeded); bool transactionsAreEmpty = false; mustComposite |= updateLayerSnapshots(vsyncId, pacesetterFrameTarget.frameBeginTime().ns(), flushTransactions, transactionsAreEmpty); // Tell VsyncTracker that we are going to present this frame before scheduling // setTransactionFlags which will schedule another SF frame. This was if the tracker // needs to adjust the vsync timeline, it will be done before the next frame. if (FlagManager::getInstance().vrr_config() && mustComposite) { mScheduler->getVsyncSchedule()->getTracker().onFrameBegin( pacesetterFrameTarget.expectedPresentTime(), pacesetterFrameTarget.lastSignaledFrameTime()); } if (transactionFlushNeeded()) { setTransactionFlags(eTransactionFlushNeeded); } // This has to be called after latchBuffers because we want to include the layers that have // been latched in the commit callback if (transactionsAreEmpty) { // Invoke empty transaction callbacks early. mTransactionCallbackInvoker.sendCallbacks(false /* onCommitOnly */); } else { // Invoke OnCommit callbacks. mTransactionCallbackInvoker.sendCallbacks(true /* onCommitOnly */); } } // Layers need to get updated (in the previous line) before we can use them for // choosing the refresh rate. // Hold mStateLock as chooseRefreshRateForContent promotes wp to sp // and may eventually call to ~Layer() if it holds the last reference { bool updateAttachedChoreographer = mUpdateAttachedChoreographer; mUpdateAttachedChoreographer = false; Mutex::Autolock lock(mStateLock); mScheduler->chooseRefreshRateForContent(&mLayerHierarchyBuilder.getHierarchy(), updateAttachedChoreographer); initiateDisplayModeChanges(); } updateCursorAsync(); if (!mustComposite) { updateInputFlinger(vsyncId, pacesetterFrameTarget.frameBeginTime()); } doActiveLayersTracingIfNeeded(false, mVisibleRegionsDirty, pacesetterFrameTarget.frameBeginTime(), vsyncId); mLastCommittedVsyncId = vsyncId; persistDisplayBrightness(mustComposite); return mustComposite && CC_LIKELY(mBootStage != BootStage::BOOTLOADER); } CompositeResultsPerDisplay SurfaceFlinger::composite( PhysicalDisplayId pacesetterId, const scheduler::FrameTargeters& frameTargeters) { const scheduler::FrameTarget& pacesetterTarget = frameTargeters.get(pacesetterId)->get()->target(); const VsyncId vsyncId = pacesetterTarget.vsyncId(); SFTRACE_NAME(ftl::Concat(__func__, ' ', ftl::to_underlying(vsyncId)).c_str()); compositionengine::CompositionRefreshArgs refreshArgs; refreshArgs.powerCallback = this; const auto& displays = FTL_FAKE_GUARD(mStateLock, mDisplays); refreshArgs.outputs.reserve(displays.size()); // Add outputs for physical displays. for (const auto& [id, targeter] : frameTargeters) { ftl::FakeGuard guard(mStateLock); if (const auto display = getCompositionDisplayLocked(id)) { refreshArgs.outputs.push_back(display); } refreshArgs.frameTargets.try_emplace(id, &targeter->target()); } std::vector displayIds; for (const auto& [_, display] : displays) { displayIds.push_back(display->getId()); display->tracePowerMode(); // Add outputs for virtual displays. if (display->isVirtual()) { const Fps refreshRate = display->getAdjustedRefreshRate(); if (!refreshRate.isValid() || mScheduler->isVsyncInPhase(pacesetterTarget.frameBeginTime(), refreshRate)) { refreshArgs.outputs.push_back(display->getCompositionDisplay()); } } } mPowerAdvisor->setDisplays(displayIds); const bool updateTaskMetadata = mCompositionEngine->getFeatureFlags().test( compositionengine::Feature::kSnapshotLayerMetadata); refreshArgs.bufferIdsToUncache = std::move(mBufferIdsToUncache); refreshArgs.outputColorSetting = mDisplayColorSetting; refreshArgs.forceOutputColorMode = mForceColorMode; refreshArgs.updatingOutputGeometryThisFrame = mVisibleRegionsDirty; refreshArgs.updatingGeometryThisFrame = mGeometryDirty.exchange(false) || mVisibleRegionsDirty || mDrawingState.colorMatrixChanged; refreshArgs.internalDisplayRotationFlags = getActiveDisplayRotationFlags(); if (CC_UNLIKELY(mDrawingState.colorMatrixChanged)) { refreshArgs.colorTransformMatrix = mDrawingState.colorMatrix; mDrawingState.colorMatrixChanged = false; } refreshArgs.devOptForceClientComposition = mDebugDisableHWC; if (mDebugFlashDelay != 0) { refreshArgs.devOptForceClientComposition = true; refreshArgs.devOptFlashDirtyRegionsDelay = std::chrono::milliseconds(mDebugFlashDelay); } // TODO(b/255601557) Update frameInterval per display refreshArgs.frameInterval = mScheduler->getNextFrameInterval(pacesetterId, pacesetterTarget.expectedPresentTime()); const auto scheduledFrameResultOpt = mScheduler->getScheduledFrameResult(); const auto scheduledFrameTimeOpt = scheduledFrameResultOpt ? std::optional{scheduledFrameResultOpt->callbackTime} : std::nullopt; refreshArgs.scheduledFrameTime = scheduledFrameTimeOpt; refreshArgs.hasTrustedPresentationListener = mNumTrustedPresentationListeners > 0; // Store the present time just before calling to the composition engine so we could notify // the scheduler. const auto presentTime = systemTime(); constexpr bool kCursorOnly = false; const auto layers = moveSnapshotsToCompositionArgs(refreshArgs, kCursorOnly); if (!mVisibleRegionsDirty) { for (const auto& [token, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) { auto compositionDisplay = display->getCompositionDisplay(); if (!compositionDisplay->getState().isEnabled) continue; for (auto outputLayer : compositionDisplay->getOutputLayersOrderedByZ()) { if (outputLayer->getLayerFE().getCompositionState() == nullptr) { // This is unexpected but instead of crashing, capture traces to disk // and recover gracefully by forcing CE to rebuild layer stack. ALOGE("Output layer %s for display %s %" PRIu64 " has a null " "snapshot. Forcing mVisibleRegionsDirty", outputLayer->getLayerFE().getDebugName(), compositionDisplay->getName().c_str(), compositionDisplay->getId().value); TransactionTraceWriter::getInstance().invoke(__func__, /* overwrite= */ false); mVisibleRegionsDirty = true; refreshArgs.updatingOutputGeometryThisFrame = mVisibleRegionsDirty; refreshArgs.updatingGeometryThisFrame = mVisibleRegionsDirty; } } } } refreshArgs.refreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC); for (auto& [layer, layerFE] : layers) { layer->onPreComposition(refreshArgs.refreshStartTime); } for (auto& [layer, layerFE] : layers) { attachReleaseFenceFutureToLayer(layer, layerFE, layerFE->mSnapshot->outputFilter.layerStack); } refreshArgs.layersWithQueuedFrames.reserve(mLayersWithQueuedFrames.size()); for (auto& [layer, _] : mLayersWithQueuedFrames) { if (const auto& layerFE = layer->getCompositionEngineLayerFE({static_cast(layer->sequence)})) { refreshArgs.layersWithQueuedFrames.push_back(layerFE); // Some layers are not displayed and do not yet have a future release fence if (layerFE->getReleaseFencePromiseStatus() == LayerFE::ReleaseFencePromiseStatus::UNINITIALIZED || layerFE->getReleaseFencePromiseStatus() == LayerFE::ReleaseFencePromiseStatus::FULFILLED) { // layerStack is invalid because layer is not on a display attachReleaseFenceFutureToLayer(layer.get(), layerFE.get(), ui::INVALID_LAYER_STACK); } } } mCompositionEngine->present(refreshArgs); moveSnapshotsFromCompositionArgs(refreshArgs, layers); for (auto& [layer, layerFE] : layers) { CompositionResult compositionResult{layerFE->stealCompositionResult()}; if (compositionResult.lastClientCompositionFence) { layer->setWasClientComposed(compositionResult.lastClientCompositionFence); } if (com_android_graphics_libgui_flags_apply_picture_profiles()) { mActivePictureUpdater.onLayerComposed(*layer, *layerFE, compositionResult); } } SFTRACE_NAME("postComposition"); mTimeStats->recordFrameDuration(pacesetterTarget.frameBeginTime().ns(), systemTime()); // Send a power hint after presentation is finished. if (mPowerHintSessionEnabled) { // Now that the current frame has been presented above, PowerAdvisor needs the present time // of the previous frame (whose fence is signaled by now) to determine how long the HWC had // waited on that fence to retire before presenting. // TODO(b/355238809) `presentFenceForPreviousFrame` might not always be signaled (e.g. on // devices // where HWC does not block on the previous present fence). Revise this assumtion. const auto& previousPresentFence = pacesetterTarget.presentFenceForPreviousFrame(); mPowerAdvisor->setSfPresentTiming(TimePoint::fromNs(previousPresentFence->getSignalTime()), TimePoint::now()); mPowerAdvisor->reportActualWorkDuration(); } if (mScheduler->onCompositionPresented(presentTime)) { scheduleComposite(FrameHint::kNone); } mNotifyExpectedPresentMap[pacesetterId].hintStatus = NotifyExpectedPresentHintStatus::Start; onCompositionPresented(pacesetterId, frameTargeters, presentTime); const bool hadGpuComposited = multiDisplayUnion(mCompositionCoverage).test(CompositionCoverage::Gpu); mCompositionCoverage.clear(); TimeStats::ClientCompositionRecord clientCompositionRecord; for (const auto& [_, display] : displays) { const auto& state = display->getCompositionDisplay()->getState(); CompositionCoverageFlags& flags = mCompositionCoverage.try_emplace(display->getId()).first->second; if (state.usesDeviceComposition) { flags |= CompositionCoverage::Hwc; } if (state.reusedClientComposition) { flags |= CompositionCoverage::GpuReuse; } else if (state.usesClientComposition) { flags |= CompositionCoverage::Gpu; } clientCompositionRecord.predicted |= (state.strategyPrediction != CompositionStrategyPredictionState::DISABLED); clientCompositionRecord.predictionSucceeded |= (state.strategyPrediction == CompositionStrategyPredictionState::SUCCESS); } const auto coverage = multiDisplayUnion(mCompositionCoverage); const bool hasGpuComposited = coverage.test(CompositionCoverage::Gpu); clientCompositionRecord.hadClientComposition = hasGpuComposited; clientCompositionRecord.reused = coverage.test(CompositionCoverage::GpuReuse); clientCompositionRecord.changed = hadGpuComposited != hasGpuComposited; mTimeStats->pushCompositionStrategyState(clientCompositionRecord); using namespace ftl::flag_operators; // TODO(b/160583065): Enable skip validation when SF caches all client composition layers. const bool hasGpuUseOrReuse = coverage.any(CompositionCoverage::Gpu | CompositionCoverage::GpuReuse); mScheduler->modulateVsync({}, &VsyncModulator::onDisplayRefresh, hasGpuUseOrReuse); mLayersWithQueuedFrames.clear(); doActiveLayersTracingIfNeeded(true, mVisibleRegionsDirty, pacesetterTarget.frameBeginTime(), vsyncId); updateInputFlinger(vsyncId, pacesetterTarget.frameBeginTime()); if (mVisibleRegionsDirty) mHdrLayerInfoChanged = true; mVisibleRegionsDirty = false; if (mCompositionEngine->needsAnotherUpdate()) { scheduleCommit(FrameHint::kNone); } if (mPowerHintSessionEnabled) { mPowerAdvisor->setCompositeEnd(TimePoint::now()); } CompositeResultsPerDisplay resultsPerDisplay; // Filter out virtual displays. for (const auto& [id, coverage] : mCompositionCoverage) { if (const auto idOpt = PhysicalDisplayId::tryCast(id)) { resultsPerDisplay.try_emplace(*idOpt, CompositeResult{coverage}); } } return resultsPerDisplay; } bool SurfaceFlinger::isHdrLayer(const frontend::LayerSnapshot& snapshot) const { // Even though the camera layer may be using an HDR transfer function or otherwise be "HDR" // the device may need to avoid boosting the brightness as a result of these layers to // reduce power consumption during camera recording if (mIgnoreHdrCameraLayers) { if (snapshot.externalTexture && (snapshot.externalTexture->getUsage() & GRALLOC_USAGE_HW_CAMERA_WRITE) != 0) { return false; } } // RANGE_EXTENDED layer may identify themselves as being "HDR" // via a desired hdr/sdr ratio auto pixelFormat = snapshot.buffer ? std::make_optional(static_cast(snapshot.buffer->getPixelFormat())) : std::nullopt; if (getHdrRenderType(snapshot.dataspace, pixelFormat, snapshot.desiredHdrSdrRatio) != HdrRenderType::SDR) { return true; } // If the layer is not allowed to be dimmed, treat it as HDR. WindowManager may disable // dimming in order to keep animations invoking SDR screenshots of HDR layers seamless. // Treat such tagged layers as HDR so that DisplayManagerService does not try to change // the screen brightness if (!snapshot.dimmingEnabled) { return true; } return false; } ui::Rotation SurfaceFlinger::getPhysicalDisplayOrientation(DisplayId displayId, bool isPrimary) const { const auto id = PhysicalDisplayId::tryCast(displayId); if (!id) { return ui::ROTATION_0; } if (!mIgnoreHwcPhysicalDisplayOrientation && getHwComposer().getComposer()->isSupported( Hwc2::Composer::OptionalFeature::PhysicalDisplayOrientation)) { switch (getHwComposer().getPhysicalDisplayOrientation(*id)) { case Hwc2::AidlTransform::ROT_90: return ui::ROTATION_90; case Hwc2::AidlTransform::ROT_180: return ui::ROTATION_180; case Hwc2::AidlTransform::ROT_270: return ui::ROTATION_270; default: return ui::ROTATION_0; } } if (isPrimary) { using Values = SurfaceFlingerProperties::primary_display_orientation_values; switch (primary_display_orientation(Values::ORIENTATION_0)) { case Values::ORIENTATION_90: return ui::ROTATION_90; case Values::ORIENTATION_180: return ui::ROTATION_180; case Values::ORIENTATION_270: return ui::ROTATION_270; default: break; } } return ui::ROTATION_0; } void SurfaceFlinger::onCompositionPresented(PhysicalDisplayId pacesetterId, const scheduler::FrameTargeters& frameTargeters, nsecs_t presentStartTime) { SFTRACE_CALL(); ui::PhysicalDisplayMap> presentFences; ui::PhysicalDisplayMap> gpuCompositionDoneFences; for (const auto& [id, targeter] : frameTargeters) { auto presentFence = getHwComposer().getPresentFence(id); if (id == pacesetterId) { mTransactionCallbackInvoker.addPresentFence(presentFence); } if (auto fenceTime = targeter->setPresentFence(std::move(presentFence)); fenceTime->isValid()) { presentFences.try_emplace(id, std::move(fenceTime)); } ftl::FakeGuard guard(mStateLock); if (const auto display = getCompositionDisplayLocked(id); display && display->getState().usesClientComposition) { gpuCompositionDoneFences .try_emplace(id, display->getRenderSurface()->getClientTargetAcquireFence()); } } const auto pacesetterDisplay = FTL_FAKE_GUARD(mStateLock, getDisplayDeviceLocked(pacesetterId)); std::shared_ptr pacesetterPresentFenceTime = presentFences.get(pacesetterId) .transform([](const FenceTimePtr& ptr) { return ptr; }) .value_or(FenceTime::NO_FENCE); std::shared_ptr pacesetterGpuCompositionDoneFenceTime = gpuCompositionDoneFences.get(pacesetterId) .transform([](sp fence) { return std::make_shared(std::move(fence)); }) .value_or(FenceTime::NO_FENCE); const TimePoint presentTime = TimePoint::now(); // The Uids of layer owners that are in buffer stuffing mode, and their elevated // buffer counts. Messages to start recovery are sent exclusively to these Uids. BufferStuffingMap bufferStuffedUids; // Set presentation information before calling Layer::releasePendingBuffer, such that jank // information from previous' frame classification is already available when sending jank info // to clients, so they get jank classification as early as possible. mFrameTimeline->setSfPresent(presentTime.ns(), pacesetterPresentFenceTime, pacesetterGpuCompositionDoneFenceTime); // Find and register any layers that are in buffer stuffing mode const auto& presentFrames = mFrameTimeline->getPresentFrames(); for (const auto& frame : presentFrames) { const auto& layer = mLayerLifecycleManager.getLayerFromId(frame->getLayerId()); if (!layer) continue; uint32_t numberQueuedBuffers = layer->pendingBuffers ? layer->pendingBuffers->load() : 0; int32_t jankType = frame->getJankType().value_or(JankType::None); if (jankType & JankType::BufferStuffing && layer->flags & layer_state_t::eRecoverableFromBufferStuffing) { auto [it, wasEmplaced] = bufferStuffedUids.try_emplace(layer->ownerUid.val(), numberQueuedBuffers); // Update with maximum number of queued buffers, allows clients drawing // multiple windows to account for the most severely stuffed window if (!wasEmplaced && it->second < numberQueuedBuffers) { it->second = numberQueuedBuffers; } } } if (!bufferStuffedUids.empty()) { mScheduler->addBufferStuffedUids(std::move(bufferStuffedUids)); } // We use the CompositionEngine::getLastFrameRefreshTimestamp() which might // be sampled a little later than when we started doing work for this frame, // but that should be okay since CompositorTiming has snapping logic. const TimePoint compositeTime = TimePoint::fromNs(mCompositionEngine->getLastFrameRefreshTimestamp()); const Duration presentLatency = mHasReliablePresentFences ? mPresentLatencyTracker.trackPendingFrame(compositeTime, pacesetterPresentFenceTime) : Duration::zero(); const auto schedule = mScheduler->getVsyncSchedule(); const TimePoint vsyncDeadline = schedule->vsyncDeadlineAfter(presentTime); const Fps renderRate = pacesetterDisplay->refreshRateSelector().getActiveMode().fps; const nsecs_t vsyncPhase = mScheduler->getVsyncConfiguration().getCurrentConfigs().late.sfOffset; const CompositorTiming compositorTiming(vsyncDeadline.ns(), renderRate.getPeriodNsecs(), vsyncPhase, presentLatency.ns()); ui::DisplayMap layerStackToDisplay; { if (!mLayersWithBuffersRemoved.empty() || mNumTrustedPresentationListeners > 0) { Mutex::Autolock lock(mStateLock); for (const auto& [token, display] : mDisplays) { layerStackToDisplay.emplace_or_replace(display->getLayerStack(), display.get()); } } } for (auto layer : mLayersWithBuffersRemoved) { std::vector previouslyPresentedLayerStacks = std::move(layer->mPreviouslyPresentedLayerStacks); layer->mPreviouslyPresentedLayerStacks.clear(); for (auto layerStack : previouslyPresentedLayerStacks) { auto optDisplay = layerStackToDisplay.get(layerStack); if (optDisplay && !optDisplay->get()->isVirtual()) { auto fence = getHwComposer().getPresentFence(optDisplay->get()->getPhysicalId()); layer->prepareReleaseCallbacks(ftl::yield(fence), ui::INVALID_LAYER_STACK); } } layer->releasePendingBuffer(presentTime.ns()); } mLayersWithBuffersRemoved.clear(); for (const auto& [layer, gameMode] : mLayersWithQueuedFrames) { layer->onCompositionPresented(pacesetterDisplay.get(), pacesetterGpuCompositionDoneFenceTime, pacesetterPresentFenceTime, compositorTiming, gameMode); layer->releasePendingBuffer(presentTime.ns()); } for (const auto& layerEvent : mLayerEvents) { auto result = stats::stats_write(stats::SURFACE_CONTROL_EVENT, static_cast(layerEvent.uid), static_cast(layerEvent.timeSinceLastEvent.count()), static_cast(layerEvent.dataspace)); if (result < 0) { ALOGW("Failed to report layer event with error: %d", result); } } mLayerEvents.clear(); std::vector, sp>> hdrInfoListeners; bool haveNewHdrInfoListeners = false; sp activePictureListener; bool haveNewActivePictureListener = false; { Mutex::Autolock lock(mStateLock); if (mFpsReporter) { mFpsReporter->dispatchLayerFps(mLayerHierarchyBuilder.getHierarchy()); } if (mTunnelModeEnabledReporter) { mTunnelModeEnabledReporter->updateTunnelModeStatus(); } hdrInfoListeners.reserve(mHdrLayerInfoListeners.size()); for (const auto& [displayId, reporter] : mHdrLayerInfoListeners) { if (reporter && reporter->hasListeners()) { if (const auto display = getDisplayDeviceLocked(displayId)) { hdrInfoListeners.emplace_back(display->getCompositionDisplay(), reporter); } } } haveNewHdrInfoListeners = mAddingHDRLayerInfoListener; // grab this with state lock mAddingHDRLayerInfoListener = false; activePictureListener = mActivePictureListener; haveNewActivePictureListener = mHaveNewActivePictureListener; mHaveNewActivePictureListener = false; } if (haveNewHdrInfoListeners || mHdrLayerInfoChanged) { for (auto& [compositionDisplay, listener] : hdrInfoListeners) { HdrLayerInfoReporter::HdrLayerInfo info; int32_t maxArea = 0; auto updateInfoFn = [&](const std::shared_ptr& compositionDisplay, const frontend::LayerSnapshot& snapshot, const sp& layerFe) { if (snapshot.isVisible && compositionDisplay->includesLayer(snapshot.outputFilter)) { if (isHdrLayer(snapshot)) { const auto* outputLayer = compositionDisplay->getOutputLayerForLayer(layerFe); if (outputLayer) { const float desiredHdrSdrRatio = snapshot.desiredHdrSdrRatio < 1.f ? std::numeric_limits::infinity() : snapshot.desiredHdrSdrRatio; float desiredRatio = desiredHdrSdrRatio; if (FlagManager::getInstance().begone_bright_hlg() && desiredHdrSdrRatio == std::numeric_limits::infinity()) { desiredRatio = getIdealizedMaxHeadroom(snapshot.dataspace); } info.mergeDesiredRatio(desiredRatio); info.numberOfHdrLayers++; const auto displayFrame = outputLayer->getState().displayFrame; const int32_t area = displayFrame.width() * displayFrame.height(); if (area > maxArea) { maxArea = area; info.maxW = displayFrame.width(); info.maxH = displayFrame.height(); } } } } }; mLayerSnapshotBuilder.forEachVisibleSnapshot( [&, compositionDisplay = compositionDisplay]( std::unique_ptr& snapshot) FTL_FAKE_GUARD(kMainThreadContext) { auto it = mLegacyLayers.find(snapshot->sequence); LLOG_ALWAYS_FATAL_WITH_TRACE_IF(it == mLegacyLayers.end(), "Couldnt find layer object for %s", snapshot->getDebugString().c_str()); auto& legacyLayer = it->second; sp layerFe = legacyLayer->getCompositionEngineLayerFE(snapshot->path); updateInfoFn(compositionDisplay, *snapshot, layerFe); }); listener->dispatchHdrLayerInfo(info); } } mHdrLayerInfoChanged = false; if (com_android_graphics_libgui_flags_apply_picture_profiles()) { // Track, update and notify changes to active pictures - layers that are undergoing picture // processing if (mActivePictureUpdater.updateAndHasChanged() || haveNewActivePictureListener) { if (activePictureListener) { activePictureListener->onActivePicturesChanged( mActivePictureUpdater.getActivePictures()); } } } mTransactionCallbackInvoker.sendCallbacks(false /* onCommitOnly */); mTransactionCallbackInvoker.clearCompletedTransactions(); mTimeStats->incrementTotalFrames(); mTimeStats->setPresentFenceGlobal(pacesetterPresentFenceTime); for (auto&& [id, presentFence] : presentFences) { ftl::FakeGuard guard(mStateLock); const bool isInternalDisplay = mPhysicalDisplays.get(id).transform(&PhysicalDisplay::isInternal).value_or(false); if (isInternalDisplay) { mScheduler->addPresentFence(id, std::move(presentFence)); } } const bool hasPacesetterDisplay = pacesetterDisplay && getHwComposer().isConnected(pacesetterId); if (!hasSyncFramework) { if (hasPacesetterDisplay && pacesetterDisplay->isPoweredOn()) { mScheduler->enableHardwareVsync(pacesetterId); } } if (hasPacesetterDisplay && !pacesetterDisplay->isPoweredOn()) { getRenderEngine().cleanupPostRender(); return; } // Cleanup any outstanding resources due to rendering a prior frame. getRenderEngine().cleanupPostRender(); if (mNumTrustedPresentationListeners > 0) { // We avoid any reverse traversal upwards so this shouldn't be too expensive traverseLegacyLayers([&](Layer* layer) FTL_FAKE_GUARD(kMainThreadContext) { if (!layer->hasTrustedPresentationListener()) { return; } const frontend::LayerSnapshot* snapshot = mLayerSnapshotBuilder.getSnapshot(layer->sequence); std::optional displayOpt = std::nullopt; if (snapshot) { displayOpt = layerStackToDisplay.get(snapshot->outputFilter.layerStack); } const DisplayDevice* display = displayOpt.value_or(nullptr); layer->updateTrustedPresentationState(display, snapshot, nanoseconds_to_milliseconds(presentStartTime), false); }); } // Even though SFTRACE_INT64 already checks if tracing is enabled, it doesn't prevent the // side-effect of getTotalSize(), so we check that again here if (SFTRACE_ENABLED()) { // getTotalSize returns the total number of buffers that were allocated by SurfaceFlinger SFTRACE_INT64("Total Buffer Size", GraphicBufferAllocator::get().getTotalSize()); } } void SurfaceFlinger::commitTransactions() { SFTRACE_CALL(); mDebugInTransaction = systemTime(); // Here we're guaranteed that some transaction flags are set // so we can call commitTransactionsLocked unconditionally. // We clear the flags with mStateLock held to guarantee that // mCurrentState won't change until the transaction is committed. mScheduler->modulateVsync({}, &VsyncModulator::onTransactionCommit); commitTransactionsLocked(clearTransactionFlags(eTransactionMask)); mDebugInTransaction = 0; } std::pair SurfaceFlinger::loadDisplayModes( PhysicalDisplayId displayId) const { std::vector hwcModes; std::optional activeModeHwcIdOpt; const bool isExternalDisplay = FlagManager::getInstance().connected_display() && getHwComposer().getDisplayConnectionType(displayId) == ui::DisplayConnectionType::External; int attempt = 0; constexpr int kMaxAttempts = 3; do { hwcModes = getHwComposer().getModes(displayId, scheduler::RefreshRateSelector::kMinSupportedFrameRate .getPeriodNsecs()); const auto activeModeHwcIdExp = getHwComposer().getActiveMode(displayId); activeModeHwcIdOpt = activeModeHwcIdExp.value_opt(); if (isExternalDisplay && activeModeHwcIdExp.has_error([](status_t error) { return error == NO_INIT; })) { constexpr nsecs_t k59HzVsyncPeriod = 16949153; constexpr nsecs_t k60HzVsyncPeriod = 16666667; // DM sets the initial mode for an external display to 1080p@60, but // this comes after SF creates its own state (including the // DisplayDevice). For now, pick the same mode in order to avoid // inconsistent state and unnecessary mode switching. // TODO (b/318534874): Let DM decide the initial mode. // // Try to find 1920x1080 @ 60 Hz if (const auto iter = std::find_if(hwcModes.begin(), hwcModes.end(), [](const auto& mode) { return mode.width == 1920 && mode.height == 1080 && mode.vsyncPeriod == k60HzVsyncPeriod; }); iter != hwcModes.end()) { activeModeHwcIdOpt = iter->hwcId; break; } // Try to find 1920x1080 @ 59-60 Hz if (const auto iter = std::find_if(hwcModes.begin(), hwcModes.end(), [](const auto& mode) { return mode.width == 1920 && mode.height == 1080 && mode.vsyncPeriod >= k60HzVsyncPeriod && mode.vsyncPeriod <= k59HzVsyncPeriod; }); iter != hwcModes.end()) { activeModeHwcIdOpt = iter->hwcId; break; } // The display does not support 1080p@60, and this is the last attempt to pick a display // mode. Prefer 60 Hz if available, with the closest resolution to 1080p. if (attempt + 1 == kMaxAttempts) { std::vector hwcModeOpts; for (const auto& mode : hwcModes) { if (mode.width <= 1920 && mode.height <= 1080 && mode.vsyncPeriod >= k60HzVsyncPeriod && mode.vsyncPeriod <= k59HzVsyncPeriod) { hwcModeOpts.push_back(mode); } } if (const auto iter = std::max_element(hwcModeOpts.begin(), hwcModeOpts.end(), [](const auto& a, const auto& b) { const auto aSize = a.width * a.height; const auto bSize = b.width * b.height; if (aSize < bSize) return true; else if (aSize == bSize) return a.vsyncPeriod > b.vsyncPeriod; else return false; }); iter != hwcModeOpts.end()) { activeModeHwcIdOpt = iter->hwcId; break; } // hwcModeOpts was empty, use hwcModes[0] as the last resort activeModeHwcIdOpt = hwcModes[0].hwcId; } } const auto isActiveMode = [activeModeHwcIdOpt](const HWComposer::HWCDisplayMode& mode) { return mode.hwcId == activeModeHwcIdOpt; }; if (std::any_of(hwcModes.begin(), hwcModes.end(), isActiveMode)) { break; } } while (++attempt < kMaxAttempts); if (attempt == kMaxAttempts) { const std::string activeMode = activeModeHwcIdOpt ? std::to_string(*activeModeHwcIdOpt) : "unknown"s; ALOGE("HWC failed to report an active mode that is supported: activeModeHwcId=%s, " "hwcModes={%s}", activeMode.c_str(), base::Join(hwcModes, ", ").c_str()); return {}; } const DisplayModes oldModes = mPhysicalDisplays.get(displayId) .transform([](const PhysicalDisplay& display) { return display.snapshot().displayModes(); }) .value_or(DisplayModes{}); DisplayModeId nextModeId = std::accumulate(oldModes.begin(), oldModes.end(), DisplayModeId(-1), [](DisplayModeId max, const auto& pair) { return std::max(max, pair.first); }); ++nextModeId; DisplayModes newModes; for (const auto& hwcMode : hwcModes) { const auto id = nextModeId++; OutputType hdrOutputType = FlagManager::getInstance().connected_display_hdr() ? hwcMode.hdrOutputType : OutputType::INVALID; newModes.try_emplace(id, DisplayMode::Builder(hwcMode.hwcId) .setId(id) .setPhysicalDisplayId(displayId) .setResolution({hwcMode.width, hwcMode.height}) .setVsyncPeriod(hwcMode.vsyncPeriod) .setVrrConfig(hwcMode.vrrConfig) .setDpiX(hwcMode.dpiX) .setDpiY(hwcMode.dpiY) .setGroup(hwcMode.configGroup) .setHdrOutputType(hdrOutputType) .build()); } const bool sameModes = std::equal(newModes.begin(), newModes.end(), oldModes.begin(), oldModes.end(), [](const auto& lhs, const auto& rhs) { return equalsExceptDisplayModeId(*lhs.second, *rhs.second); }); // Keep IDs if modes have not changed. const auto& modes = sameModes ? oldModes : newModes; const DisplayModePtr activeMode = std::find_if(modes.begin(), modes.end(), [activeModeHwcIdOpt](const auto& pair) { return pair.second->getHwcId() == activeModeHwcIdOpt; })->second; if (isExternalDisplay) { ALOGI("External display %s initial mode: {%s}", to_string(displayId).c_str(), to_string(*activeMode).c_str()); } return {modes, activeMode}; } bool SurfaceFlinger::configureLocked() { std::vector events; { std::lock_guard lock(mHotplugMutex); events = std::move(mPendingHotplugEvents); } for (const auto [hwcDisplayId, connection] : events) { if (auto info = getHwComposer().onHotplug(hwcDisplayId, connection)) { const auto displayId = info->id; const ftl::Concat displayString("display ", displayId.value, "(HAL ID ", hwcDisplayId, ')'); if (connection == hal::Connection::CONNECTED) { const auto activeModeIdOpt = processHotplugConnect(displayId, hwcDisplayId, std::move(*info), displayString.c_str()); if (!activeModeIdOpt) { mScheduler->dispatchHotplugError( static_cast(DisplayHotplugEvent::ERROR_UNKNOWN)); getHwComposer().disconnectDisplay(displayId); continue; } const auto [kernelIdleTimerController, idleTimerTimeoutMs] = getKernelIdleTimerProperties(displayId); using Config = scheduler::RefreshRateSelector::Config; const Config config = {.enableFrameRateOverride = sysprop::enable_frame_rate_override(true) ? Config::FrameRateOverride::Enabled : Config::FrameRateOverride::Disabled, .frameRateMultipleThreshold = base::GetIntProperty("debug.sf.frame_rate_multiple_threshold"s, 0), .legacyIdleTimerTimeout = idleTimerTimeoutMs, .kernelIdleTimerController = kernelIdleTimerController}; const auto snapshotOpt = mPhysicalDisplays.get(displayId).transform(&PhysicalDisplay::snapshotRef); LOG_ALWAYS_FATAL_IF(!snapshotOpt); mDisplayModeController.registerDisplay(*snapshotOpt, *activeModeIdOpt, config); } else { // Unregister before destroying the DisplaySnapshot below. mDisplayModeController.unregisterDisplay(displayId); processHotplugDisconnect(displayId, displayString.c_str()); } } } return !events.empty(); } std::optional SurfaceFlinger::processHotplugConnect(PhysicalDisplayId displayId, hal::HWDisplayId hwcDisplayId, DisplayIdentificationInfo&& info, const char* displayString) { auto [displayModes, activeMode] = loadDisplayModes(displayId); if (!activeMode) { ALOGE("Failed to hotplug %s", displayString); return std::nullopt; } const DisplayModeId activeModeId = activeMode->getId(); ui::ColorModes colorModes = getHwComposer().getColorModes(displayId); if (const auto displayOpt = mPhysicalDisplays.get(displayId)) { const auto& display = displayOpt->get(); const auto& snapshot = display.snapshot(); std::optional deviceProductInfo; if (getHwComposer().updatesDeviceProductInfoOnHotplugReconnect()) { deviceProductInfo = std::move(info.deviceProductInfo); } else { deviceProductInfo = snapshot.deviceProductInfo(); } const auto it = mPhysicalDisplays.try_replace(displayId, display.token(), displayId, snapshot.connectionType(), std::move(displayModes), std::move(colorModes), std::move(deviceProductInfo)); auto& state = mCurrentState.displays.editValueFor(it->second.token()); state.sequenceId = DisplayDeviceState{}.sequenceId; // Generate new sequenceId. state.physical->activeMode = std::move(activeMode); ALOGI("Reconnecting %s", displayString); return activeModeId; } const sp token = sp::make(); const ui::DisplayConnectionType connectionType = getHwComposer().getDisplayConnectionType(displayId); mPhysicalDisplays.try_emplace(displayId, token, displayId, connectionType, std::move(displayModes), std::move(colorModes), std::move(info.deviceProductInfo)); DisplayDeviceState state; state.physical = {.id = displayId, .hwcDisplayId = hwcDisplayId, .activeMode = std::move(activeMode)}; if (mIsHdcpViaNegVsync) { state.isSecure = connectionType == ui::DisplayConnectionType::Internal; } else { // TODO(b/349703362): Remove this when HDCP aidl API becomes ready state.isSecure = true; // All physical displays are currently considered secure. } state.isProtected = true; state.displayName = std::move(info.name); state.maxLayerPictureProfiles = getHwComposer().getMaxLayerPictureProfiles(displayId); state.hasPictureProcessing = getHwComposer().hasDisplayCapability(displayId, DisplayCapability::PICTURE_PROCESSING); mCurrentState.displays.add(token, state); ALOGI("Connecting %s", displayString); return activeModeId; } void SurfaceFlinger::processHotplugDisconnect(PhysicalDisplayId displayId, const char* displayString) { ALOGI("Disconnecting %s", displayString); const auto displayOpt = mPhysicalDisplays.get(displayId); LOG_ALWAYS_FATAL_IF(!displayOpt); const auto& display = displayOpt->get(); if (const ssize_t index = mCurrentState.displays.indexOfKey(display.token()); index >= 0) { mCurrentState.displays.removeItemsAt(index); } mPhysicalDisplays.erase(displayId); } sp SurfaceFlinger::setupNewDisplayDeviceInternal( const wp& displayToken, std::shared_ptr compositionDisplay, const DisplayDeviceState& state, const sp& displaySurface, const sp& producer) { DisplayDeviceCreationArgs creationArgs(sp::fromExisting(this), getHwComposer(), displayToken, compositionDisplay); creationArgs.sequenceId = state.sequenceId; creationArgs.isSecure = state.isSecure; creationArgs.isProtected = state.isProtected; creationArgs.displaySurface = displaySurface; creationArgs.hasWideColorGamut = false; creationArgs.supportedPerFrameMetadata = 0; if (const auto physicalIdOpt = PhysicalDisplayId::tryCast(compositionDisplay->getId())) { const auto physicalId = *physicalIdOpt; creationArgs.isPrimary = physicalId == getPrimaryDisplayIdLocked(); creationArgs.refreshRateSelector = FTL_FAKE_GUARD(kMainThreadContext, mDisplayModeController.selectorPtrFor(physicalId)); mPhysicalDisplays.get(physicalId) .transform(&PhysicalDisplay::snapshotRef) .transform(ftl::unit_fn([&](const display::DisplaySnapshot& snapshot) { for (const auto mode : snapshot.colorModes()) { creationArgs.hasWideColorGamut |= ui::isWideColorMode(mode); creationArgs.hwcColorModes .emplace(mode, getHwComposer().getRenderIntents(physicalId, mode)); } })); } if (const auto id = HalDisplayId::tryCast(compositionDisplay->getId())) { getHwComposer().getHdrCapabilities(*id, &creationArgs.hdrCapabilities); creationArgs.supportedPerFrameMetadata = getHwComposer().getSupportedPerFrameMetadata(*id); } auto nativeWindowSurface = getFactory().createNativeWindowSurface(producer); auto nativeWindow = nativeWindowSurface->getNativeWindow(); creationArgs.nativeWindow = nativeWindow; // Make sure that composition can never be stalled by a virtual display // consumer that isn't processing buffers fast enough. We have to do this // here, in case the display is composed entirely by HWC. if (state.isVirtual()) { nativeWindow->setSwapInterval(nativeWindow.get(), 0); } creationArgs.physicalOrientation = getPhysicalDisplayOrientation(compositionDisplay->getId(), creationArgs.isPrimary); ALOGV("Display Orientation: %s", toCString(creationArgs.physicalOrientation)); creationArgs.initialPowerMode = state.isVirtual() ? hal::PowerMode::ON : hal::PowerMode::OFF; creationArgs.requestedRefreshRate = state.requestedRefreshRate; sp display = getFactory().createDisplayDevice(creationArgs); nativeWindowSurface->preallocateBuffers(); ui::ColorMode defaultColorMode = ui::ColorMode::NATIVE; Dataspace defaultDataSpace = Dataspace::UNKNOWN; if (display->hasWideColorGamut()) { defaultColorMode = ui::ColorMode::SRGB; defaultDataSpace = Dataspace::V0_SRGB; } display->getCompositionDisplay()->setColorProfile( compositionengine::Output::ColorProfile{defaultColorMode, defaultDataSpace, RenderIntent::COLORIMETRIC}); if (const auto& physical = state.physical) { const auto& mode = *physical->activeMode; mDisplayModeController.setActiveMode(physical->id, mode.getId(), mode.getVsyncRate(), mode.getPeakFps()); } display->setLayerFilter(makeLayerFilterForDisplay(display->getId(), state.layerStack)); display->setProjection(state.orientation, state.layerStackSpaceRect, state.orientedDisplaySpaceRect); display->setDisplayName(state.displayName); display->setFlags(state.flags); return display; } void SurfaceFlinger::incRefreshableDisplays() { if (FlagManager::getInstance().no_vsyncs_on_screen_off()) { mRefreshableDisplays++; if (mRefreshableDisplays == 1) { ftl::FakeGuard guard(kMainThreadContext); mScheduler->omitVsyncDispatching(false); } } } void SurfaceFlinger::decRefreshableDisplays() { if (FlagManager::getInstance().no_vsyncs_on_screen_off()) { mRefreshableDisplays--; if (mRefreshableDisplays == 0) { ftl::FakeGuard guard(kMainThreadContext); mScheduler->omitVsyncDispatching(true); } } } void SurfaceFlinger::processDisplayAdded(const wp& displayToken, const DisplayDeviceState& state) { ui::Size resolution(0, 0); ui::PixelFormat pixelFormat = static_cast(PIXEL_FORMAT_UNKNOWN); if (state.physical) { resolution = state.physical->activeMode->getResolution(); pixelFormat = static_cast(PIXEL_FORMAT_RGBA_8888); } else if (state.surface != nullptr) { int status = state.surface->query(NATIVE_WINDOW_WIDTH, &resolution.width); ALOGE_IF(status != NO_ERROR, "Unable to query width (%d)", status); status = state.surface->query(NATIVE_WINDOW_HEIGHT, &resolution.height); ALOGE_IF(status != NO_ERROR, "Unable to query height (%d)", status); int format; status = state.surface->query(NATIVE_WINDOW_FORMAT, &format); ALOGE_IF(status != NO_ERROR, "Unable to query format (%d)", status); pixelFormat = static_cast(format); } else { // Virtual displays without a surface are dormant: // they have external state (layer stack, projection, // etc.) but no internal state (i.e. a DisplayDevice). return; } compositionengine::DisplayCreationArgsBuilder builder; if (const auto& physical = state.physical) { builder.setId(physical->id); } else { builder.setId(acquireVirtualDisplay(resolution, pixelFormat, state.uniqueId)); } builder.setPixels(resolution); builder.setIsSecure(state.isSecure); builder.setIsProtected(state.isProtected); builder.setHasPictureProcessing(state.hasPictureProcessing); builder.setMaxLayerPictureProfiles(state.maxLayerPictureProfiles); builder.setPowerAdvisor(mPowerAdvisor.get()); builder.setName(state.displayName); auto compositionDisplay = getCompositionEngine().createDisplay(builder.build()); compositionDisplay->setLayerCachingEnabled(mLayerCachingEnabled); sp displaySurface; sp producer; sp bqProducer; sp bqConsumer; getFactory().createBufferQueue(&bqProducer, &bqConsumer, /*consumerIsSurfaceFlinger =*/false); if (state.isVirtual()) { const auto displayId = VirtualDisplayId::tryCast(compositionDisplay->getId()); LOG_FATAL_IF(!displayId); auto surface = sp::make(getHwComposer(), *displayId, state.surface, bqProducer, bqConsumer, state.displayName); displaySurface = surface; producer = std::move(surface); } else { ALOGE_IF(state.surface != nullptr, "adding a supported display, but rendering " "surface is provided (%p), ignoring it", state.surface.get()); const auto displayId = PhysicalDisplayId::tryCast(compositionDisplay->getId()); LOG_FATAL_IF(!displayId); #if COM_ANDROID_GRAPHICS_LIBGUI_FLAGS(WB_CONSUMER_BASE_OWNS_BQ) const auto frameBufferSurface = sp::make(getHwComposer(), *displayId, bqProducer, bqConsumer, state.physical->activeMode->getResolution(), ui::Size(maxGraphicsWidth, maxGraphicsHeight)); displaySurface = frameBufferSurface; producer = frameBufferSurface->getSurface()->getIGraphicBufferProducer(); #else displaySurface = sp::make(getHwComposer(), *displayId, bqConsumer, state.physical->activeMode->getResolution(), ui::Size(maxGraphicsWidth, maxGraphicsHeight)); producer = bqProducer; #endif // COM_ANDROID_GRAPHICS_LIBGUI_FLAGS(WB_CONSUMER_BASE_OWNS_BQ) } LOG_FATAL_IF(!displaySurface); auto display = setupNewDisplayDeviceInternal(displayToken, std::move(compositionDisplay), state, displaySurface, producer); if (mScheduler && !display->isVirtual()) { // TODO(b/241285876): Annotate `processDisplayAdded` instead. ftl::FakeGuard guard(kMainThreadContext); // For hotplug reconnect, renew the registration since display modes have been reloaded. mScheduler->registerDisplay(display->getPhysicalId(), display->holdRefreshRateSelector(), mActiveDisplayId); } if (display->isVirtual()) { display->adjustRefreshRate(mScheduler->getPacesetterRefreshRate()); } if (display->isRefreshable()) { incRefreshableDisplays(); } mDisplays.try_emplace(displayToken, std::move(display)); // For an external display, loadDisplayModes already attempted to select the same mode // as DM, but SF still needs to be updated to match. // TODO (b/318534874): Let DM decide the initial mode. if (const auto& physical = state.physical; mScheduler && physical && FlagManager::getInstance().connected_display()) { const bool isInternalDisplay = mPhysicalDisplays.get(physical->id) .transform(&PhysicalDisplay::isInternal) .value_or(false); if (!isInternalDisplay) { auto activeModePtr = physical->activeMode; const auto fps = activeModePtr->getPeakFps(); setDesiredMode( {.mode = scheduler::FrameRateMode{fps, ftl::as_non_null(std::move(activeModePtr))}, .emitEvent = false, .force = true}); } } } void SurfaceFlinger::processDisplayRemoved(const wp& displayToken) { auto display = getDisplayDeviceLocked(displayToken); if (display) { display->disconnect(); if (display->isVirtual()) { releaseVirtualDisplay(display->getVirtualId()); } else { mScheduler->unregisterDisplay(display->getPhysicalId(), mActiveDisplayId); } if (display->isRefreshable()) { decRefreshableDisplays(); } } mDisplays.erase(displayToken); if (display && display->isVirtual()) { static_cast(mScheduler->schedule([display = std::move(display)] { // Destroy the display without holding the mStateLock. // This is a temporary solution until we can manage transaction queues without // holding the mStateLock. // With blast, the IGBP that is passed to the VirtualDisplaySurface is owned by the // client. When the IGBP is disconnected, its buffer cache in SF will be cleared // via SurfaceComposerClient::doUncacheBufferTransaction. This call from the client // ends up running on the main thread causing a deadlock since setTransactionstate // will try to acquire the mStateLock. Instead we extend the lifetime of // DisplayDevice and destroy it in the main thread without holding the mStateLock. // The display will be disconnected and removed from the mDisplays list so it will // not be accessible. })); } } void SurfaceFlinger::processDisplayChanged(const wp& displayToken, const DisplayDeviceState& currentState, const DisplayDeviceState& drawingState) { const sp currentBinder = IInterface::asBinder(currentState.surface); const sp drawingBinder = IInterface::asBinder(drawingState.surface); // Recreate the DisplayDevice if the surface or sequence ID changed. if (currentBinder != drawingBinder || currentState.sequenceId != drawingState.sequenceId) { if (const auto display = getDisplayDeviceLocked(displayToken)) { display->disconnect(); if (display->isVirtual()) { releaseVirtualDisplay(display->getVirtualId()); } if (display->isRefreshable()) { decRefreshableDisplays(); } } mDisplays.erase(displayToken); if (const auto& physical = currentState.physical) { getHwComposer().allocatePhysicalDisplay(physical->hwcDisplayId, physical->id, /*physicalSize=*/std::nullopt); } processDisplayAdded(displayToken, currentState); if (currentState.physical) { const auto display = getDisplayDeviceLocked(displayToken); if (!mSkipPowerOnForQuiescent) { setPowerModeInternal(display, hal::PowerMode::ON); } if (display->getPhysicalId() == mActiveDisplayId) { onActiveDisplayChangedLocked(nullptr, *display); } } return; } if (const auto display = getDisplayDeviceLocked(displayToken)) { if (currentState.layerStack != drawingState.layerStack) { display->setLayerFilter( makeLayerFilterForDisplay(display->getId(), currentState.layerStack)); } if (currentState.flags != drawingState.flags) { display->setFlags(currentState.flags); } if ((currentState.orientation != drawingState.orientation) || (currentState.layerStackSpaceRect != drawingState.layerStackSpaceRect) || (currentState.orientedDisplaySpaceRect != drawingState.orientedDisplaySpaceRect)) { display->setProjection(currentState.orientation, currentState.layerStackSpaceRect, currentState.orientedDisplaySpaceRect); if (display->getId() == mActiveDisplayId) { mActiveDisplayTransformHint = display->getTransformHint(); sActiveDisplayRotationFlags = ui::Transform::toRotationFlags(display->getOrientation()); } } if (currentState.width != drawingState.width || currentState.height != drawingState.height) { display->setDisplaySize(currentState.width, currentState.height); if (display->getId() == mActiveDisplayId) { onActiveDisplaySizeChanged(*display); } } } } void SurfaceFlinger::processDisplayChangesLocked() { // here we take advantage of Vector's copy-on-write semantics to // improve performance by skipping the transaction entirely when // know that the lists are identical const KeyedVector, DisplayDeviceState>& curr(mCurrentState.displays); const KeyedVector, DisplayDeviceState>& draw(mDrawingState.displays); if (!curr.isIdenticalTo(draw)) { mVisibleRegionsDirty = true; mUpdateInputInfo = true; // Apply the current color matrix to any added or changed display. mCurrentState.colorMatrixChanged = true; // find the displays that were removed // (ie: in drawing state but not in current state) // also handle displays that changed // (ie: displays that are in both lists) for (size_t i = 0; i < draw.size(); i++) { const wp& displayToken = draw.keyAt(i); const ssize_t j = curr.indexOfKey(displayToken); if (j < 0) { // in drawing state but not in current state processDisplayRemoved(displayToken); } else { // this display is in both lists. see if something changed. const DisplayDeviceState& currentState = curr[j]; const DisplayDeviceState& drawingState = draw[i]; processDisplayChanged(displayToken, currentState, drawingState); } } // find displays that were added // (ie: in current state but not in drawing state) for (size_t i = 0; i < curr.size(); i++) { const wp& displayToken = curr.keyAt(i); if (draw.indexOfKey(displayToken) < 0) { processDisplayAdded(displayToken, curr[i]); } } } mDrawingState.displays = mCurrentState.displays; } void SurfaceFlinger::commitTransactionsLocked(uint32_t transactionFlags) { // Commit display transactions. const bool displayTransactionNeeded = transactionFlags & eDisplayTransactionNeeded; mFrontEndDisplayInfosChanged = displayTransactionNeeded; if (mSomeChildrenChanged) { mVisibleRegionsDirty = true; mSomeChildrenChanged = false; mUpdateInputInfo = true; } if (mLayersAdded) { mLayersAdded = false; // Layers have been added. mVisibleRegionsDirty = true; mUpdateInputInfo = true; } // some layers might have been removed, so // we need to update the regions they're exposing. if (mLayersRemoved) { mLayersRemoved = false; mVisibleRegionsDirty = true; mUpdateInputInfo = true; } if (transactionFlags & eInputInfoUpdateNeeded) { mUpdateInputInfo = true; } doCommitTransactions(); } void SurfaceFlinger::updateInputFlinger(VsyncId vsyncId, TimePoint frameTime) { if (!mInputFlinger || (!mUpdateInputInfo && mInputWindowCommands.empty())) { return; } SFTRACE_CALL(); std::vector windowInfos; std::vector displayInfos; bool updateWindowInfo = false; if (mUpdateInputInfo) { mUpdateInputInfo = false; updateWindowInfo = true; buildWindowInfos(windowInfos, displayInfos); } std::unordered_set visibleWindowIds; for (WindowInfo& windowInfo : windowInfos) { if (!windowInfo.inputConfig.test(WindowInfo::InputConfig::NOT_VISIBLE)) { visibleWindowIds.insert(windowInfo.id); } } bool visibleWindowsChanged = false; if (visibleWindowIds != mVisibleWindowIds) { visibleWindowsChanged = true; mVisibleWindowIds = std::move(visibleWindowIds); } BackgroundExecutor::getInstance().sendCallbacks({[updateWindowInfo, windowInfos = std::move(windowInfos), displayInfos = std::move(displayInfos), inputWindowCommands = std::move(mInputWindowCommands), inputFlinger = mInputFlinger, this, visibleWindowsChanged, vsyncId, frameTime]() mutable { SFTRACE_NAME("BackgroundExecutor::updateInputFlinger"); if (updateWindowInfo) { mWindowInfosListenerInvoker ->windowInfosChanged(gui::WindowInfosUpdate{std::move(windowInfos), std::move(displayInfos), ftl::to_underlying(vsyncId), frameTime.ns()}, std::move( inputWindowCommands.windowInfosReportedListeners), /* forceImmediateCall= */ visibleWindowsChanged || !inputWindowCommands.focusRequests.empty()); } else { // If there are listeners but no changes to input windows, call the listeners // immediately. for (const auto& listener : inputWindowCommands.windowInfosReportedListeners) { if (IInterface::asBinder(listener)->isBinderAlive()) { listener->onWindowInfosReported(); } } } for (const auto& focusRequest : inputWindowCommands.focusRequests) { inputFlinger->setFocusedWindow(focusRequest); } }}); mInputWindowCommands.clear(); } void SurfaceFlinger::persistDisplayBrightness(bool needsComposite) { const bool supportsDisplayBrightnessCommand = getHwComposer().getComposer()->isSupported( Hwc2::Composer::OptionalFeature::DisplayBrightnessCommand); if (!supportsDisplayBrightnessCommand) { return; } for (const auto& [_, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) { if (const auto brightness = display->getStagedBrightness(); brightness) { if (!needsComposite) { const status_t error = getHwComposer() .setDisplayBrightness(display->getPhysicalId(), *brightness, display->getCompositionDisplay() ->getState() .displayBrightnessNits, Hwc2::Composer::DisplayBrightnessOptions{ .applyImmediately = true}) .get(); ALOGE_IF(error != NO_ERROR, "Error setting display brightness for display %s: %d (%s)", to_string(display->getId()).c_str(), error, strerror(error)); } display->persistBrightness(needsComposite); } } } void SurfaceFlinger::buildWindowInfos(std::vector& outWindowInfos, std::vector& outDisplayInfos) { static size_t sNumWindowInfos = 0; outWindowInfos.reserve(sNumWindowInfos); sNumWindowInfos = 0; mLayerSnapshotBuilder.forEachInputSnapshot( [&outWindowInfos](const frontend::LayerSnapshot& snapshot) { outWindowInfos.push_back(snapshot.inputInfo); }); sNumWindowInfos = outWindowInfos.size(); outDisplayInfos.reserve(mFrontEndDisplayInfos.size()); for (const auto& [_, info] : mFrontEndDisplayInfos) { outDisplayInfos.push_back(info.info); } } void SurfaceFlinger::updateCursorAsync() { compositionengine::CompositionRefreshArgs refreshArgs; for (const auto& [_, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) { if (HalDisplayId::tryCast(display->getId())) { refreshArgs.outputs.push_back(display->getCompositionDisplay()); } } constexpr bool kCursorOnly = true; const auto layers = moveSnapshotsToCompositionArgs(refreshArgs, kCursorOnly); mCompositionEngine->updateCursorAsync(refreshArgs); moveSnapshotsFromCompositionArgs(refreshArgs, layers); } void SurfaceFlinger::requestHardwareVsync(PhysicalDisplayId displayId, bool enable) { getHwComposer().setVsyncEnabled(displayId, enable ? hal::Vsync::ENABLE : hal::Vsync::DISABLE); } void SurfaceFlinger::requestDisplayModes(std::vector modeRequests) { if (mBootStage != BootStage::FINISHED) { ALOGV("Currently in the boot stage, skipping display mode changes"); return; } SFTRACE_CALL(); // If this is called from the main thread mStateLock must be locked before // Currently the only way to call this function from the main thread is from // Scheduler::chooseRefreshRateForContent ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId); for (auto& request : modeRequests) { const auto& modePtr = request.mode.modePtr; const auto displayId = modePtr->getPhysicalDisplayId(); const auto display = getDisplayDeviceLocked(displayId); if (!display) continue; if (display->refreshRateSelector().isModeAllowed(request.mode)) { setDesiredMode(std::move(request)); } else { ALOGV("%s: Mode %d is disallowed for display %s", __func__, ftl::to_underlying(modePtr->getId()), to_string(displayId).c_str()); } } } void SurfaceFlinger::notifyCpuLoadUp() { mPowerAdvisor->notifyCpuLoadUp(); } void SurfaceFlinger::onChoreographerAttached() { SFTRACE_CALL(); mUpdateAttachedChoreographer = true; scheduleCommit(FrameHint::kNone); } void SurfaceFlinger::onExpectedPresentTimePosted(TimePoint expectedPresentTime, ftl::NonNull modePtr, Fps renderRate) { const auto vsyncPeriod = modePtr->getVsyncRate().getPeriod(); const auto timeoutOpt = [&]() -> std::optional { const auto vrrConfig = modePtr->getVrrConfig(); if (!vrrConfig) return std::nullopt; const auto notifyExpectedPresentConfig = modePtr->getVrrConfig()->notifyExpectedPresentConfig; if (!notifyExpectedPresentConfig) return std::nullopt; return Period::fromNs(notifyExpectedPresentConfig->timeoutNs); }(); notifyExpectedPresentIfRequired(modePtr->getPhysicalDisplayId(), vsyncPeriod, expectedPresentTime, renderRate, timeoutOpt); } void SurfaceFlinger::notifyExpectedPresentIfRequired(PhysicalDisplayId displayId, Period vsyncPeriod, TimePoint expectedPresentTime, Fps frameInterval, std::optional timeoutOpt) { auto& data = mNotifyExpectedPresentMap[displayId]; const auto lastExpectedPresentTimestamp = data.lastExpectedPresentTimestamp; const auto lastFrameInterval = data.lastFrameInterval; data.lastFrameInterval = frameInterval; data.lastExpectedPresentTimestamp = expectedPresentTime; const auto threshold = Duration::fromNs(vsyncPeriod.ns() / 2); const constexpr nsecs_t kOneSecondNs = std::chrono::duration_cast(1s).count(); const auto timeout = Period::fromNs(timeoutOpt && timeoutOpt->ns() > 0 ? timeoutOpt->ns() : kOneSecondNs); const bool frameIntervalIsOnCadence = isFrameIntervalOnCadence(expectedPresentTime, lastExpectedPresentTimestamp, lastFrameInterval, timeout, threshold); const bool expectedPresentWithinTimeout = isExpectedPresentWithinTimeout(expectedPresentTime, lastExpectedPresentTimestamp, timeoutOpt, threshold); if (expectedPresentWithinTimeout && frameIntervalIsOnCadence) { return; } auto hintStatus = data.hintStatus.load(); if (!expectedPresentWithinTimeout) { if ((hintStatus != NotifyExpectedPresentHintStatus::Sent && hintStatus != NotifyExpectedPresentHintStatus::ScheduleOnTx) || (timeoutOpt && timeoutOpt->ns() == 0)) { // Send the hint immediately if timeout, as the hint gets // delayed otherwise, as the frame is scheduled close // to the actual present. if (data.hintStatus .compare_exchange_strong(hintStatus, NotifyExpectedPresentHintStatus::ScheduleOnTx)) { scheduleNotifyExpectedPresentHint(displayId); return; } } } if (hintStatus == NotifyExpectedPresentHintStatus::Sent && data.hintStatus.compare_exchange_strong(hintStatus, NotifyExpectedPresentHintStatus::ScheduleOnTx)) { return; } if (hintStatus != NotifyExpectedPresentHintStatus::Start) { return; } data.hintStatus.store(NotifyExpectedPresentHintStatus::ScheduleOnPresent); mScheduler->scheduleFrame(); } void SurfaceFlinger::scheduleNotifyExpectedPresentHint(PhysicalDisplayId displayId, VsyncId vsyncId) { auto itr = mNotifyExpectedPresentMap.find(displayId); if (itr == mNotifyExpectedPresentMap.end()) { return; } const char* const whence = __func__; const auto sendHint = [=, this]() { auto& data = mNotifyExpectedPresentMap.at(displayId); TimePoint expectedPresentTime = data.lastExpectedPresentTimestamp; if (ftl::to_underlying(vsyncId) != FrameTimelineInfo::INVALID_VSYNC_ID) { const auto predictionOpt = mFrameTimeline->getTokenManager()->getPredictionsForToken( ftl::to_underlying(vsyncId)); const auto expectedPresentTimeOnPredictor = TimePoint::fromNs( predictionOpt ? predictionOpt->presentTime : expectedPresentTime.ns()); const auto scheduledFrameResultOpt = mScheduler->getScheduledFrameResult(); const auto expectedPresentTimeOnScheduler = scheduledFrameResultOpt.has_value() ? scheduledFrameResultOpt->vsyncTime : TimePoint::fromNs(0); expectedPresentTime = std::max(expectedPresentTimeOnPredictor, expectedPresentTimeOnScheduler); } if (expectedPresentTime < TimePoint::now()) { expectedPresentTime = mScheduler->getVsyncSchedule()->vsyncDeadlineAfter(TimePoint::now()); if (mScheduler->vsyncModulator().getVsyncConfig().sfWorkDuration > mScheduler->getVsyncSchedule(displayId)->period()) { expectedPresentTime += mScheduler->getVsyncSchedule(displayId)->period(); } } const auto status = getHwComposer().notifyExpectedPresent(displayId, expectedPresentTime, data.lastFrameInterval); if (status != NO_ERROR) { ALOGE("%s failed to notifyExpectedPresentHint for display %" PRId64, whence, displayId.value); } }; if (itr->second.hintStatus == NotifyExpectedPresentHintStatus::ScheduleOnTx) { return static_cast(mScheduler->schedule([=, this]() FTL_FAKE_GUARD(kMainThreadContext) { auto& data = mNotifyExpectedPresentMap.at(displayId); auto scheduleHintOnTx = NotifyExpectedPresentHintStatus::ScheduleOnTx; if (data.hintStatus.compare_exchange_strong(scheduleHintOnTx, NotifyExpectedPresentHintStatus::Sent)) { sendHint(); constexpr bool kAllowToEnable = true; mScheduler->resyncToHardwareVsync(displayId, kAllowToEnable); } })); } auto scheduleHintOnPresent = NotifyExpectedPresentHintStatus::ScheduleOnPresent; if (itr->second.hintStatus.compare_exchange_strong(scheduleHintOnPresent, NotifyExpectedPresentHintStatus::Sent)) { sendHint(); } } void SurfaceFlinger::sendNotifyExpectedPresentHint(PhysicalDisplayId displayId) { if (auto itr = mNotifyExpectedPresentMap.find(displayId); itr == mNotifyExpectedPresentMap.end() || itr->second.hintStatus != NotifyExpectedPresentHintStatus::ScheduleOnPresent) { return; } scheduleNotifyExpectedPresentHint(displayId); } void SurfaceFlinger::onCommitNotComposited() { if (FlagManager::getInstance().commit_not_composited()) { mFrameTimeline->onCommitNotComposited(); } } void SurfaceFlinger::initScheduler(const sp& display) { using namespace scheduler; LOG_ALWAYS_FATAL_IF(mScheduler); const auto activeMode = display->refreshRateSelector().getActiveMode(); const Fps activeRefreshRate = activeMode.fps; FeatureFlags features; const auto defaultContentDetectionValue = FlagManager::getInstance().enable_fro_dependent_features() && sysprop::enable_frame_rate_override(true); if (sysprop::use_content_detection_for_refresh_rate(defaultContentDetectionValue)) { features |= Feature::kContentDetection; if (FlagManager::getInstance().enable_small_area_detection()) { features |= Feature::kSmallDirtyContentDetection; } } if (base::GetBoolProperty("debug.sf.show_predicted_vsync"s, false)) { features |= Feature::kTracePredictedVsync; } if (!base::GetBoolProperty("debug.sf.vsync_reactor_ignore_present_fences"s, false) && mHasReliablePresentFences) { features |= Feature::kPresentFences; } if (display->refreshRateSelector().kernelIdleTimerController()) { features |= Feature::kKernelIdleTimer; } if (mBackpressureGpuComposition) { features |= Feature::kBackpressureGpuComposition; } if (getHwComposer().getComposer()->isSupported( Hwc2::Composer::OptionalFeature::ExpectedPresentTime)) { features |= Feature::kExpectedPresentTime; } mScheduler = std::make_unique(static_cast(*this), static_cast(*this), features, getFactory(), activeRefreshRate, *mTimeStats); // The pacesetter must be registered before EventThread creation below. mScheduler->registerDisplay(display->getPhysicalId(), display->holdRefreshRateSelector(), mActiveDisplayId); if (FlagManager::getInstance().vrr_config()) { mScheduler->setRenderRate(display->getPhysicalId(), activeMode.fps, /*applyImmediately*/ true); } const auto configs = mScheduler->getVsyncConfiguration().getCurrentConfigs(); mScheduler->createEventThread(scheduler::Cycle::Render, mFrameTimeline->getTokenManager(), /* workDuration */ configs.late.appWorkDuration, /* readyDuration */ configs.late.sfWorkDuration); mScheduler->createEventThread(scheduler::Cycle::LastComposite, mFrameTimeline->getTokenManager(), /* workDuration */ activeRefreshRate.getPeriod(), /* readyDuration */ configs.late.sfWorkDuration); // Dispatch after EventThread creation, since registerDisplay above skipped dispatch. mScheduler->dispatchHotplug(display->getPhysicalId(), scheduler::Scheduler::Hotplug::Connected); mScheduler->initVsync(*mFrameTimeline->getTokenManager(), configs.late.sfWorkDuration); mRegionSamplingThread = sp::make(*this, RegionSamplingThread::EnvironmentTimingTunables()); mFpsReporter = sp::make(*mFrameTimeline); // Timer callbacks may fire, so do this last. mScheduler->startTimers(); } void SurfaceFlinger::doCommitTransactions() { SFTRACE_CALL(); mDrawingState = mCurrentState; mCurrentState.colorMatrixChanged = false; } void SurfaceFlinger::invalidateLayerStack(const ui::LayerFilter& layerFilter, const Region& dirty) { for (const auto& [token, displayDevice] : FTL_FAKE_GUARD(mStateLock, mDisplays)) { auto display = displayDevice->getCompositionDisplay(); if (display->includesLayer(layerFilter)) { display->editState().dirtyRegion.orSelf(dirty); } } } status_t SurfaceFlinger::addClientLayer(LayerCreationArgs& args, const sp& handle, const sp& layer, const wp& parent, uint32_t* outTransformHint) { if (mNumLayers >= MAX_LAYERS) { static std::atomic lasttime{0}; nsecs_t now = systemTime(); if (lasttime != 0 && ns2s(now - lasttime.load()) < 10) { ALOGE("AddClientLayer already dumped 10s before"); return NO_MEMORY; } else { lasttime = now; } ALOGE("AddClientLayer failed, mNumLayers (%zu) >= MAX_LAYERS (%zu)", mNumLayers.load(), MAX_LAYERS); static_cast(mScheduler->schedule([&]() FTL_FAKE_GUARD(kMainThreadContext) { ALOGE("Dumping on-screen layers."); mLayerHierarchyBuilder.dumpLayerSample(mLayerHierarchyBuilder.getHierarchy()); ALOGE("Dumping off-screen layers."); mLayerHierarchyBuilder.dumpLayerSample(mLayerHierarchyBuilder.getOffscreenHierarchy()); })); return NO_MEMORY; } if (outTransformHint) { *outTransformHint = mActiveDisplayTransformHint; } args.parentId = LayerHandle::getLayerId(args.parentHandle.promote()); args.layerIdToMirror = LayerHandle::getLayerId(args.mirrorLayerHandle.promote()); { std::scoped_lock lock(mCreatedLayersLock); mCreatedLayers.emplace_back(layer); mNewLayers.emplace_back(std::make_unique(args)); args.mirrorLayerHandle.clear(); args.parentHandle.clear(); mNewLayerArgs.emplace_back(std::move(args)); } setTransactionFlags(eTransactionNeeded); return NO_ERROR; } uint32_t SurfaceFlinger::getTransactionFlags() const { return mTransactionFlags; } uint32_t SurfaceFlinger::clearTransactionFlags(uint32_t mask) { uint32_t transactionFlags = mTransactionFlags.fetch_and(~mask); SFTRACE_INT("mTransactionFlags", transactionFlags); return transactionFlags & mask; } void SurfaceFlinger::setTransactionFlags(uint32_t mask, TransactionSchedule schedule, const sp& applyToken, FrameHint frameHint) { mScheduler->modulateVsync({}, &VsyncModulator::setTransactionSchedule, schedule, applyToken); uint32_t transactionFlags = mTransactionFlags.fetch_or(mask); SFTRACE_INT("mTransactionFlags", transactionFlags); if (const bool scheduled = transactionFlags & mask; !scheduled) { mScheduler->resync(); scheduleCommit(frameHint); } else if (frameHint == FrameHint::kActive) { // Even if the next frame is already scheduled, we should reset the idle timer // as a new activity just happened. mScheduler->resetIdleTimer(); } } TransactionHandler::TransactionReadiness SurfaceFlinger::transactionReadyTimelineCheck( const TransactionHandler::TransactionFlushState& flushState) { const auto& transaction = *flushState.transaction; const TimePoint desiredPresentTime = TimePoint::fromNs(transaction.desiredPresentTime); const TimePoint expectedPresentTime = mScheduler->expectedPresentTimeForPacesetter(); using TransactionReadiness = TransactionHandler::TransactionReadiness; // Do not present if the desiredPresentTime has not passed unless it is more than // one second in the future. We ignore timestamps more than 1 second in the future // for stability reasons. if (!transaction.isAutoTimestamp && desiredPresentTime >= expectedPresentTime && desiredPresentTime < expectedPresentTime + 1s) { SFTRACE_FORMAT("not current desiredPresentTime: %" PRId64 " expectedPresentTime: %" PRId64, desiredPresentTime, expectedPresentTime); return TransactionReadiness::NotReady; } const auto vsyncId = VsyncId{transaction.frameTimelineInfo.vsyncId}; // Transactions with VsyncId are already throttled by the vsyncId (i.e. Choreographer issued // the vsyncId according to the frame rate override cadence) so we shouldn't throttle again // when applying the transaction. Otherwise we might throttle older transactions // incorrectly as the frame rate of SF changed before it drained the older transactions. if (ftl::to_underlying(vsyncId) == FrameTimelineInfo::INVALID_VSYNC_ID && !mScheduler->isVsyncValid(expectedPresentTime, transaction.originUid)) { SFTRACE_FORMAT("!isVsyncValid expectedPresentTime: %" PRId64 " uid: %d", expectedPresentTime, transaction.originUid); return TransactionReadiness::NotReady; } // If the client didn't specify desiredPresentTime, use the vsyncId to determine the // expected present time of this transaction. if (transaction.isAutoTimestamp && frameIsEarly(expectedPresentTime, vsyncId)) { SFTRACE_FORMAT("frameIsEarly vsyncId: %" PRId64 " expectedPresentTime: %" PRId64, transaction.frameTimelineInfo.vsyncId, expectedPresentTime); return TransactionReadiness::NotReady; } return TransactionReadiness::Ready; } TransactionHandler::TransactionReadiness SurfaceFlinger::transactionReadyBufferCheck( const TransactionHandler::TransactionFlushState& flushState) { using TransactionReadiness = TransactionHandler::TransactionReadiness; auto ready = TransactionReadiness::Ready; flushState.transaction->traverseStatesWithBuffersWhileTrue( [&](const ResolvedComposerState& resolvedState) FTL_FAKE_GUARD( kMainThreadContext) -> bool { const frontend::RequestedLayerState* layer = mLayerLifecycleManager.getLayerFromId(resolvedState.layerId); const auto& transaction = *flushState.transaction; const auto& s = resolvedState.state; // check for barrier frames if (s.bufferData->hasBarrier) { // The current producerId is already a newer producer than the buffer that has a // barrier. This means the incoming buffer is older and we can release it here. // We don't wait on the barrier since we know that's stale information. if (layer->barrierProducerId > s.bufferData->producerId) { if (s.bufferData->releaseBufferListener) { uint32_t currentMaxAcquiredBufferCount = getMaxAcquiredBufferCountForCurrentRefreshRate( layer->ownerUid.val()); SFTRACE_FORMAT_INSTANT("callReleaseBufferCallback %s - %" PRIu64, layer->name.c_str(), s.bufferData->frameNumber); s.bufferData->releaseBufferListener ->onReleaseBuffer({resolvedState.externalTexture->getBuffer() ->getId(), s.bufferData->frameNumber}, s.bufferData->acquireFence ? s.bufferData->acquireFence : Fence::NO_FENCE, currentMaxAcquiredBufferCount); } // Delete the entire state at this point and not just release the buffer // because everything associated with the Layer in this Transaction is now // out of date. SFTRACE_FORMAT("DeleteStaleBuffer %s barrierProducerId:%d > %d", layer->name.c_str(), layer->barrierProducerId, s.bufferData->producerId); return TraverseBuffersReturnValues::DELETE_AND_CONTINUE_TRAVERSAL; } if (layer->barrierFrameNumber < s.bufferData->barrierFrameNumber) { const bool willApplyBarrierFrame = flushState.bufferLayersReadyToPresent.contains(s.surface.get()) && ((flushState.bufferLayersReadyToPresent.get(s.surface.get()) >= s.bufferData->barrierFrameNumber)); if (!willApplyBarrierFrame) { SFTRACE_FORMAT("NotReadyBarrier %s barrierFrameNumber:%" PRId64 " > %" PRId64, layer->name.c_str(), layer->barrierFrameNumber, s.bufferData->barrierFrameNumber); ready = TransactionReadiness::NotReadyBarrier; return TraverseBuffersReturnValues::STOP_TRAVERSAL; } } } // If backpressure is enabled and we already have a buffer to commit, keep // the transaction in the queue. const bool hasPendingBuffer = flushState.bufferLayersReadyToPresent.contains(s.surface.get()); if (layer->backpressureEnabled() && hasPendingBuffer && transaction.isAutoTimestamp) { SFTRACE_FORMAT("hasPendingBuffer %s", layer->name.c_str()); ready = TransactionReadiness::NotReady; return TraverseBuffersReturnValues::STOP_TRAVERSAL; } const bool acquireFenceAvailable = s.bufferData && s.bufferData->flags.test(BufferData::BufferDataChange::fenceChanged) && s.bufferData->acquireFence; const bool fenceSignaled = !acquireFenceAvailable || s.bufferData->acquireFence->getStatus() != Fence::Status::Unsignaled; if (!fenceSignaled) { // check fence status const bool allowLatchUnsignaled = shouldLatchUnsignaled(s, transaction.states.size(), flushState.firstTransaction) && layer->isSimpleBufferUpdate(s); if (allowLatchUnsignaled) { SFTRACE_FORMAT("fence unsignaled try allowLatchUnsignaled %s", layer->name.c_str()); ready = TransactionReadiness::NotReadyUnsignaled; } else { ready = TransactionReadiness::NotReady; auto& listener = s.bufferData->releaseBufferListener; if (listener && (flushState.queueProcessTime - transaction.postTime) > std::chrono::nanoseconds(4s).count()) { mTransactionHandler .onTransactionQueueStalled(transaction.id, {.pid = layer->ownerPid.val(), .layerId = layer->id, .layerName = layer->name, .bufferId = s.bufferData->getId(), .frameNumber = s.bufferData->frameNumber}); } SFTRACE_FORMAT("fence unsignaled %s", layer->name.c_str()); return TraverseBuffersReturnValues::STOP_TRAVERSAL; } } return TraverseBuffersReturnValues::CONTINUE_TRAVERSAL; }); return ready; } void SurfaceFlinger::addTransactionReadyFilters() { mTransactionHandler.addTransactionReadyFilter( std::bind(&SurfaceFlinger::transactionReadyTimelineCheck, this, std::placeholders::_1)); mTransactionHandler.addTransactionReadyFilter( std::bind(&SurfaceFlinger::transactionReadyBufferCheck, this, std::placeholders::_1)); } // For tests only bool SurfaceFlinger::flushTransactionQueues() { mTransactionHandler.collectTransactions(); std::vector transactions = mTransactionHandler.flushTransactions(); return applyTransactions(transactions); } bool SurfaceFlinger::applyTransactions(std::vector& transactions) { Mutex::Autolock lock(mStateLock); return applyTransactionsLocked(transactions); } bool SurfaceFlinger::applyTransactionsLocked(std::vector& transactions) { bool needsTraversal = false; // Now apply all transactions. for (auto& transaction : transactions) { needsTraversal |= applyTransactionState(transaction.frameTimelineInfo, transaction.states, transaction.displays, transaction.flags, transaction.inputWindowCommands, transaction.desiredPresentTime, transaction.isAutoTimestamp, std::move(transaction.uncacheBufferIds), transaction.postTime, transaction.hasListenerCallbacks, transaction.listenerCallbacks, transaction.originPid, transaction.originUid, transaction.id); } return needsTraversal; } bool SurfaceFlinger::transactionFlushNeeded() { return mTransactionHandler.hasPendingTransactions(); } bool SurfaceFlinger::frameIsEarly(TimePoint expectedPresentTime, VsyncId vsyncId) const { const auto prediction = mFrameTimeline->getTokenManager()->getPredictionsForToken(ftl::to_underlying(vsyncId)); if (!prediction) { return false; } const auto predictedPresentTime = TimePoint::fromNs(prediction->presentTime); if (std::chrono::abs(predictedPresentTime - expectedPresentTime) >= scheduler::VsyncConfig::kEarlyLatchMaxThreshold) { return false; } const Duration earlyLatchVsyncThreshold = mScheduler->getVsyncSchedule()->minFramePeriod() / 2; return predictedPresentTime >= expectedPresentTime && predictedPresentTime - expectedPresentTime >= earlyLatchVsyncThreshold; } bool SurfaceFlinger::shouldLatchUnsignaled(const layer_state_t& state, size_t numStates, bool firstTransaction) const { if (enableLatchUnsignaledConfig == LatchUnsignaledConfig::Disabled) { SFTRACE_FORMAT_INSTANT("%s: false (LatchUnsignaledConfig::Disabled)", __func__); return false; } // We only want to latch unsignaled when a single layer is updated in this // transaction (i.e. not a blast sync transaction). if (numStates != 1) { SFTRACE_FORMAT_INSTANT("%s: false (numStates=%zu)", __func__, numStates); return false; } if (enableLatchUnsignaledConfig == LatchUnsignaledConfig::AutoSingleLayer) { if (!firstTransaction) { SFTRACE_FORMAT_INSTANT("%s: false (LatchUnsignaledConfig::AutoSingleLayer; not first " "transaction)", __func__); return false; } // We don't want to latch unsignaled if are in early / client composition // as it leads to jank due to RenderEngine waiting for unsignaled buffer // or window animations being slow. if (mScheduler->vsyncModulator().isVsyncConfigEarly()) { SFTRACE_FORMAT_INSTANT("%s: false (LatchUnsignaledConfig::AutoSingleLayer; " "isVsyncConfigEarly)", __func__); return false; } } return true; } status_t SurfaceFlinger::setTransactionState( const FrameTimelineInfo& frameTimelineInfo, Vector& states, Vector& displays, uint32_t flags, const sp& applyToken, InputWindowCommands inputWindowCommands, int64_t desiredPresentTime, bool isAutoTimestamp, const std::vector& uncacheBuffers, bool hasListenerCallbacks, const std::vector& listenerCallbacks, uint64_t transactionId, const std::vector& mergedTransactionIds) { SFTRACE_CALL(); IPCThreadState* ipc = IPCThreadState::self(); const int originPid = ipc->getCallingPid(); const int originUid = ipc->getCallingUid(); uint32_t permissions = LayerStatePermissions::getTransactionPermissions(originPid, originUid); for (auto& composerState : states) { composerState.state.sanitize(permissions); } for (DisplayState& display : displays) { display.sanitize(permissions); } if (!inputWindowCommands.empty() && (permissions & layer_state_t::Permission::ACCESS_SURFACE_FLINGER) == 0) { ALOGE("Only privileged callers are allowed to send input commands."); inputWindowCommands.clear(); } if (flags & (eEarlyWakeupStart | eEarlyWakeupEnd)) { const bool hasPermission = (permissions & layer_state_t::Permission::ACCESS_SURFACE_FLINGER) || callingThreadHasPermission(sWakeupSurfaceFlinger); if (!hasPermission) { ALOGE("Caller needs permission android.permission.WAKEUP_SURFACE_FLINGER to use " "eEarlyWakeup[Start|End] flags"); flags &= ~(eEarlyWakeupStart | eEarlyWakeupEnd); } } const int64_t postTime = systemTime(); std::vector uncacheBufferIds; uncacheBufferIds.reserve(uncacheBuffers.size()); for (const auto& uncacheBuffer : uncacheBuffers) { sp buffer = ClientCache::getInstance().erase(uncacheBuffer); if (buffer != nullptr) { uncacheBufferIds.push_back(buffer->getId()); } } std::vector resolvedStates; resolvedStates.reserve(states.size()); for (auto& state : states) { resolvedStates.emplace_back(std::move(state)); auto& resolvedState = resolvedStates.back(); resolvedState.layerId = LayerHandle::getLayerId(resolvedState.state.surface); if (resolvedState.state.hasBufferChanges() && resolvedState.state.hasValidBuffer() && resolvedState.state.surface) { sp layer = LayerHandle::getLayer(resolvedState.state.surface); std::string layerName = (layer) ? layer->getDebugName() : std::to_string(resolvedState.state.layerId); resolvedState.externalTexture = getExternalTextureFromBufferData(*resolvedState.state.bufferData, layerName.c_str(), transactionId); if (resolvedState.externalTexture) { resolvedState.state.bufferData->buffer = resolvedState.externalTexture->getBuffer(); } mBufferCountTracker.increment(resolvedState.layerId); } if (resolvedState.state.what & layer_state_t::eReparent) { resolvedState.parentId = getLayerIdFromSurfaceControl(resolvedState.state.parentSurfaceControlForChild); } if (resolvedState.state.what & layer_state_t::eRelativeLayerChanged) { resolvedState.relativeParentId = getLayerIdFromSurfaceControl(resolvedState.state.relativeLayerSurfaceControl); } if (resolvedState.state.what & layer_state_t::eInputInfoChanged) { wp& touchableRegionCropHandle = resolvedState.state.windowInfoHandle->editInfo()->touchableRegionCropHandle; resolvedState.touchCropId = LayerHandle::getLayerId(touchableRegionCropHandle.promote()); } } TransactionState state{frameTimelineInfo, resolvedStates, displays, flags, applyToken, std::move(inputWindowCommands), desiredPresentTime, isAutoTimestamp, std::move(uncacheBufferIds), postTime, hasListenerCallbacks, listenerCallbacks, originPid, originUid, transactionId, mergedTransactionIds}; if (mTransactionTracing) { mTransactionTracing->addQueuedTransaction(state); } const auto schedule = [](uint32_t flags) { if (flags & eEarlyWakeupEnd) return TransactionSchedule::EarlyEnd; if (flags & eEarlyWakeupStart) return TransactionSchedule::EarlyStart; return TransactionSchedule::Late; }(state.flags); const auto frameHint = state.isFrameActive() ? FrameHint::kActive : FrameHint::kNone; { // Transactions are added via a lockless queue and does not need to be added from the main // thread. ftl::FakeGuard guard(kMainThreadContext); mTransactionHandler.queueTransaction(std::move(state)); } for (const auto& [displayId, data] : mNotifyExpectedPresentMap) { if (data.hintStatus.load() == NotifyExpectedPresentHintStatus::ScheduleOnTx) { scheduleNotifyExpectedPresentHint(displayId, VsyncId{frameTimelineInfo.vsyncId}); } } setTransactionFlags(eTransactionFlushNeeded, schedule, applyToken, frameHint); return NO_ERROR; } bool SurfaceFlinger::applyTransactionState(const FrameTimelineInfo& frameTimelineInfo, std::vector& states, Vector& displays, uint32_t flags, const InputWindowCommands& inputWindowCommands, const int64_t desiredPresentTime, bool isAutoTimestamp, const std::vector& uncacheBufferIds, const int64_t postTime, bool hasListenerCallbacks, const std::vector& listenerCallbacks, int originPid, int originUid, uint64_t transactionId) { uint32_t transactionFlags = 0; // start and end registration for listeners w/ no surface so they can get their callback. Note // that listeners with SurfaceControls will start registration during setClientStateLocked // below. for (const auto& listener : listenerCallbacks) { mTransactionCallbackInvoker.addEmptyTransaction(listener); } uint32_t clientStateFlags = 0; for (auto& resolvedState : states) { clientStateFlags |= updateLayerCallbacksAndStats(frameTimelineInfo, resolvedState, desiredPresentTime, isAutoTimestamp, postTime, transactionId); } transactionFlags |= clientStateFlags; transactionFlags |= addInputWindowCommands(inputWindowCommands); for (uint64_t uncacheBufferId : uncacheBufferIds) { mBufferIdsToUncache.push_back(uncacheBufferId); } // If a synchronous transaction is explicitly requested without any changes, force a transaction // anyway. This can be used as a flush mechanism for previous async transactions. // Empty animation transaction can be used to simulate back-pressure, so also force a // transaction for empty animation transactions. if (transactionFlags == 0 && (flags & eAnimation)) { transactionFlags = eTransactionNeeded; } bool needsTraversal = false; if (transactionFlags) { // We are on the main thread, we are about to perform a traversal. Clear the traversal bit // so we don't have to wake up again next frame to perform an unnecessary traversal. if (transactionFlags & eTraversalNeeded) { transactionFlags = transactionFlags & (~eTraversalNeeded); needsTraversal = true; } if (transactionFlags) { setTransactionFlags(transactionFlags); } } return needsTraversal; } bool SurfaceFlinger::applyAndCommitDisplayTransactionStatesLocked( std::vector& transactions) { bool needsTraversal = false; uint32_t transactionFlags = 0; for (auto& transaction : transactions) { for (DisplayState& display : transaction.displays) { transactionFlags |= setDisplayStateLocked(display); } } if (transactionFlags) { // We are on the main thread, we are about to perform a traversal. Clear the traversal bit // so we don't have to wake up again next frame to perform an unnecessary traversal. if (transactionFlags & eTraversalNeeded) { transactionFlags = transactionFlags & (~eTraversalNeeded); needsTraversal = true; } if (transactionFlags) { setTransactionFlags(transactionFlags); } } mFrontEndDisplayInfosChanged = mTransactionFlags & eDisplayTransactionNeeded; if (mFrontEndDisplayInfosChanged) { processDisplayChangesLocked(); mFrontEndDisplayInfos.clear(); for (const auto& [_, display] : mDisplays) { mFrontEndDisplayInfos.try_emplace(display->getLayerStack(), display->getFrontEndInfo()); } needsTraversal = true; } return needsTraversal; } uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s) { const ssize_t index = mCurrentState.displays.indexOfKey(s.token); if (index < 0) return 0; uint32_t flags = 0; DisplayDeviceState& state = mCurrentState.displays.editValueAt(index); const uint32_t what = s.what; if (what & DisplayState::eSurfaceChanged) { if (IInterface::asBinder(state.surface) != IInterface::asBinder(s.surface)) { state.surface = s.surface; flags |= eDisplayTransactionNeeded; } } if (what & DisplayState::eLayerStackChanged) { if (state.layerStack != s.layerStack) { state.layerStack = s.layerStack; flags |= eDisplayTransactionNeeded; } } if (what & DisplayState::eFlagsChanged) { if (state.flags != s.flags) { state.flags = s.flags; flags |= eDisplayTransactionNeeded; } } if (what & DisplayState::eDisplayProjectionChanged) { if (state.orientation != s.orientation) { state.orientation = s.orientation; flags |= eDisplayTransactionNeeded; } if (state.orientedDisplaySpaceRect != s.orientedDisplaySpaceRect) { state.orientedDisplaySpaceRect = s.orientedDisplaySpaceRect; flags |= eDisplayTransactionNeeded; } if (state.layerStackSpaceRect != s.layerStackSpaceRect) { state.layerStackSpaceRect = s.layerStackSpaceRect; flags |= eDisplayTransactionNeeded; } } if (what & DisplayState::eDisplaySizeChanged) { if (state.width != s.width) { state.width = s.width; flags |= eDisplayTransactionNeeded; } if (state.height != s.height) { state.height = s.height; flags |= eDisplayTransactionNeeded; } } return flags; } bool SurfaceFlinger::callingThreadHasUnscopedSurfaceFlingerAccess(bool usePermissionCache) { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) && (usePermissionCache ? !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid) : !checkPermission(sAccessSurfaceFlinger, pid, uid))) { return false; } return true; } uint32_t SurfaceFlinger::updateLayerCallbacksAndStats(const FrameTimelineInfo& frameTimelineInfo, ResolvedComposerState& composerState, int64_t desiredPresentTime, bool isAutoTimestamp, int64_t postTime, uint64_t transactionId) { layer_state_t& s = composerState.state; std::vector filteredListeners; for (auto& listener : s.listeners) { // Starts a registration but separates the callback ids according to callback type. This // allows the callback invoker to send on latch callbacks earlier. // note that startRegistration will not re-register if the listener has // already be registered for a prior surface control ListenerCallbacks onCommitCallbacks = listener.filter(CallbackId::Type::ON_COMMIT); if (!onCommitCallbacks.callbackIds.empty()) { filteredListeners.push_back(onCommitCallbacks); } ListenerCallbacks onCompleteCallbacks = listener.filter(CallbackId::Type::ON_COMPLETE); if (!onCompleteCallbacks.callbackIds.empty()) { filteredListeners.push_back(onCompleteCallbacks); } } const uint64_t what = s.what; uint32_t flags = 0; sp layer = nullptr; if (s.surface) { layer = LayerHandle::getLayer(s.surface); } else { // The client may provide us a null handle. Treat it as if the layer was removed. ALOGW("Attempt to set client state with a null layer handle"); } if (layer == nullptr) { for (auto& [listener, callbackIds] : s.listeners) { mTransactionCallbackInvoker.addCallbackHandle( sp::make(listener, callbackIds, s.surface)); } return 0; } if (what & layer_state_t::eProducerDisconnect) { layer->onDisconnect(); } std::vector> callbackHandles; if ((what & layer_state_t::eHasListenerCallbacksChanged) && (!filteredListeners.empty())) { for (auto& [listener, callbackIds] : filteredListeners) { callbackHandles.emplace_back( sp::make(listener, callbackIds, s.surface)); } } frontend::LayerSnapshot* snapshot = nullptr; gui::GameMode gameMode = gui::GameMode::Unsupported; if (what & (layer_state_t::eSidebandStreamChanged | layer_state_t::eBufferChanged) || frameTimelineInfo.vsyncId != FrameTimelineInfo::INVALID_VSYNC_ID) { snapshot = mLayerSnapshotBuilder.getSnapshot(layer->sequence); if (snapshot) { gameMode = snapshot->gameMode; } } // TODO(b/238781169) remove after screenshot refactor, currently screenshots // requires to read drawing state from binder thread. So we need to fix that // before removing this. if (what & layer_state_t::eBufferTransformChanged) { if (layer->setTransform(s.bufferTransform)) flags |= eTraversalNeeded; } if (what & layer_state_t::eTransformToDisplayInverseChanged) { if (layer->setTransformToDisplayInverse(s.transformToDisplayInverse)) flags |= eTraversalNeeded; } if (what & layer_state_t::eCropChanged) { if (layer->setCrop(s.crop)) flags |= eTraversalNeeded; } if (what & layer_state_t::eSidebandStreamChanged) { if (layer->setSidebandStream(s.sidebandStream, frameTimelineInfo, postTime, gameMode)) flags |= eTraversalNeeded; } if (what & layer_state_t::eDataspaceChanged) { if (layer->setDataspace(s.dataspace)) flags |= eTraversalNeeded; } if (what & layer_state_t::eExtendedRangeBrightnessChanged) { if (layer->setExtendedRangeBrightness(s.currentHdrSdrRatio, s.desiredHdrSdrRatio)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eDesiredHdrHeadroomChanged) { if (layer->setDesiredHdrHeadroom(s.desiredHdrSdrRatio)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eBufferChanged) { std::optional transformHint = std::nullopt; if (snapshot) { transformHint = snapshot->transformHint; } layer->setTransformHint(transformHint); if (layer->setBuffer(composerState.externalTexture, *s.bufferData, postTime, desiredPresentTime, isAutoTimestamp, frameTimelineInfo, gameMode)) { flags |= eTraversalNeeded; } mLayersWithQueuedFrames.emplace(layer, gameMode); } else if (frameTimelineInfo.vsyncId != FrameTimelineInfo::INVALID_VSYNC_ID) { layer->setFrameTimelineVsyncForBufferlessTransaction(frameTimelineInfo, postTime, gameMode); } if ((what & layer_state_t::eBufferChanged) == 0) { layer->setDesiredPresentTime(desiredPresentTime, isAutoTimestamp); } if (what & layer_state_t::eTrustedPresentationInfoChanged) { if (layer->setTrustedPresentationInfo(s.trustedPresentationThresholds, s.trustedPresentationListener)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eBufferReleaseChannelChanged) { layer->setBufferReleaseChannel(s.bufferReleaseChannel); } const auto& requestedLayerState = mLayerLifecycleManager.getLayerFromId(layer->getSequence()); bool willPresentCurrentTransaction = requestedLayerState && (requestedLayerState->hasReadyFrame() || requestedLayerState->willReleaseBufferOnLatch()); if (layer->setTransactionCompletedListeners(callbackHandles, willPresentCurrentTransaction)) flags |= eTraversalNeeded; return flags; } uint32_t SurfaceFlinger::addInputWindowCommands(const InputWindowCommands& inputWindowCommands) { bool hasChanges = mInputWindowCommands.merge(inputWindowCommands); return hasChanges ? eTraversalNeeded : 0; } status_t SurfaceFlinger::mirrorLayer(const LayerCreationArgs& args, const sp& mirrorFromHandle, gui::CreateSurfaceResult& outResult) { if (!mirrorFromHandle) { return NAME_NOT_FOUND; } sp mirrorLayer; sp mirrorFrom; LayerCreationArgs mirrorArgs = LayerCreationArgs::fromOtherArgs(args); { Mutex::Autolock _l(mStateLock); mirrorFrom = LayerHandle::getLayer(mirrorFromHandle); if (!mirrorFrom) { return NAME_NOT_FOUND; } mirrorArgs.flags |= ISurfaceComposerClient::eNoColorFill; mirrorArgs.mirrorLayerHandle = mirrorFromHandle; mirrorArgs.addToRoot = false; status_t result = createEffectLayer(mirrorArgs, &outResult.handle, &mirrorLayer); if (result != NO_ERROR) { return result; } } outResult.layerId = mirrorLayer->sequence; outResult.layerName = String16(mirrorLayer->getDebugName()); return addClientLayer(mirrorArgs, outResult.handle, mirrorLayer /* layer */, nullptr /* parent */, nullptr /* outTransformHint */); } status_t SurfaceFlinger::mirrorDisplay(DisplayId displayId, const LayerCreationArgs& args, gui::CreateSurfaceResult& outResult) { IPCThreadState* ipc = IPCThreadState::self(); const int uid = ipc->getCallingUid(); if (uid != AID_ROOT && uid != AID_GRAPHICS && uid != AID_SYSTEM && uid != AID_SHELL) { ALOGE("Permission denied when trying to mirror display"); return PERMISSION_DENIED; } ui::LayerStack layerStack; sp rootMirrorLayer; status_t result = 0; { Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayId); if (!display) { return NAME_NOT_FOUND; } layerStack = display->getLayerStack(); LayerCreationArgs mirrorArgs = LayerCreationArgs::fromOtherArgs(args); mirrorArgs.flags |= ISurfaceComposerClient::eNoColorFill; mirrorArgs.addToRoot = true; mirrorArgs.layerStackToMirror = layerStack; result = createEffectLayer(mirrorArgs, &outResult.handle, &rootMirrorLayer); outResult.layerId = rootMirrorLayer->sequence; outResult.layerName = String16(rootMirrorLayer->getDebugName()); result |= addClientLayer(mirrorArgs, outResult.handle, rootMirrorLayer /* layer */, nullptr /* parent */, nullptr /* outTransformHint */); } if (result != NO_ERROR) { return result; } setTransactionFlags(eTransactionFlushNeeded); return NO_ERROR; } status_t SurfaceFlinger::createLayer(LayerCreationArgs& args, gui::CreateSurfaceResult& outResult) { status_t result = NO_ERROR; sp layer; switch (args.flags & ISurfaceComposerClient::eFXSurfaceMask) { case ISurfaceComposerClient::eFXSurfaceBufferQueue: case ISurfaceComposerClient::eFXSurfaceContainer: case ISurfaceComposerClient::eFXSurfaceBufferState: args.flags |= ISurfaceComposerClient::eNoColorFill; [[fallthrough]]; case ISurfaceComposerClient::eFXSurfaceEffect: { result = createBufferStateLayer(args, &outResult.handle, &layer); std::atomic* pendingBufferCounter = layer->getPendingBufferCounter(); if (pendingBufferCounter) { std::string counterName = layer->getPendingBufferCounterName(); mBufferCountTracker.add(LayerHandle::getLayerId(outResult.handle), counterName, pendingBufferCounter); args.pendingBuffers = pendingBufferCounter; } } break; default: result = BAD_VALUE; break; } if (result != NO_ERROR) { return result; } args.addToRoot = args.addToRoot && callingThreadHasUnscopedSurfaceFlingerAccess(); // We can safely promote the parent layer in binder thread because we have a strong reference // to the layer's handle inside this scope. sp parent = LayerHandle::getLayer(args.parentHandle.promote()); if (args.parentHandle != nullptr && parent == nullptr) { ALOGE("Invalid parent handle %p", args.parentHandle.promote().get()); args.addToRoot = false; } uint32_t outTransformHint; result = addClientLayer(args, outResult.handle, layer, parent, &outTransformHint); if (result != NO_ERROR) { return result; } outResult.transformHint = static_cast(outTransformHint); outResult.layerId = layer->sequence; outResult.layerName = String16(layer->getDebugName()); return result; } status_t SurfaceFlinger::createBufferStateLayer(LayerCreationArgs& args, sp* handle, sp* outLayer) { *outLayer = getFactory().createBufferStateLayer(args); *handle = (*outLayer)->getHandle(); return NO_ERROR; } status_t SurfaceFlinger::createEffectLayer(const LayerCreationArgs& args, sp* handle, sp* outLayer) { *outLayer = getFactory().createEffectLayer(args); *handle = (*outLayer)->getHandle(); return NO_ERROR; } void SurfaceFlinger::onHandleDestroyed(sp& layer, uint32_t layerId) { { // Used to remove stalled transactions which uses an internal lock. ftl::FakeGuard guard(kMainThreadContext); mTransactionHandler.onLayerDestroyed(layerId); } JankTracker::flushJankData(layerId); std::scoped_lock lock(mCreatedLayersLock); mDestroyedHandles.emplace_back(layerId, layer->getDebugName()); Mutex::Autolock stateLock(mStateLock); layer->onHandleDestroyed(); mBufferCountTracker.remove(layerId); layer.clear(); setTransactionFlags(eTransactionFlushNeeded | eTransactionNeeded); } void SurfaceFlinger::initializeDisplays() { TransactionState state; state.inputWindowCommands = mInputWindowCommands; const nsecs_t now = systemTime(); state.desiredPresentTime = now; state.postTime = now; state.originPid = mPid; state.originUid = static_cast(getuid()); const uint64_t transactionId = (static_cast(mPid) << 32) | mUniqueTransactionId++; state.id = transactionId; auto layerStack = ui::DEFAULT_LAYER_STACK.id; for (const auto& [id, display] : FTL_FAKE_GUARD(mStateLock, mPhysicalDisplays)) { state.displays.push(DisplayState(display.token(), ui::LayerStack::fromValue(layerStack++))); } std::vector transactions; transactions.emplace_back(state); { Mutex::Autolock lock(mStateLock); applyAndCommitDisplayTransactionStatesLocked(transactions); } { ftl::FakeGuard guard(mStateLock); // In case of a restart, ensure all displays are off. for (const auto& [id, display] : mPhysicalDisplays) { setPowerModeInternal(getDisplayDeviceLocked(id), hal::PowerMode::OFF); } // Power on all displays. The primary display is first, so becomes the active display. Also, // the DisplayCapability set of a display is populated on its first powering on. Do this now // before responding to any Binder query from DisplayManager about display capabilities. // Additionally, do not turn on displays if the boot should be quiescent. if (!mSkipPowerOnForQuiescent) { for (const auto& [id, display] : mPhysicalDisplays) { setPowerModeInternal(getDisplayDeviceLocked(id), hal::PowerMode::ON); } } } } void SurfaceFlinger::setPowerModeInternal(const sp& display, hal::PowerMode mode) { if (display->isVirtual()) { // TODO(b/241285876): This code path should not be reachable, so enforce this at compile // time. ALOGE("%s: Invalid operation on virtual display", __func__); return; } const auto displayId = display->getPhysicalId(); ALOGD("Setting power mode %d on display %s", mode, to_string(displayId).c_str()); const auto currentMode = display->getPowerMode(); if (currentMode == mode) { return; } const bool isInternalDisplay = mPhysicalDisplays.get(displayId) .transform(&PhysicalDisplay::isInternal) .value_or(false); const auto activeDisplay = getDisplayDeviceLocked(mActiveDisplayId); ALOGW_IF(display != activeDisplay && isInternalDisplay && activeDisplay && activeDisplay->isPoweredOn(), "Trying to change power mode on inactive display without powering off active display"); const bool couldRefresh = display->isRefreshable(); display->setPowerMode(mode); const bool canRefresh = display->isRefreshable(); if (couldRefresh && !canRefresh) { decRefreshableDisplays(); } else if (!couldRefresh && canRefresh) { incRefreshableDisplays(); } const auto activeMode = display->refreshRateSelector().getActiveMode().modePtr; if (currentMode == hal::PowerMode::OFF) { // Turn on the display // Activate the display (which involves a modeset to the active mode) when the inner or // outer display of a foldable is powered on. This condition relies on the above // DisplayDevice::setPowerMode. If `display` and `activeDisplay` are the same display, // then the `activeDisplay->isPoweredOn()` below is true, such that the display is not // activated every time it is powered on. // // TODO(b/255635821): Remove the concept of active display. if (isInternalDisplay && (!activeDisplay || !activeDisplay->isPoweredOn())) { onActiveDisplayChangedLocked(activeDisplay.get(), *display); } if (displayId == mActiveDisplayId) { // TODO(b/281692563): Merge the syscalls. For now, keep uclamp in a separate syscall and // set it before SCHED_FIFO due to b/190237315. if (setSchedAttr(true) != NO_ERROR) { ALOGW("Failed to set uclamp.min after powering on active display: %s", strerror(errno)); } if (setSchedFifo(true) != NO_ERROR) { ALOGW("Failed to set SCHED_FIFO after powering on active display: %s", strerror(errno)); } } getHwComposer().setPowerMode(displayId, mode); if (mode != hal::PowerMode::DOZE_SUSPEND && (displayId == mActiveDisplayId || FlagManager::getInstance().multithreaded_present())) { const bool enable = mScheduler->getVsyncSchedule(displayId)->getPendingHardwareVsyncState(); requestHardwareVsync(displayId, enable); if (displayId == mActiveDisplayId) { mScheduler->enableSyntheticVsync(false); } constexpr bool kAllowToEnable = true; mScheduler->resyncToHardwareVsync(displayId, kAllowToEnable, activeMode.get()); } mVisibleRegionsDirty = true; scheduleComposite(FrameHint::kActive); } else if (mode == hal::PowerMode::OFF) { const bool currentModeNotDozeSuspend = (currentMode != hal::PowerMode::DOZE_SUSPEND); // Turn off the display if (displayId == mActiveDisplayId) { if (const auto display = getActivatableDisplay()) { onActiveDisplayChangedLocked(activeDisplay.get(), *display); } else { if (setSchedFifo(false) != NO_ERROR) { ALOGW("Failed to set SCHED_OTHER after powering off active display: %s", strerror(errno)); } if (setSchedAttr(false) != NO_ERROR) { ALOGW("Failed set uclamp.min after powering off active display: %s", strerror(errno)); } if (currentModeNotDozeSuspend) { if (!FlagManager::getInstance().multithreaded_present()) { mScheduler->disableHardwareVsync(displayId, true); } mScheduler->enableSyntheticVsync(); } } } if (currentModeNotDozeSuspend && FlagManager::getInstance().multithreaded_present()) { constexpr bool kDisallow = true; mScheduler->disableHardwareVsync(displayId, kDisallow); } // We must disable VSYNC *before* turning off the display. The call to // disableHardwareVsync, above, schedules a task to turn it off after // this method returns. But by that point, the display is OFF, so the // call just updates the pending state, without actually disabling // VSYNC. requestHardwareVsync(displayId, false); getHwComposer().setPowerMode(displayId, mode); mVisibleRegionsDirty = true; // from this point on, SF will stop drawing on this display } else if (mode == hal::PowerMode::DOZE || mode == hal::PowerMode::ON) { // Update display while dozing getHwComposer().setPowerMode(displayId, mode); if (currentMode == hal::PowerMode::DOZE_SUSPEND && (displayId == mActiveDisplayId || FlagManager::getInstance().multithreaded_present())) { if (displayId == mActiveDisplayId) { ALOGI("Force repainting for DOZE_SUSPEND -> DOZE or ON."); mVisibleRegionsDirty = true; scheduleRepaint(); mScheduler->enableSyntheticVsync(false); } constexpr bool kAllowToEnable = true; mScheduler->resyncToHardwareVsync(displayId, kAllowToEnable, activeMode.get()); } } else if (mode == hal::PowerMode::DOZE_SUSPEND) { // Leave display going to doze if (displayId == mActiveDisplayId || FlagManager::getInstance().multithreaded_present()) { constexpr bool kDisallow = true; mScheduler->disableHardwareVsync(displayId, kDisallow); } if (displayId == mActiveDisplayId) { mScheduler->enableSyntheticVsync(); } getHwComposer().setPowerMode(displayId, mode); } else { ALOGE("Attempting to set unknown power mode: %d\n", mode); getHwComposer().setPowerMode(displayId, mode); } if (displayId == mActiveDisplayId) { mTimeStats->setPowerMode(mode); mScheduler->setActiveDisplayPowerModeForRefreshRateStats(mode); } mScheduler->setDisplayPowerMode(displayId, mode); ALOGD("Finished setting power mode %d on display %s", mode, to_string(displayId).c_str()); } void SurfaceFlinger::setPowerMode(const sp& displayToken, int mode) { auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) FTL_FAKE_GUARD( kMainThreadContext) { mSkipPowerOnForQuiescent = false; const auto display = getDisplayDeviceLocked(displayToken); if (!display) { ALOGE("Attempt to set power mode %d for invalid display token %p", mode, displayToken.get()); } else if (display->isVirtual()) { ALOGW("Attempt to set power mode %d for virtual display", mode); } else { setPowerModeInternal(display, static_cast(mode)); } }); future.wait(); } status_t SurfaceFlinger::doDump(int fd, const DumpArgs& args, bool asProto) { std::string result; IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if ((uid != AID_SHELL) && !PermissionCache::checkPermission(sDump, pid, uid)) { StringAppendF(&result, "Permission Denial: can't dump SurfaceFlinger from pid=%d, uid=%d\n", pid, uid); write(fd, result.c_str(), result.size()); return NO_ERROR; } if (asProto && args.empty()) { perfetto::protos::LayersTraceFileProto traceFileProto = mLayerTracing.createTraceFileProto(); perfetto::protos::LayersSnapshotProto* layersTrace = traceFileProto.add_entry(); perfetto::protos::LayersProto layersProto = dumpProtoFromMainThread(); layersTrace->mutable_layers()->Swap(&layersProto); auto displayProtos = dumpDisplayProto(); layersTrace->mutable_displays()->Swap(&displayProtos); result.append(traceFileProto.SerializeAsString()); write(fd, result.c_str(), result.size()); return NO_ERROR; } static const std::unordered_map dumpers = { {"--comp-displays"s, dumper(&SurfaceFlinger::dumpCompositionDisplays)}, {"--display-id"s, dumper(&SurfaceFlinger::dumpDisplayIdentificationData)}, {"--displays"s, dumper(&SurfaceFlinger::dumpDisplays)}, {"--edid"s, argsDumper(&SurfaceFlinger::dumpRawDisplayIdentificationData)}, {"--events"s, dumper(&SurfaceFlinger::dumpEvents)}, {"--frametimeline"s, argsDumper(&SurfaceFlinger::dumpFrameTimeline)}, {"--frontend"s, mainThreadDumper(&SurfaceFlinger::dumpFrontEnd)}, {"--hdrinfo"s, dumper(&SurfaceFlinger::dumpHdrInfo)}, {"--hwclayers"s, mainThreadDumper(&SurfaceFlinger::dumpHwcLayersMinidump)}, {"--latency"s, argsMainThreadDumper(&SurfaceFlinger::dumpStats)}, {"--latency-clear"s, argsMainThreadDumper(&SurfaceFlinger::clearStats)}, {"--list"s, mainThreadDumper(&SurfaceFlinger::listLayers)}, {"--planner"s, argsDumper(&SurfaceFlinger::dumpPlannerInfo)}, {"--scheduler"s, dumper(&SurfaceFlinger::dumpScheduler)}, {"--timestats"s, protoDumper(&SurfaceFlinger::dumpTimeStats)}, {"--vsync"s, dumper(&SurfaceFlinger::dumpVsync)}, {"--wide-color"s, dumper(&SurfaceFlinger::dumpWideColorInfo)}, }; const auto flag = args.empty() ? ""s : std::string(String8(args[0])); if (const auto it = dumpers.find(flag); it != dumpers.end()) { (it->second)(args, asProto, result); write(fd, result.c_str(), result.size()); return NO_ERROR; } // Collect debug data from main thread std::string compositionLayers; mScheduler ->schedule([&]() FTL_FAKE_GUARD(mStateLock) FTL_FAKE_GUARD(kMainThreadContext) { dumpVisibleFrontEnd(compositionLayers); }) .get(); // get window info listener data without the state lock auto windowInfosDebug = mWindowInfosListenerInvoker->getDebugInfo(); compositionLayers.append("Window Infos:\n"); StringAppendF(&compositionLayers, " max send vsync id: %" PRId64 "\n", ftl::to_underlying(windowInfosDebug.maxSendDelayVsyncId)); StringAppendF(&compositionLayers, " max send delay (ns): %" PRId64 " ns\n", windowInfosDebug.maxSendDelayDuration); StringAppendF(&compositionLayers, " unsent messages: %zu\n", windowInfosDebug.pendingMessageCount); compositionLayers.append("\n"); dumpAll(args, compositionLayers, result); write(fd, result.c_str(), result.size()); return NO_ERROR; } status_t SurfaceFlinger::dumpCritical(int fd, const DumpArgs&, bool asProto) { return doDump(fd, DumpArgs(), asProto); } void SurfaceFlinger::listLayers(std::string& result) const { for (const auto& layer : mLayerLifecycleManager.getLayers()) { StringAppendF(&result, "%s\n", layer->getDebugString().c_str()); } } void SurfaceFlinger::dumpStats(const DumpArgs& args, std::string& result) const { StringAppendF(&result, "%" PRId64 "\n", mScheduler->getPacesetterVsyncPeriod().ns()); if (args.size() < 2) return; const auto name = String8(args[1]); traverseLegacyLayers([&](Layer* layer) { if (layer->getName() == name.c_str()) { layer->dumpFrameStats(result); } }); } void SurfaceFlinger::clearStats(const DumpArgs& args, std::string&) { const bool clearAll = args.size() < 2; const auto name = clearAll ? String8() : String8(args[1]); traverseLegacyLayers([&](Layer* layer) { if (clearAll || layer->getName() == name.c_str()) { layer->clearFrameStats(); } }); } void SurfaceFlinger::dumpTimeStats(const DumpArgs& args, bool asProto, std::string& result) const { mTimeStats->parseArgs(asProto, args, result); } void SurfaceFlinger::dumpFrameTimeline(const DumpArgs& args, std::string& result) const { mFrameTimeline->parseArgs(args, result); } void SurfaceFlinger::logFrameStats(TimePoint now) { static TimePoint sTimestamp = now; if (now - sTimestamp < 30min) return; sTimestamp = now; SFTRACE_CALL(); traverseLegacyLayers([&](Layer* layer) { layer->logFrameStats(); }); } void SurfaceFlinger::appendSfConfigString(std::string& result) const { result.append(" [sf"); StringAppendF(&result, " PRESENT_TIME_OFFSET=%" PRId64, dispSyncPresentTimeOffset); StringAppendF(&result, " FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv); StringAppendF(&result, " MAX_VIRT_DISPLAY_DIM=%zu", getHwComposer().getMaxVirtualDisplayDimension()); StringAppendF(&result, " RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework); StringAppendF(&result, " NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64, maxFrameBufferAcquiredBuffers); result.append("]"); } void SurfaceFlinger::dumpScheduler(std::string& result) const { utils::Dumper dumper{result}; mScheduler->dump(dumper); // TODO(b/241285876): Move to DisplayModeController. dumper.dump("debugDisplayModeSetByBackdoor"sv, mDebugDisplayModeSetByBackdoor); dumper.eol(); } void SurfaceFlinger::dumpEvents(std::string& result) const { mScheduler->dump(scheduler::Cycle::Render, result); } void SurfaceFlinger::dumpVsync(std::string& result) const { mScheduler->dumpVsync(result); } void SurfaceFlinger::dumpPlannerInfo(const DumpArgs& args, std::string& result) const { for (const auto& [token, display] : mDisplays) { const auto compositionDisplay = display->getCompositionDisplay(); compositionDisplay->dumpPlannerInfo(args, result); } } void SurfaceFlinger::dumpCompositionDisplays(std::string& result) const { for (const auto& [token, display] : mDisplays) { display->getCompositionDisplay()->dump(result); result += '\n'; } } void SurfaceFlinger::dumpDisplays(std::string& result) const { utils::Dumper dumper{result}; for (const auto& [id, display] : mPhysicalDisplays) { utils::Dumper::Section section(dumper, ftl::Concat("Display ", id.value).str()); display.snapshot().dump(dumper); if (const auto device = getDisplayDeviceLocked(id)) { device->dump(dumper); } } for (const auto& [token, display] : mDisplays) { if (display->isVirtual()) { const auto displayId = display->getId(); utils::Dumper::Section section(dumper, ftl::Concat("Virtual Display ", displayId.value).str()); display->dump(dumper); if (const auto virtualIdOpt = VirtualDisplayId::tryCast(displayId)) { std::lock_guard lock(mVirtualDisplaysMutex); const auto virtualSnapshotIt = mVirtualDisplays.find(virtualIdOpt.value()); if (virtualSnapshotIt != mVirtualDisplays.end()) { virtualSnapshotIt->second.dump(dumper); } } } } } void SurfaceFlinger::dumpDisplayIdentificationData(std::string& result) const { for (const auto& [token, display] : mDisplays) { const auto displayId = PhysicalDisplayId::tryCast(display->getId()); if (!displayId) { continue; } const auto hwcDisplayId = getHwComposer().fromPhysicalDisplayId(*displayId); if (!hwcDisplayId) { continue; } StringAppendF(&result, "Display %s (HWC display %" PRIu64 "): ", to_string(*displayId).c_str(), *hwcDisplayId); uint8_t port; DisplayIdentificationData data; if (!getHwComposer().getDisplayIdentificationData(*hwcDisplayId, &port, &data)) { result.append("no display identification data\n"); continue; } if (data.empty()) { result.append("empty display identification data\n"); continue; } if (!isEdid(data)) { result.append("unknown format for display identification data\n"); continue; } const auto edid = parseEdid(data); if (!edid) { result.append("invalid EDID\n"); continue; } StringAppendF(&result, "port=%u pnpId=%s displayName=\"", port, edid->pnpId.data()); result.append(edid->displayName.data(), edid->displayName.length()); result.append("\"\n"); } } void SurfaceFlinger::dumpRawDisplayIdentificationData(const DumpArgs& args, std::string& result) const { hal::HWDisplayId hwcDisplayId; uint8_t port; DisplayIdentificationData data; if (args.size() > 1 && base::ParseUint(String8(args[1]), &hwcDisplayId) && getHwComposer().getDisplayIdentificationData(hwcDisplayId, &port, &data)) { result.append(reinterpret_cast(data.data()), data.size()); } } void SurfaceFlinger::dumpWideColorInfo(std::string& result) const { StringAppendF(&result, "Device supports wide color: %d\n", mSupportsWideColor); StringAppendF(&result, "DisplayColorSetting: %s\n", decodeDisplayColorSetting(mDisplayColorSetting).c_str()); // TODO: print out if wide-color mode is active or not. for (const auto& [id, display] : mPhysicalDisplays) { StringAppendF(&result, "Display %s color modes:\n", to_string(id).c_str()); for (const auto mode : display.snapshot().colorModes()) { StringAppendF(&result, " %s (%d)\n", decodeColorMode(mode).c_str(), fmt::underlying(mode)); } if (const auto display = getDisplayDeviceLocked(id)) { ui::ColorMode currentMode = display->getCompositionDisplay()->getState().colorMode; StringAppendF(&result, " Current color mode: %s (%d)\n", decodeColorMode(currentMode).c_str(), fmt::underlying(currentMode)); } } result.append("\n"); } void SurfaceFlinger::dumpHdrInfo(std::string& result) const { for (const auto& [displayId, listener] : mHdrLayerInfoListeners) { StringAppendF(&result, "HDR events for display %" PRIu64 "\n", displayId.value); listener->dump(result); result.append("\n"); } } void SurfaceFlinger::dumpFrontEnd(std::string& result) { std::ostringstream out; out << "\nComposition list (bottom to top)\n"; ui::LayerStack lastPrintedLayerStackHeader = ui::INVALID_LAYER_STACK; for (const auto& snapshot : mLayerSnapshotBuilder.getSnapshots()) { if (lastPrintedLayerStackHeader != snapshot->outputFilter.layerStack) { lastPrintedLayerStackHeader = snapshot->outputFilter.layerStack; out << "LayerStack=" << lastPrintedLayerStackHeader.id << "\n"; } out << " " << *snapshot << "\n"; } out << "\nInput list\n"; lastPrintedLayerStackHeader = ui::INVALID_LAYER_STACK; mLayerSnapshotBuilder.forEachInputSnapshot([&](const frontend::LayerSnapshot& snapshot) { if (lastPrintedLayerStackHeader != snapshot.outputFilter.layerStack) { lastPrintedLayerStackHeader = snapshot.outputFilter.layerStack; out << "LayerStack=" << lastPrintedLayerStackHeader.id << "\n"; } out << " " << snapshot << "\n"; }); out << "\nLayer Hierarchy\n" << mLayerHierarchyBuilder.getHierarchy().dump() << "\nOffscreen Hierarchy\n" << mLayerHierarchyBuilder.getOffscreenHierarchy().dump() << "\n\n"; result.append(out.str()); } void SurfaceFlinger::dumpVisibleFrontEnd(std::string& result) { std::ostringstream out; out << "\nComposition list (bottom to top)\n"; ui::LayerStack lastPrintedLayerStackHeader = ui::INVALID_LAYER_STACK; mLayerSnapshotBuilder.forEachVisibleSnapshot( [&](std::unique_ptr& snapshot) { if (snapshot->hasSomethingToDraw()) { if (lastPrintedLayerStackHeader != snapshot->outputFilter.layerStack) { lastPrintedLayerStackHeader = snapshot->outputFilter.layerStack; out << "LayerStack=" << lastPrintedLayerStackHeader.id << "\n"; } out << " " << *snapshot << "\n"; } }); out << "\nInput list\n"; lastPrintedLayerStackHeader = ui::INVALID_LAYER_STACK; mLayerSnapshotBuilder.forEachInputSnapshot([&](const frontend::LayerSnapshot& snapshot) { if (lastPrintedLayerStackHeader != snapshot.outputFilter.layerStack) { lastPrintedLayerStackHeader = snapshot.outputFilter.layerStack; out << "LayerStack=" << lastPrintedLayerStackHeader.id << "\n"; } out << " " << snapshot << "\n"; }); out << "\nLayer Hierarchy\n" << mLayerHierarchyBuilder.getHierarchy() << "\nOffscreen Hierarchy\n" << mLayerHierarchyBuilder.getOffscreenHierarchy() << "\n\n"; result = out.str(); dumpHwcLayersMinidump(result); } perfetto::protos::LayersProto SurfaceFlinger::dumpDrawingStateProto(uint32_t traceFlags) const { std::unordered_set stackIdsToSkip; // Determine if virtual layers display should be skipped if ((traceFlags & LayerTracing::TRACE_VIRTUAL_DISPLAYS) == 0) { for (const auto& [_, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) { if (display->isVirtual()) { stackIdsToSkip.insert(display->getLayerStack().id); } } } auto traceGenerator = LayerProtoFromSnapshotGenerator(mLayerSnapshotBuilder, mFrontEndDisplayInfos, mLegacyLayers, traceFlags) .with(mLayerHierarchyBuilder.getHierarchy()); if (traceFlags & LayerTracing::Flag::TRACE_EXTRA) { traceGenerator.withOffscreenLayers(mLayerHierarchyBuilder.getOffscreenHierarchy()); } return traceGenerator.generate(); } google::protobuf::RepeatedPtrField SurfaceFlinger::dumpDisplayProto() const { google::protobuf::RepeatedPtrField displays; for (const auto& [_, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) { perfetto::protos::DisplayProto* displayProto = displays.Add(); displayProto->set_id(display->getId().value); displayProto->set_name(display->getDisplayName()); displayProto->set_layer_stack(display->getLayerStack().id); if (!display->isVirtual()) { const auto dpi = display->refreshRateSelector().getActiveMode().modePtr->getDpi(); displayProto->set_dpi_x(dpi.x); displayProto->set_dpi_y(dpi.y); } LayerProtoHelper::writeSizeToProto(display->getWidth(), display->getHeight(), [&]() { return displayProto->mutable_size(); }); LayerProtoHelper::writeToProto(display->getLayerStackSpaceRect(), [&]() { return displayProto->mutable_layer_stack_space_rect(); }); LayerProtoHelper::writeTransformToProto(display->getTransform(), displayProto->mutable_transform()); displayProto->set_is_virtual(display->isVirtual()); } return displays; } void SurfaceFlinger::dumpHwc(std::string& result) const { getHwComposer().dump(result); } perfetto::protos::LayersProto SurfaceFlinger::dumpProtoFromMainThread(uint32_t traceFlags) { return mScheduler ->schedule([=, this]() FTL_FAKE_GUARD(kMainThreadContext) { return dumpDrawingStateProto(traceFlags); }) .get(); } void SurfaceFlinger::dumpHwcLayersMinidump(std::string& result) const { for (const auto& [token, display] : mDisplays) { const auto displayId = HalDisplayId::tryCast(display->getId()); if (!displayId) { continue; } StringAppendF(&result, "Display %s (%s) HWC layers:\n", to_string(*displayId).c_str(), displayId == mActiveDisplayId ? "active" : "inactive"); Layer::miniDumpHeader(result); const DisplayDevice& ref = *display; mLayerSnapshotBuilder.forEachVisibleSnapshot( [&](const frontend::LayerSnapshot& snapshot) FTL_FAKE_GUARD(kMainThreadContext) { if (!snapshot.hasSomethingToDraw() || ref.getLayerStack() != snapshot.outputFilter.layerStack) { return; } auto it = mLegacyLayers.find(snapshot.sequence); LLOG_ALWAYS_FATAL_WITH_TRACE_IF(it == mLegacyLayers.end(), "Couldnt find layer object for %s", snapshot.getDebugString().c_str()); it->second->miniDump(result, snapshot, ref); }); result.append("\n"); } } void SurfaceFlinger::dumpAll(const DumpArgs& args, const std::string& compositionLayers, std::string& result) const { TimedLock lock(mStateLock, s2ns(1), __func__); if (!lock.locked()) { StringAppendF(&result, "Dumping without lock after timeout: %s (%d)\n", strerror(-lock.status), lock.status); } const bool colorize = !args.empty() && args[0] == String16("--color"); Colorizer colorizer(colorize); // figure out if we're stuck somewhere const nsecs_t now = systemTime(); const nsecs_t inTransaction(mDebugInTransaction); nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0; /* * Dump library configuration. */ colorizer.bold(result); result.append("Build configuration:"); colorizer.reset(result); appendSfConfigString(result); result.append("\n"); result.append("\nDisplay identification data:\n"); dumpDisplayIdentificationData(result); result.append("\nWide-Color information:\n"); dumpWideColorInfo(result); dumpHdrInfo(result); colorizer.bold(result); result.append("Sync configuration: "); colorizer.reset(result); result.append(SyncFeatures::getInstance().toString()); result.append("\n\n"); colorizer.bold(result); result.append("Scheduler:\n"); colorizer.reset(result); dumpScheduler(result); dumpEvents(result); dumpVsync(result); result.append("\n"); /* * Dump the visible layer list */ colorizer.bold(result); StringAppendF(&result, "SurfaceFlinger New Frontend Enabled:%s\n", "true"); StringAppendF(&result, "Active Layers - layers with client handles (count = %zu)\n", mNumLayers.load()); colorizer.reset(result); result.append(compositionLayers); colorizer.bold(result); StringAppendF(&result, "Displays (%zu entries)\n", mDisplays.size()); colorizer.reset(result); dumpDisplays(result); dumpCompositionDisplays(result); result.push_back('\n'); mCompositionEngine->dump(result); /* * Dump SurfaceFlinger global state */ colorizer.bold(result); result.append("SurfaceFlinger global state:\n"); colorizer.reset(result); getRenderEngine().dump(result); result.append("ClientCache state:\n"); ClientCache::getInstance().dump(result); DebugEGLImageTracker::getInstance()->dump(result); if (const auto display = getDefaultDisplayDeviceLocked()) { display->getCompositionDisplay()->getState().undefinedRegion.dump(result, "undefinedRegion"); StringAppendF(&result, " orientation=%s, isPoweredOn=%d\n", toCString(display->getOrientation()), display->isPoweredOn()); } StringAppendF(&result, " transaction-flags : %08x\n", mTransactionFlags.load()); if (const auto display = getDefaultDisplayDeviceLocked()) { std::string peakFps, xDpi, yDpi; const auto activeMode = display->refreshRateSelector().getActiveMode(); if (const auto activeModePtr = activeMode.modePtr.get()) { peakFps = to_string(activeMode.modePtr->getPeakFps()); const auto dpi = activeModePtr->getDpi(); xDpi = base::StringPrintf("%.2f", dpi.x); yDpi = base::StringPrintf("%.2f", dpi.y); } else { peakFps = "unknown"; xDpi = "unknown"; yDpi = "unknown"; } StringAppendF(&result, " peak-refresh-rate : %s\n" " x-dpi : %s\n" " y-dpi : %s\n", peakFps.c_str(), xDpi.c_str(), yDpi.c_str()); } StringAppendF(&result, " transaction time: %f us\n", inTransactionDuration / 1000.0); result.append("\nTransaction tracing: "); if (mTransactionTracing) { result.append("enabled\n"); mTransactionTracing->dump(result); } else { result.append("disabled\n"); } result.push_back('\n'); { DumpArgs plannerArgs; plannerArgs.add(); // first argument is ignored plannerArgs.add(String16("--layers")); dumpPlannerInfo(plannerArgs, result); } /* * Dump HWComposer state */ colorizer.bold(result); result.append("h/w composer state:\n"); colorizer.reset(result); const bool hwcDisabled = mDebugDisableHWC || mDebugFlashDelay; StringAppendF(&result, " h/w composer %s\n", hwcDisabled ? "disabled" : "enabled"); dumpHwc(result); /* * Dump gralloc state */ const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get()); alloc.dump(result); /* * Dump flag/property manager state */ FlagManager::getInstance().dump(result); result.append(mTimeStats->miniDump()); result.append("\n"); } mat4 SurfaceFlinger::calculateColorMatrix(float saturation) { if (saturation == 1) { return mat4(); } float3 luminance{0.213f, 0.715f, 0.072f}; luminance *= 1.0f - saturation; mat4 saturationMatrix = mat4(vec4{luminance.r + saturation, luminance.r, luminance.r, 0.0f}, vec4{luminance.g, luminance.g + saturation, luminance.g, 0.0f}, vec4{luminance.b, luminance.b, luminance.b + saturation, 0.0f}, vec4{0.0f, 0.0f, 0.0f, 1.0f}); return saturationMatrix; } void SurfaceFlinger::updateColorMatrixLocked() { mat4 colorMatrix = mClientColorMatrix * calculateColorMatrix(mGlobalSaturationFactor) * mDaltonizer(); if (mCurrentState.colorMatrix != colorMatrix) { mCurrentState.colorMatrix = colorMatrix; mCurrentState.colorMatrixChanged = true; setTransactionFlags(eTransactionNeeded); } } status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) { #pragma clang diagnostic push #pragma clang diagnostic error "-Wswitch-enum" switch (static_cast(code)) { // These methods should at minimum make sure that the client requested // access to SF. case GET_HDR_CAPABILITIES: case GET_AUTO_LOW_LATENCY_MODE_SUPPORT: case GET_GAME_CONTENT_TYPE_SUPPORT: case ACQUIRE_FRAME_RATE_FLEXIBILITY_TOKEN: { // OVERRIDE_HDR_TYPES is used by CTS tests, which acquire the necessary // permission dynamically. Don't use the permission cache for this check. bool usePermissionCache = code != OVERRIDE_HDR_TYPES; if (!callingThreadHasUnscopedSurfaceFlingerAccess(usePermissionCache)) { IPCThreadState* ipc = IPCThreadState::self(); ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d", ipc->getCallingPid(), ipc->getCallingUid()); return PERMISSION_DENIED; } return OK; } // The following calls are currently used by clients that do not // request necessary permissions. However, they do not expose any secret // information, so it is OK to pass them. case GET_ACTIVE_COLOR_MODE: case GET_ACTIVE_DISPLAY_MODE: case GET_DISPLAY_COLOR_MODES: case GET_DISPLAY_MODES: case GET_SCHEDULING_POLICY: // Calling setTransactionState is safe, because you need to have been // granted a reference to Client* and Handle* to do anything with it. case SET_TRANSACTION_STATE: { // This is not sensitive information, so should not require permission control. return OK; } case BOOT_FINISHED: // Used by apps to hook Choreographer to SurfaceFlinger. case CREATE_DISPLAY_EVENT_CONNECTION: case CREATE_CONNECTION: case CREATE_VIRTUAL_DISPLAY: case DESTROY_VIRTUAL_DISPLAY: case GET_PRIMARY_PHYSICAL_DISPLAY_ID: case GET_PHYSICAL_DISPLAY_IDS: case GET_PHYSICAL_DISPLAY_TOKEN: case AUTHENTICATE_SURFACE: case SET_POWER_MODE: case GET_SUPPORTED_FRAME_TIMESTAMPS: case GET_DISPLAY_STATE: case GET_DISPLAY_STATS: case GET_STATIC_DISPLAY_INFO: case GET_DYNAMIC_DISPLAY_INFO: case GET_DISPLAY_NATIVE_PRIMARIES: case SET_ACTIVE_COLOR_MODE: case SET_BOOT_DISPLAY_MODE: case CLEAR_BOOT_DISPLAY_MODE: case GET_BOOT_DISPLAY_MODE_SUPPORT: case SET_AUTO_LOW_LATENCY_MODE: case SET_GAME_CONTENT_TYPE: case CAPTURE_LAYERS: case CAPTURE_DISPLAY: case CAPTURE_DISPLAY_BY_ID: case CLEAR_ANIMATION_FRAME_STATS: case GET_ANIMATION_FRAME_STATS: case OVERRIDE_HDR_TYPES: case ON_PULL_ATOM: case ENABLE_VSYNC_INJECTIONS: case INJECT_VSYNC: case GET_LAYER_DEBUG_INFO: case GET_COLOR_MANAGEMENT: case GET_COMPOSITION_PREFERENCE: case GET_DISPLAYED_CONTENT_SAMPLING_ATTRIBUTES: case SET_DISPLAY_CONTENT_SAMPLING_ENABLED: case GET_DISPLAYED_CONTENT_SAMPLE: case GET_PROTECTED_CONTENT_SUPPORT: case IS_WIDE_COLOR_DISPLAY: case ADD_REGION_SAMPLING_LISTENER: case REMOVE_REGION_SAMPLING_LISTENER: case ADD_FPS_LISTENER: case REMOVE_FPS_LISTENER: case ADD_TUNNEL_MODE_ENABLED_LISTENER: case REMOVE_TUNNEL_MODE_ENABLED_LISTENER: case ADD_WINDOW_INFOS_LISTENER: case REMOVE_WINDOW_INFOS_LISTENER: case SET_DESIRED_DISPLAY_MODE_SPECS: case GET_DESIRED_DISPLAY_MODE_SPECS: case GET_DISPLAY_BRIGHTNESS_SUPPORT: case SET_DISPLAY_BRIGHTNESS: case ADD_HDR_LAYER_INFO_LISTENER: case REMOVE_HDR_LAYER_INFO_LISTENER: case NOTIFY_POWER_BOOST: case SET_GLOBAL_SHADOW_SETTINGS: case GET_DISPLAY_DECORATION_SUPPORT: case SET_FRAME_RATE: case SET_OVERRIDE_FRAME_RATE: case SET_FRAME_TIMELINE_INFO: case ADD_TRANSACTION_TRACE_LISTENER: case GET_GPU_CONTEXT_PRIORITY: case GET_MAX_ACQUIRED_BUFFER_COUNT: LOG_FATAL("Deprecated opcode: %d, migrated to AIDL", code); return PERMISSION_DENIED; } // These codes are used for the IBinder protocol to either interrogate the recipient // side of the transaction for its canonical interface descriptor or to dump its state. // We let them pass by default. if (code == IBinder::INTERFACE_TRANSACTION || code == IBinder::DUMP_TRANSACTION || code == IBinder::PING_TRANSACTION || code == IBinder::SHELL_COMMAND_TRANSACTION || code == IBinder::SYSPROPS_TRANSACTION) { return OK; } // Numbers from 1000 to 1045 are currently used for backdoors. The code // in onTransact verifies that the user is root, and has access to use SF. if (code >= 1000 && code <= 1046) { ALOGV("Accessing SurfaceFlinger through backdoor code: %u", code); return OK; } ALOGE("Permission Denial: SurfaceFlinger did not recognize request code: %u", code); return PERMISSION_DENIED; #pragma clang diagnostic pop } status_t SurfaceFlinger::onTransact(uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { if (const status_t error = CheckTransactCodeCredentials(code); error != OK) { return error; } status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags); if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) { CHECK_INTERFACE(ISurfaceComposer, data, reply); IPCThreadState* ipc = IPCThreadState::self(); const int uid = ipc->getCallingUid(); if (CC_UNLIKELY(uid != AID_SYSTEM && !PermissionCache::checkCallingPermission(sHardwareTest))) { const int pid = ipc->getCallingPid(); ALOGE("Permission Denial: " "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid); return PERMISSION_DENIED; } int n; switch (code) { case 1000: // Unused. case 1001: return NAME_NOT_FOUND; case 1002: // Toggle flashing on surface damage. sfdo_setDebugFlash(data.readInt32()); return NO_ERROR; case 1004: // Force composite ahead of next VSYNC. case 1006: sfdo_scheduleComposite(); return NO_ERROR; case 1005: { // Force commit ahead of next VSYNC. sfdo_scheduleCommit(); return NO_ERROR; } case 1007: // Unused. return NAME_NOT_FOUND; case 1008: // Toggle forced GPU composition. sfdo_forceClientComposition(data.readInt32() != 0); return NO_ERROR; case 1009: // Toggle use of transform hint. mDebugDisableTransformHint = data.readInt32() != 0; scheduleRepaint(); return NO_ERROR; case 1010: // Interrogate. reply->writeInt32(0); reply->writeInt32(0); reply->writeInt32(mDebugFlashDelay); reply->writeInt32(0); reply->writeInt32(mDebugDisableHWC); return NO_ERROR; case 1013: // Unused. return NAME_NOT_FOUND; case 1014: { Mutex::Autolock _l(mStateLock); // daltonize n = data.readInt32(); mDaltonizer.setLevel(data.readInt32()); switch (n % 10) { case 1: mDaltonizer.setType(ColorBlindnessType::Protanomaly); break; case 2: mDaltonizer.setType(ColorBlindnessType::Deuteranomaly); break; case 3: mDaltonizer.setType(ColorBlindnessType::Tritanomaly); break; default: mDaltonizer.setType(ColorBlindnessType::None); break; } if (n >= 10) { mDaltonizer.setMode(ColorBlindnessMode::Correction); } else { mDaltonizer.setMode(ColorBlindnessMode::Simulation); } updateColorMatrixLocked(); return NO_ERROR; } case 1015: { Mutex::Autolock _l(mStateLock); // apply a color matrix n = data.readInt32(); if (n) { // color matrix is sent as a column-major mat4 matrix for (size_t i = 0 ; i < 4; i++) { for (size_t j = 0; j < 4; j++) { mClientColorMatrix[i][j] = data.readFloat(); } } } else { mClientColorMatrix = mat4(); } // Check that supplied matrix's last row is {0,0,0,1} so we can avoid // the division by w in the fragment shader float4 lastRow(transpose(mClientColorMatrix)[3]); if (any(greaterThan(abs(lastRow - float4{0, 0, 0, 1}), float4{1e-4f}))) { ALOGE("The color transform's last row must be (0, 0, 0, 1)"); } updateColorMatrixLocked(); return NO_ERROR; } case 1016: { // Unused. return NAME_NOT_FOUND; } case 1017: { n = data.readInt32(); mForceFullDamage = n != 0; return NO_ERROR; } case 1018: { // Set the render deadline as a duration until VSYNC. n = data.readInt32(); mScheduler->setDuration(scheduler::Cycle::Render, std::chrono::nanoseconds(n), 0ns); return NO_ERROR; } case 1019: { // Set the deadline of the last composite as a duration until VSYNC. n = data.readInt32(); mScheduler->setDuration(scheduler::Cycle::LastComposite, std::chrono::nanoseconds(n), 0ns); return NO_ERROR; } case 1020: { // Unused return NAME_NOT_FOUND; } case 1021: { // Disable HWC virtual displays const bool enable = data.readInt32() != 0; static_cast( mScheduler->schedule([this, enable] { enableHalVirtualDisplays(enable); })); return NO_ERROR; } case 1022: { // Set saturation boost Mutex::Autolock _l(mStateLock); mGlobalSaturationFactor = std::max(0.0f, std::min(data.readFloat(), 2.0f)); updateColorMatrixLocked(); return NO_ERROR; } case 1023: { // Set color mode. mDisplayColorSetting = static_cast(data.readInt32()); if (int32_t colorMode; data.readInt32(&colorMode) == NO_ERROR) { mForceColorMode = static_cast(colorMode); } scheduleRepaint(); return NO_ERROR; } // Deprecate, use 1030 to check whether the device is color managed. case 1024: { return NAME_NOT_FOUND; } // Deprecated, use perfetto to start/stop the layer tracing case 1025: { return NAME_NOT_FOUND; } // Deprecated, execute "adb shell perfetto --query" to see the ongoing tracing sessions case 1026: { return NAME_NOT_FOUND; } // Is a DisplayColorSetting supported? case 1027: { const auto display = getDefaultDisplayDevice(); if (!display) { return NAME_NOT_FOUND; } DisplayColorSetting setting = static_cast(data.readInt32()); switch (setting) { case DisplayColorSetting::kManaged: case DisplayColorSetting::kUnmanaged: reply->writeBool(true); break; case DisplayColorSetting::kEnhanced: reply->writeBool(display->hasRenderIntent(RenderIntent::ENHANCE)); break; default: // vendor display color setting reply->writeBool( display->hasRenderIntent(static_cast(setting))); break; } return NO_ERROR; } case 1028: { // Unused. return NAME_NOT_FOUND; } // Deprecated, use perfetto to set the active layer tracing buffer size case 1029: { return NAME_NOT_FOUND; } // Is device color managed? case 1030: { // ColorDisplayManager stil calls this reply->writeBool(true); return NO_ERROR; } // Override default composition data space // adb shell service call SurfaceFlinger 1031 i32 1 DATASPACE_NUMBER DATASPACE_NUMBER \ // && adb shell stop zygote && adb shell start zygote // to restore: adb shell service call SurfaceFlinger 1031 i32 0 && \ // adb shell stop zygote && adb shell start zygote case 1031: { Mutex::Autolock _l(mStateLock); n = data.readInt32(); if (n) { n = data.readInt32(); if (n) { Dataspace dataspace = static_cast(n); if (!validateCompositionDataspace(dataspace)) { return BAD_VALUE; } mDefaultCompositionDataspace = dataspace; } n = data.readInt32(); if (n) { Dataspace dataspace = static_cast(n); if (!validateCompositionDataspace(dataspace)) { return BAD_VALUE; } mWideColorGamutCompositionDataspace = dataspace; } } else { // restore composition data space. mDefaultCompositionDataspace = defaultCompositionDataspace; mWideColorGamutCompositionDataspace = wideColorGamutCompositionDataspace; } return NO_ERROR; } // Deprecated, use perfetto to set layer trace flags case 1033: { return NAME_NOT_FOUND; } case 1034: { n = data.readInt32(); if (n == 0 || n == 1) { sfdo_enableRefreshRateOverlay(static_cast(n)); } else { Mutex::Autolock lock(mStateLock); reply->writeBool(isRefreshRateOverlayEnabled()); } return NO_ERROR; } case 1035: { // Parameters: // - (required) i32 mode id. // - (optional) i64 display id. Using default display if not provided. // - (optional) f min render rate. Using mode's fps is not provided. // - (optional) f max render rate. Using mode's fps is not provided. const int modeId = data.readInt32(); const auto display = [&]() -> sp { uint64_t value; if (data.readUint64(&value) != NO_ERROR) { return getDefaultDisplayDevice()->getDisplayToken().promote(); } if (const auto id = DisplayId::fromValue(value)) { return getPhysicalDisplayToken(*id); } ALOGE("Invalid physical display ID"); return nullptr; }(); const auto getFps = [&] { float value; if (data.readFloat(&value) == NO_ERROR) { return Fps::fromValue(value); } return Fps(); }; const auto minFps = getFps(); const auto maxFps = getFps(); mDebugDisplayModeSetByBackdoor = false; const status_t result = setActiveModeFromBackdoor(display, DisplayModeId{modeId}, minFps, maxFps); mDebugDisplayModeSetByBackdoor = result == NO_ERROR; return result; } // Turn on/off frame rate flexibility mode. When turned on it overrides the display // manager frame rate policy a new policy which allows switching between all refresh // rates. case 1036: { if (data.readInt32() > 0) { // turn on return mScheduler ->schedule([this]() FTL_FAKE_GUARD(kMainThreadContext) { const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked()); // This is a little racy, but not in a way that hurts anything. As // we grab the defaultMode from the display manager policy, we could // be setting a new display manager policy, leaving us using a stale // defaultMode. The defaultMode doesn't matter for the override // policy though, since we set allowGroupSwitching to true, so it's // not a problem. scheduler::RefreshRateSelector::OverridePolicy overridePolicy; overridePolicy.defaultMode = display->refreshRateSelector() .getDisplayManagerPolicy() .defaultMode; overridePolicy.allowGroupSwitching = true; return setDesiredDisplayModeSpecsInternal(display, overridePolicy); }) .get(); } else { // turn off return mScheduler ->schedule([this]() FTL_FAKE_GUARD(kMainThreadContext) { const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked()); return setDesiredDisplayModeSpecsInternal( display, scheduler::RefreshRateSelector::NoOverridePolicy{}); }) .get(); } } // Inject a hotplug connected event for the primary display. This will deallocate and // reallocate the display state including framebuffers. case 1037: { const hal::HWDisplayId hwcId = (Mutex::Autolock(mStateLock), getHwComposer().getPrimaryHwcDisplayId()); onComposerHalHotplugEvent(hwcId, DisplayHotplugEvent::CONNECTED); return NO_ERROR; } // Modify the max number of display frames stored within FrameTimeline case 1038: { n = data.readInt32(); if (n < 0 || n > MAX_ALLOWED_DISPLAY_FRAMES) { ALOGW("Invalid max size. Maximum allowed is %d", MAX_ALLOWED_DISPLAY_FRAMES); return BAD_VALUE; } if (n == 0) { // restore to default mFrameTimeline->reset(); return NO_ERROR; } mFrameTimeline->setMaxDisplayFrames(n); return NO_ERROR; } case 1039: { const auto uid = static_cast(data.readInt32()); const auto refreshRate = data.readFloat(); mScheduler->setPreferredRefreshRateForUid(FrameRateOverride{uid, refreshRate}); return NO_ERROR; } // Toggle caching feature // First argument is an int32 - nonzero enables caching and zero disables caching // Second argument is an optional uint64 - if present, then limits enabling/disabling // caching to a particular physical display case 1040: { auto future = mScheduler->schedule([&] { n = data.readInt32(); std::optional inputId = std::nullopt; if (uint64_t inputDisplayId; data.readUint64(&inputDisplayId) == NO_ERROR) { inputId = DisplayId::fromValue(inputDisplayId); if (!inputId || getPhysicalDisplayToken(*inputId)) { ALOGE("No display with id: %" PRIu64, inputDisplayId); return NAME_NOT_FOUND; } } { Mutex::Autolock lock(mStateLock); mLayerCachingEnabled = n != 0; for (const auto& [_, display] : mDisplays) { if (!inputId || *inputId == display->getPhysicalId()) { display->enableLayerCaching(mLayerCachingEnabled); } } } return OK; }); if (const status_t error = future.get(); error != OK) { return error; } scheduleRepaint(); return NO_ERROR; } case 1041: { // Transaction tracing if (mTransactionTracing) { int arg = data.readInt32(); if (arg == -1) { mScheduler->schedule([&]() { mTransactionTracing.reset(); }).get(); } else if (arg > 0) { // Transaction tracing is always running but allow the user to temporarily // increase the buffer when actively debugging. mTransactionTracing->setBufferSize( TransactionTracing::LEGACY_ACTIVE_TRACING_BUFFER_SIZE); } else { TransactionTraceWriter::getInstance().invoke("", /* overwrite= */ true); mTransactionTracing->setBufferSize( TransactionTracing::CONTINUOUS_TRACING_BUFFER_SIZE); } } reply->writeInt32(NO_ERROR); return NO_ERROR; } case 1042: { // Write transaction trace to file if (mTransactionTracing) { mTransactionTracing->writeToFile(); } reply->writeInt32(NO_ERROR); return NO_ERROR; } // hdr sdr ratio overlay case 1043: { auto future = mScheduler->schedule( [&]() FTL_FAKE_GUARD(mStateLock) FTL_FAKE_GUARD(kMainThreadContext) { n = data.readInt32(); if (n == 0 || n == 1) { mHdrSdrRatioOverlay = n != 0; enableHdrSdrRatioOverlay(mHdrSdrRatioOverlay); } else { reply->writeBool(isHdrSdrRatioOverlayEnabled()); } }); future.wait(); return NO_ERROR; } case 1044: { // Enable/Disable mirroring from one display to another /* * Mirror one display onto another. * Ensure the source and destination displays are on. * Commands: * 0: Mirror one display to another * 1: Disable mirroring to a previously mirrored display * 2: Disable mirroring on previously mirrored displays * * Ex: * Get the display ids: * adb shell dumpsys SurfaceFlinger --display-id * Mirror first display to the second: * adb shell service call SurfaceFlinger 1044 i64 0 i64 4619827677550801152 i64 * 4619827677550801153 * Stop mirroring: * adb shell service call SurfaceFlinger 1044 i64 1 */ int64_t arg0 = data.readInt64(); switch (arg0) { case 0: { // Mirror arg1 to arg2 int64_t arg1 = data.readInt64(); int64_t arg2 = data.readInt64(); // Enable mirroring for one display const auto display1id = DisplayId::fromValue(arg1); auto mirrorRoot = SurfaceComposerClient::getDefault()->mirrorDisplay( display1id.value()); auto id2 = DisplayId::fromValue(arg2); const auto token2 = getPhysicalDisplayToken(*id2); ui::LayerStack layerStack; { Mutex::Autolock lock(mStateLock); sp display = getDisplayDeviceLocked(token2); layerStack = display->getLayerStack(); } SurfaceComposerClient::Transaction t; t.setDisplayLayerStack(token2, layerStack); t.setLayer(mirrorRoot, INT_MAX); // Top-most layer t.setLayerStack(mirrorRoot, layerStack); t.apply(); mMirrorMapForDebug.emplace_or_replace(arg2, mirrorRoot); break; } case 1: { // Disable mirroring for arg1 int64_t arg1 = data.readInt64(); mMirrorMapForDebug.erase(arg1); break; } case 2: { // Disable mirroring for all displays mMirrorMapForDebug.clear(); break; } default: return BAD_VALUE; } return NO_ERROR; } // Inject jank // First argument is a float that describes the fraction of frame duration to jank by. // Second argument is a delay in ms for triggering the jank. This is useful for working // with tools that steal the adb connection. This argument is optional. case 1045: { if (FlagManager::getInstance().vrr_config()) { float jankAmount = data.readFloat(); int32_t jankDelayMs = 0; if (data.readInt32(&jankDelayMs) != NO_ERROR) { jankDelayMs = 0; } const auto jankDelayDuration = Duration(std::chrono::milliseconds(jankDelayMs)); const bool jankAmountValid = jankAmount > 0.0 && jankAmount < 100.0; if (!jankAmountValid) { ALOGD("Ignoring invalid jank amount: %f", jankAmount); reply->writeInt32(BAD_VALUE); return BAD_VALUE; } (void)mScheduler->scheduleDelayed( [&, jankAmount]() FTL_FAKE_GUARD(kMainThreadContext) { mScheduler->injectPacesetterDelay(jankAmount); scheduleComposite(FrameHint::kActive); }, jankDelayDuration.ns()); reply->writeInt32(NO_ERROR); return NO_ERROR; } return err; } // Introduce jank to HWC case 1046: { int32_t jankDelayMs = 0; if (data.readInt32(&jankDelayMs) != NO_ERROR) { return BAD_VALUE; } mScheduler->setDebugPresentDelay(TimePoint::fromNs(ms2ns(jankDelayMs))); return NO_ERROR; } } } return err; } void SurfaceFlinger::kernelTimerChanged(bool expired) { static bool updateOverlay = property_get_bool("debug.sf.kernel_idle_timer_update_overlay", true); if (!updateOverlay) return; // Update the overlay on the main thread to avoid race conditions with // RefreshRateSelector::getActiveMode static_cast(mScheduler->schedule([=, this]() FTL_FAKE_GUARD(kMainThreadContext) { const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked()); if (!display) { ALOGW("%s: default display is null", __func__); return; } if (!display->isRefreshRateOverlayEnabled()) return; const auto state = mDisplayModeController.getKernelIdleTimerState(display->getPhysicalId()); if (display->onKernelTimerChanged(state.desiredModeIdOpt, state.isEnabled && expired)) { mScheduler->scheduleFrame(); } })); } void SurfaceFlinger::vrrDisplayIdle(bool idle) { // Update the overlay on the main thread to avoid race conditions with // RefreshRateSelector::getActiveMode static_cast(mScheduler->schedule([=, this] { const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked()); if (!display) { ALOGW("%s: default display is null", __func__); return; } if (!display->isRefreshRateOverlayEnabled()) return; display->onVrrIdle(idle); mScheduler->scheduleFrame(); })); } auto SurfaceFlinger::getKernelIdleTimerProperties(PhysicalDisplayId displayId) -> std::pair, std::chrono::milliseconds> { const bool isKernelIdleTimerHwcSupported = getHwComposer().getComposer()->isSupported( android::Hwc2::Composer::OptionalFeature::KernelIdleTimer); const auto timeout = getIdleTimerTimeout(displayId); if (isKernelIdleTimerHwcSupported) { if (getHwComposer().hasDisplayIdleTimerCapability(displayId)) { // In order to decide if we can use the HWC api for idle timer // we query DisplayCapability::DISPLAY_IDLE_TIMER directly on the composer // without relying on hasDisplayCapability. // hasDisplayCapability relies on DisplayCapabilities // which are updated after we set the PowerMode::ON. // DISPLAY_IDLE_TIMER is a display driver property // and is available before the PowerMode::ON return {KernelIdleTimerController::HwcApi, timeout}; } return {std::nullopt, timeout}; } if (getKernelIdleTimerSyspropConfig(displayId)) { return {KernelIdleTimerController::Sysprop, timeout}; } return {std::nullopt, timeout}; } // A simple RAII class to disconnect from an ANativeWindow* when it goes out of scope class WindowDisconnector { public: WindowDisconnector(ANativeWindow* window, int api) : mWindow(window), mApi(api) {} ~WindowDisconnector() { native_window_api_disconnect(mWindow, mApi); } private: ANativeWindow* mWindow; const int mApi; }; static bool hasCaptureBlackoutContentPermission() { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); return uid == AID_GRAPHICS || uid == AID_SYSTEM || PermissionCache::checkPermission(sCaptureBlackoutContent, pid, uid); } static status_t validateScreenshotPermissions(const CaptureArgs& captureArgs) { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if (uid == AID_GRAPHICS || uid == AID_SYSTEM || PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) { return OK; } // If the caller doesn't have the correct permissions but is only attempting to screenshot // itself, we allow it to continue. if (captureArgs.uid == uid) { return OK; } ALOGE("Permission Denial: can't take screenshot pid=%d, uid=%d", pid, uid); return PERMISSION_DENIED; } status_t SurfaceFlinger::setSchedFifo(bool enabled) { static constexpr int kFifoPriority = 2; static constexpr int kOtherPriority = 0; struct sched_param param = {0}; int sched_policy; if (enabled) { sched_policy = SCHED_FIFO; param.sched_priority = kFifoPriority; } else { sched_policy = SCHED_OTHER; param.sched_priority = kOtherPriority; } if (sched_setscheduler(0, sched_policy, ¶m) != 0) { return -errno; } return NO_ERROR; } status_t SurfaceFlinger::setSchedAttr(bool enabled) { static const unsigned int kUclampMin = base::GetUintProperty("ro.surface_flinger.uclamp.min"s, 0U); if (!kUclampMin) { // uclamp.min set to 0 (default), skip setting return NO_ERROR; } sched_attr attr = {}; attr.size = sizeof(attr); attr.sched_flags = (SCHED_FLAG_KEEP_ALL | SCHED_FLAG_UTIL_CLAMP); attr.sched_util_min = enabled ? kUclampMin : 0; attr.sched_util_max = 1024; if (syscall(__NR_sched_setattr, 0, &attr, 0)) { return -errno; } return NO_ERROR; } namespace { ui::Dataspace pickBestDataspace(ui::Dataspace requestedDataspace, const compositionengine::impl::OutputCompositionState& state, bool capturingHdrLayers, bool hintForSeamlessTransition) { if (requestedDataspace != ui::Dataspace::UNKNOWN) { return requestedDataspace; } const auto dataspaceForColorMode = ui::pickDataspaceFor(state.colorMode); // TODO: Enable once HDR screenshots are ready. if constexpr (/* DISABLES CODE */ (false)) { // For now since we only support 8-bit screenshots, just use HLG and // assume that 1.0 >= display max luminance. This isn't quite as future // proof as PQ is, but is good enough. // Consider using PQ once we support 16-bit screenshots and we're able // to consistently supply metadata to image encoders. return ui::Dataspace::BT2020_HLG; } return dataspaceForColorMode; } } // namespace static void invokeScreenCaptureError(const status_t status, const sp& captureListener) { ScreenCaptureResults captureResults; captureResults.fenceResult = base::unexpected(status); captureListener->onScreenCaptureCompleted(captureResults); } void SurfaceFlinger::captureDisplay(const DisplayCaptureArgs& args, const sp& captureListener) { SFTRACE_CALL(); const auto& captureArgs = args.captureArgs; status_t validate = validateScreenshotPermissions(captureArgs); if (validate != OK) { ALOGD("Permission denied to captureDisplay"); invokeScreenCaptureError(validate, captureListener); return; } if (!args.displayToken) { ALOGD("Invalid display token to captureDisplay"); invokeScreenCaptureError(BAD_VALUE, captureListener); return; } if (captureArgs.captureSecureLayers && !hasCaptureBlackoutContentPermission()) { ALOGD("Attempting to capture secure layers without CAPTURE_BLACKOUT_CONTENT"); invokeScreenCaptureError(PERMISSION_DENIED, captureListener); return; } wp displayWeak; ui::LayerStack layerStack; ui::Size reqSize(args.width, args.height); std::unordered_set excludeLayerIds; { Mutex::Autolock lock(mStateLock); sp display = getDisplayDeviceLocked(args.displayToken); if (!display) { ALOGD("Unable to find display device for captureDisplay"); invokeScreenCaptureError(NAME_NOT_FOUND, captureListener); return; } displayWeak = display; layerStack = display->getLayerStack(); // set the requested width/height to the logical display layer stack rect size by default if (args.width == 0 || args.height == 0) { reqSize = display->getLayerStackSpaceRect().getSize(); } for (const auto& handle : captureArgs.excludeHandles) { uint32_t excludeLayer = LayerHandle::getLayerId(handle); if (excludeLayer != UNASSIGNED_LAYER_ID) { excludeLayerIds.emplace(excludeLayer); } else { ALOGD("Invalid layer handle passed as excludeLayer to captureDisplay"); invokeScreenCaptureError(NAME_NOT_FOUND, captureListener); return; } } } GetLayerSnapshotsFunction getLayerSnapshotsFn = getLayerSnapshotsForScreenshots(layerStack, captureArgs.uid, std::move(excludeLayerIds)); ftl::Flags options; if (captureArgs.captureSecureLayers) options |= RenderArea::Options::CAPTURE_SECURE_LAYERS; if (captureArgs.hintForSeamlessTransition) options |= RenderArea::Options::HINT_FOR_SEAMLESS_TRANSITION; captureScreenCommon(RenderAreaBuilderVariant(std::in_place_type, gui::aidl_utils::fromARect(captureArgs.sourceCrop), reqSize, static_cast(captureArgs.dataspace), displayWeak, options), getLayerSnapshotsFn, reqSize, static_cast(captureArgs.pixelFormat), captureArgs.allowProtected, captureArgs.grayscale, captureArgs.attachGainmap, captureListener); } void SurfaceFlinger::captureDisplay(DisplayId displayId, const CaptureArgs& args, const sp& captureListener) { ui::LayerStack layerStack; wp displayWeak; ui::Size size; { Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayId); if (!display) { ALOGD("Unable to find display device for captureDisplay"); invokeScreenCaptureError(NAME_NOT_FOUND, captureListener); return; } displayWeak = display; layerStack = display->getLayerStack(); size = display->getLayerStackSpaceRect().getSize(); } size.width *= args.frameScaleX; size.height *= args.frameScaleY; // We could query a real value for this but it'll be a long, long time until we support // displays that need upwards of 1GB per buffer so... constexpr auto kMaxTextureSize = 16384; if (size.width <= 0 || size.height <= 0 || size.width >= kMaxTextureSize || size.height >= kMaxTextureSize) { ALOGD("captureDisplay resolved to invalid size %d x %d", size.width, size.height); invokeScreenCaptureError(BAD_VALUE, captureListener); return; } GetLayerSnapshotsFunction getLayerSnapshotsFn = getLayerSnapshotsForScreenshots(layerStack, CaptureArgs::UNSET_UID, /*snapshotFilterFn=*/nullptr); if (captureListener == nullptr) { ALOGE("capture screen must provide a capture listener callback"); invokeScreenCaptureError(BAD_VALUE, captureListener); return; } constexpr bool kAllowProtected = false; constexpr bool kGrayscale = false; ftl::Flags options; if (args.hintForSeamlessTransition) options |= RenderArea::Options::HINT_FOR_SEAMLESS_TRANSITION; captureScreenCommon(RenderAreaBuilderVariant(std::in_place_type, Rect(), size, static_cast(args.dataspace), displayWeak, options), getLayerSnapshotsFn, size, static_cast(args.pixelFormat), kAllowProtected, kGrayscale, args.attachGainmap, captureListener); } ScreenCaptureResults SurfaceFlinger::captureLayersSync(const LayerCaptureArgs& args) { sp captureListener = sp::make(); captureLayers(args, captureListener); return captureListener->waitForResults(); } void SurfaceFlinger::captureLayers(const LayerCaptureArgs& args, const sp& captureListener) { SFTRACE_CALL(); const auto& captureArgs = args.captureArgs; status_t validate = validateScreenshotPermissions(captureArgs); if (validate != OK) { ALOGD("Permission denied to captureLayers"); invokeScreenCaptureError(validate, captureListener); return; } auto crop = gui::aidl_utils::fromARect(captureArgs.sourceCrop); ui::Size reqSize; sp parent; std::unordered_set excludeLayerIds; ui::Dataspace dataspace = static_cast(captureArgs.dataspace); if (captureArgs.captureSecureLayers && !hasCaptureBlackoutContentPermission()) { ALOGD("Attempting to capture secure layers without CAPTURE_BLACKOUT_CONTENT"); invokeScreenCaptureError(PERMISSION_DENIED, captureListener); return; } { Mutex::Autolock lock(mStateLock); parent = LayerHandle::getLayer(args.layerHandle); if (parent == nullptr) { ALOGD("captureLayers called with an invalid or removed parent"); invokeScreenCaptureError(NAME_NOT_FOUND, captureListener); return; } Rect parentSourceBounds = parent->getCroppedBufferSize(parent->getDrawingState()); if (crop.width() <= 0) { crop.left = 0; crop.right = parentSourceBounds.getWidth(); } if (crop.height() <= 0) { crop.top = 0; crop.bottom = parentSourceBounds.getHeight(); } if (crop.isEmpty() || captureArgs.frameScaleX <= 0.0f || captureArgs.frameScaleY <= 0.0f) { // Error out if the layer has no source bounds (i.e. they are boundless) and a source // crop was not specified, or an invalid frame scale was provided. ALOGD("Boundless layer, unspecified crop, or invalid frame scale to captureLayers"); invokeScreenCaptureError(BAD_VALUE, captureListener); return; } reqSize = ui::Size(crop.width() * captureArgs.frameScaleX, crop.height() * captureArgs.frameScaleY); for (const auto& handle : captureArgs.excludeHandles) { uint32_t excludeLayer = LayerHandle::getLayerId(handle); if (excludeLayer != UNASSIGNED_LAYER_ID) { excludeLayerIds.emplace(excludeLayer); } else { ALOGD("Invalid layer handle passed as excludeLayer to captureLayers"); invokeScreenCaptureError(NAME_NOT_FOUND, captureListener); return; } } } // mStateLock // really small crop or frameScale if (reqSize.width <= 0 || reqSize.height <= 0) { ALOGD("Failed to captureLayers: crop or scale too small"); invokeScreenCaptureError(BAD_VALUE, captureListener); return; } std::optional parentCrop = std::nullopt; if (args.childrenOnly) { parentCrop = crop.isEmpty() ? FloatRect(0, 0, reqSize.width, reqSize.height) : crop.toFloatRect(); } GetLayerSnapshotsFunction getLayerSnapshotsFn = getLayerSnapshotsForScreenshots(parent->sequence, captureArgs.uid, std::move(excludeLayerIds), args.childrenOnly, parentCrop); if (captureListener == nullptr) { ALOGD("capture screen must provide a capture listener callback"); invokeScreenCaptureError(BAD_VALUE, captureListener); return; } ftl::Flags options; if (captureArgs.captureSecureLayers) options |= RenderArea::Options::CAPTURE_SECURE_LAYERS; if (captureArgs.hintForSeamlessTransition) options |= RenderArea::Options::HINT_FOR_SEAMLESS_TRANSITION; captureScreenCommon(RenderAreaBuilderVariant(std::in_place_type, crop, reqSize, dataspace, parent, args.childrenOnly, options), getLayerSnapshotsFn, reqSize, static_cast(captureArgs.pixelFormat), captureArgs.allowProtected, captureArgs.grayscale, captureArgs.attachGainmap, captureListener); } // Creates a Future release fence for a layer and keeps track of it in a list to // release the buffer when the Future is complete. Calls from composittion // involve needing to refresh the composition start time for stats. void SurfaceFlinger::attachReleaseFenceFutureToLayer(Layer* layer, LayerFE* layerFE, ui::LayerStack layerStack) { ftl::Future futureFence = layerFE->createReleaseFenceFuture(); layer->prepareReleaseCallbacks(std::move(futureFence), layerStack); } // Loop over all visible layers to see whether there's any protected layer. A protected layer is // typically a layer with DRM contents, or have the GRALLOC_USAGE_PROTECTED set on the buffer. // A protected layer has no implication on whether it's secure, which is explicitly set by // application to avoid being screenshot or drawn via unsecure display. bool SurfaceFlinger::layersHasProtectedLayer( const std::vector>>& layers) const { bool protectedLayerFound = false; for (auto& [_, layerFE] : layers) { protectedLayerFound |= (layerFE->mSnapshot->isVisible && layerFE->mSnapshot->hasProtectedContent); if (protectedLayerFound) { break; } } return protectedLayerFound; } // Getting layer snapshots and display should take place on main thread. // Accessing display requires mStateLock, and contention for this lock // is reduced when grabbed from the main thread, thus also reducing // risk of deadlocks. std::optional SurfaceFlinger::getSnapshotsFromMainThread( RenderAreaBuilderVariant& renderAreaBuilder, GetLayerSnapshotsFunction getLayerSnapshotsFn, std::vector>>& layers) { return mScheduler ->schedule([=, this, &renderAreaBuilder, &layers]() REQUIRES(kMainThreadContext) { SFTRACE_NAME("getSnapshotsFromMainThread"); layers = getLayerSnapshotsFn(); // Non-threaded RenderEngine eventually returns to the main thread a 2nd time // to complete the screenshot. Release fences should only be added during the 2nd // hop to main thread in order to avoid potential deadlocks from waiting for the // the future fence to fire. if (mRenderEngine->isThreaded()) { for (auto& [layer, layerFE] : layers) { attachReleaseFenceFutureToLayer(layer, layerFE.get(), ui::INVALID_LAYER_STACK); } } return getDisplayStateFromRenderAreaBuilder(renderAreaBuilder); }) .get(); } void SurfaceFlinger::captureScreenCommon(RenderAreaBuilderVariant renderAreaBuilder, GetLayerSnapshotsFunction getLayerSnapshotsFn, ui::Size bufferSize, ui::PixelFormat reqPixelFormat, bool allowProtected, bool grayscale, bool attachGainmap, const sp& captureListener) { SFTRACE_CALL(); if (exceedsMaxRenderTargetSize(bufferSize.getWidth(), bufferSize.getHeight())) { ALOGE("Attempted to capture screen with size (%" PRId32 ", %" PRId32 ") that exceeds render target size limit.", bufferSize.getWidth(), bufferSize.getHeight()); invokeScreenCaptureError(BAD_VALUE, captureListener); return; } std::vector>> layers; auto displayState = getSnapshotsFromMainThread(renderAreaBuilder, getLayerSnapshotsFn, layers); const bool supportsProtected = getRenderEngine().supportsProtectedContent(); bool hasProtectedLayer = false; if (allowProtected && supportsProtected) { hasProtectedLayer = layersHasProtectedLayer(layers); } const bool isProtected = hasProtectedLayer && allowProtected && supportsProtected; const uint32_t usage = GRALLOC_USAGE_HW_COMPOSER | GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE | (isProtected ? GRALLOC_USAGE_PROTECTED : GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN); sp buffer = getFactory().createGraphicBuffer(bufferSize.getWidth(), bufferSize.getHeight(), static_cast(reqPixelFormat), 1 /* layerCount */, usage, "screenshot"); const status_t bufferStatus = buffer->initCheck(); if (bufferStatus != OK) { // Animations may end up being really janky, but don't crash here. // Otherwise an irreponsible process may cause an SF crash by allocating // too much. ALOGE("%s: Buffer failed to allocate: %d", __func__, bufferStatus); invokeScreenCaptureError(bufferStatus, captureListener); return; } const std::shared_ptr texture = std::make_shared< renderengine::impl::ExternalTexture>(buffer, getRenderEngine(), renderengine::impl::ExternalTexture::Usage:: WRITEABLE); auto futureFence = captureScreenshot(renderAreaBuilder, texture, false /* regionSampling */, grayscale, isProtected, attachGainmap, captureListener, displayState, layers); futureFence.get(); } std::optional SurfaceFlinger::getDisplayStateFromRenderAreaBuilder(RenderAreaBuilderVariant& renderAreaBuilder) { sp display = nullptr; { Mutex::Autolock lock(mStateLock); if (auto* layerRenderAreaBuilder = std::get_if(&renderAreaBuilder)) { // LayerSnapshotBuilder should only be accessed from the main thread. const frontend::LayerSnapshot* snapshot = mLayerSnapshotBuilder.getSnapshot(layerRenderAreaBuilder->layer->getSequence()); if (!snapshot) { ALOGW("Couldn't find layer snapshot for %d", layerRenderAreaBuilder->layer->getSequence()); } else { layerRenderAreaBuilder->setLayerSnapshot(*snapshot); display = findDisplay( [layerStack = snapshot->outputFilter.layerStack](const auto& display) { return display.getLayerStack() == layerStack; }); } } else if (auto* displayRenderAreaBuilder = std::get_if(&renderAreaBuilder)) { display = displayRenderAreaBuilder->displayWeak.promote(); } if (display == nullptr) { display = getDefaultDisplayDeviceLocked(); } if (display != nullptr) { return std::optional{display->getCompositionDisplay()->getState()}; } } return std::nullopt; } ftl::SharedFuture SurfaceFlinger::captureScreenshot( const RenderAreaBuilderVariant& renderAreaBuilder, const std::shared_ptr& buffer, bool regionSampling, bool grayscale, bool isProtected, bool attachGainmap, const sp& captureListener, std::optional& displayState, std::vector>>& layers) { SFTRACE_CALL(); ScreenCaptureResults captureResults; std::unique_ptr renderArea = std::visit([](auto&& arg) -> std::unique_ptr { return arg.build(); }, renderAreaBuilder); if (!renderArea) { ALOGW("Skipping screen capture because of invalid render area."); if (captureListener) { captureResults.fenceResult = base::unexpected(NO_MEMORY); captureListener->onScreenCaptureCompleted(captureResults); } return ftl::yield(base::unexpected(NO_ERROR)).share(); } float displayBrightnessNits = displayState.value().displayBrightnessNits; float sdrWhitePointNits = displayState.value().sdrWhitePointNits; ftl::SharedFuture renderFuture = renderScreenImpl(renderArea.get(), buffer, regionSampling, grayscale, isProtected, captureResults, displayState, layers); if (captureResults.capturedHdrLayers && attachGainmap && FlagManager::getInstance().true_hdr_screenshots()) { sp hdrBuffer = getFactory().createGraphicBuffer(buffer->getWidth(), buffer->getHeight(), HAL_PIXEL_FORMAT_RGBA_FP16, 1 /* layerCount */, buffer->getUsage(), "screenshot-hdr"); sp gainmapBuffer = getFactory().createGraphicBuffer(buffer->getWidth(), buffer->getHeight(), buffer->getPixelFormat(), 1 /* layerCount */, buffer->getUsage(), "screenshot-gainmap"); const status_t bufferStatus = hdrBuffer->initCheck(); const status_t gainmapBufferStatus = gainmapBuffer->initCheck(); if (bufferStatus != OK) { ALOGW("%s: Buffer failed to allocate for hdr: %d. Screenshoting SDR instead.", __func__, bufferStatus); } else if (gainmapBufferStatus != OK) { ALOGW("%s: Buffer failed to allocate for gainmap: %d. Screenshoting SDR instead.", __func__, gainmapBufferStatus); } else { captureResults.optionalGainMap = gainmapBuffer; const auto hdrTexture = std::make_shared< renderengine::impl::ExternalTexture>(hdrBuffer, getRenderEngine(), renderengine::impl::ExternalTexture:: Usage::WRITEABLE); const auto gainmapTexture = std::make_shared< renderengine::impl::ExternalTexture>(gainmapBuffer, getRenderEngine(), renderengine::impl::ExternalTexture:: Usage::WRITEABLE); ScreenCaptureResults unusedResults; ftl::SharedFuture hdrRenderFuture = renderScreenImpl(renderArea.get(), hdrTexture, regionSampling, grayscale, isProtected, unusedResults, displayState, layers); renderFuture = ftl::Future(std::move(renderFuture)) .then([&, hdrRenderFuture = std::move(hdrRenderFuture), displayBrightnessNits, sdrWhitePointNits, dataspace = captureResults.capturedDataspace, buffer, hdrTexture, gainmapTexture](FenceResult fenceResult) -> FenceResult { if (!fenceResult.ok()) { return fenceResult; } auto hdrFenceResult = hdrRenderFuture.get(); if (!hdrFenceResult.ok()) { return hdrFenceResult; } return getRenderEngine() .drawGainmap(buffer, fenceResult.value()->get(), hdrTexture, hdrFenceResult.value()->get(), displayBrightnessNits / sdrWhitePointNits, static_cast(dataspace), gainmapTexture) .get(); }) .share(); }; } if (captureListener) { // Defer blocking on renderFuture back to the Binder thread. return ftl::Future(std::move(renderFuture)) .then([captureListener, captureResults = std::move(captureResults), displayBrightnessNits, sdrWhitePointNits](FenceResult fenceResult) mutable -> FenceResult { captureResults.fenceResult = std::move(fenceResult); captureResults.hdrSdrRatio = displayBrightnessNits / sdrWhitePointNits; captureListener->onScreenCaptureCompleted(captureResults); return base::unexpected(NO_ERROR); }) .share(); } return renderFuture; } ftl::SharedFuture SurfaceFlinger::renderScreenImpl( const RenderArea* renderArea, const std::shared_ptr& buffer, bool regionSampling, bool grayscale, bool isProtected, ScreenCaptureResults& captureResults, std::optional& displayState, std::vector>>& layers) { SFTRACE_CALL(); for (auto& [_, layerFE] : layers) { frontend::LayerSnapshot* snapshot = layerFE->mSnapshot.get(); captureResults.capturedSecureLayers |= (snapshot->isVisible && snapshot->isSecure); captureResults.capturedHdrLayers |= isHdrLayer(*snapshot); layerFE->mSnapshot->geomLayerTransform = renderArea->getTransform() * layerFE->mSnapshot->geomLayerTransform; layerFE->mSnapshot->geomInverseLayerTransform = layerFE->mSnapshot->geomLayerTransform.inverse(); } auto capturedBuffer = buffer; auto requestedDataspace = renderArea->getReqDataSpace(); auto parent = renderArea->getParentLayer(); auto renderIntent = RenderIntent::TONE_MAP_COLORIMETRIC; auto sdrWhitePointNits = DisplayDevice::sDefaultMaxLumiance; auto displayBrightnessNits = DisplayDevice::sDefaultMaxLumiance; captureResults.capturedDataspace = requestedDataspace; const bool enableLocalTonemapping = FlagManager::getInstance().local_tonemap_screenshots() && !renderArea->getHintForSeamlessTransition(); if (displayState) { const auto& state = displayState.value(); captureResults.capturedDataspace = pickBestDataspace(requestedDataspace, state, captureResults.capturedHdrLayers, renderArea->getHintForSeamlessTransition()); sdrWhitePointNits = state.sdrWhitePointNits; if (!captureResults.capturedHdrLayers) { displayBrightnessNits = sdrWhitePointNits; } else { displayBrightnessNits = state.displayBrightnessNits; if (!enableLocalTonemapping) { // Only clamp the display brightness if this is not a seamless transition. // Otherwise for seamless transitions it's important to match the current // display state as the buffer will be shown under these same conditions, and we // want to avoid any flickers if (sdrWhitePointNits > 1.0f && !renderArea->getHintForSeamlessTransition()) { // Restrict the amount of HDR "headroom" in the screenshot to avoid // over-dimming the SDR portion. 2.0 chosen by experimentation constexpr float kMaxScreenshotHeadroom = 2.0f; displayBrightnessNits = std::min(sdrWhitePointNits * kMaxScreenshotHeadroom, displayBrightnessNits); } } } // Screenshots leaving the device should be colorimetric if (requestedDataspace == ui::Dataspace::UNKNOWN && renderArea->getHintForSeamlessTransition()) { renderIntent = state.renderIntent; } } captureResults.buffer = capturedBuffer->getBuffer(); ui::LayerStack layerStack{ui::DEFAULT_LAYER_STACK}; if (!layers.empty()) { const sp& layerFE = layers.back().second; layerStack = layerFE->getCompositionState()->outputFilter.layerStack; } auto present = [this, buffer = capturedBuffer, dataspace = captureResults.capturedDataspace, sdrWhitePointNits, displayBrightnessNits, grayscale, isProtected, layers = std::move(layers), layerStack, regionSampling, renderArea = std::move(renderArea), renderIntent, enableLocalTonemapping]() -> FenceResult { std::unique_ptr compositionEngine = mFactory.createCompositionEngine(); compositionEngine->setRenderEngine(mRenderEngine.get()); std::vector> layerFEs; layerFEs.reserve(layers.size()); for (auto& [layer, layerFE] : layers) { // Release fences were not yet added for non-threaded render engine. To avoid // deadlocks between main thread and binder threads waiting for the future fence // result, fences should be added to layers in the same hop onto the main thread. if (!mRenderEngine->isThreaded()) { attachReleaseFenceFutureToLayer(layer, layerFE.get(), ui::INVALID_LAYER_STACK); } layerFEs.push_back(layerFE); } compositionengine::Output::ColorProfile colorProfile{.dataspace = dataspace, .renderIntent = renderIntent}; float targetBrightness = 1.0f; if (enableLocalTonemapping) { // Boost the whole scene so that SDR white is at 1.0 while still communicating the hdr // sdr ratio via display brightness / sdrWhite nits. targetBrightness = sdrWhitePointNits / displayBrightnessNits; } else if (dataspace == ui::Dataspace::BT2020_HLG) { const float maxBrightnessNits = displayBrightnessNits / sdrWhitePointNits * 203; // With a low dimming ratio, don't fit the entire curve. Otherwise mixed content // will appear way too bright. if (maxBrightnessNits < 1000.f) { targetBrightness = 1000.f / maxBrightnessNits; } } // Screenshots leaving the device must not dim in gamma space. const bool dimInGammaSpaceForEnhancedScreenshots = mDimInGammaSpaceForEnhancedScreenshots && renderArea->getHintForSeamlessTransition(); std::shared_ptr output = createScreenCaptureOutput( ScreenCaptureOutputArgs{.compositionEngine = *compositionEngine, .colorProfile = colorProfile, .renderArea = *renderArea, .layerStack = layerStack, .buffer = std::move(buffer), .sdrWhitePointNits = sdrWhitePointNits, .displayBrightnessNits = displayBrightnessNits, .targetBrightness = targetBrightness, .regionSampling = regionSampling, .treat170mAsSrgb = mTreat170mAsSrgb, .dimInGammaSpaceForEnhancedScreenshots = dimInGammaSpaceForEnhancedScreenshots, .isProtected = isProtected, .enableLocalTonemapping = enableLocalTonemapping}); const float colorSaturation = grayscale ? 0 : 1; compositionengine::CompositionRefreshArgs refreshArgs{ .outputs = {output}, .layers = std::move(layerFEs), .updatingOutputGeometryThisFrame = true, .updatingGeometryThisFrame = true, .colorTransformMatrix = calculateColorMatrix(colorSaturation), }; compositionEngine->present(refreshArgs); return output->getRenderSurface()->getClientTargetAcquireFence(); }; // If RenderEngine is threaded, we can safely call CompositionEngine::present off the main // thread as the RenderEngine::drawLayers call will run on RenderEngine's thread. Otherwise, // we need RenderEngine to run on the main thread so we call CompositionEngine::present // immediately. // // TODO(b/196334700) Once we use RenderEngineThreaded everywhere we can always defer the call // to CompositionEngine::present. ftl::SharedFuture presentFuture = mRenderEngine->isThreaded() ? ftl::yield(present()).share() : mScheduler->schedule(std::move(present)).share(); return presentFuture; } void SurfaceFlinger::traverseLegacyLayers(const LayerVector::Visitor& visitor) const { for (auto& layer : mLegacyLayers) { visitor(layer.second.get()); } } // --------------------------------------------------------------------------- ftl::Optional SurfaceFlinger::getPreferredDisplayMode( PhysicalDisplayId displayId, DisplayModeId defaultModeId) const { if (const auto schedulerMode = mScheduler->getPreferredDisplayMode(); schedulerMode.modePtr->getPhysicalDisplayId() == displayId) { return schedulerMode; } return mPhysicalDisplays.get(displayId) .transform(&PhysicalDisplay::snapshotRef) .and_then([&](const display::DisplaySnapshot& snapshot) { return snapshot.displayModes().get(defaultModeId); }) .transform([](const DisplayModePtr& modePtr) { return scheduler::FrameRateMode{modePtr->getPeakFps(), ftl::as_non_null(modePtr)}; }); } status_t SurfaceFlinger::setDesiredDisplayModeSpecsInternal( const sp& display, const scheduler::RefreshRateSelector::PolicyVariant& policy) { const auto displayId = display->getPhysicalId(); SFTRACE_NAME(ftl::Concat(__func__, ' ', displayId.value).c_str()); Mutex::Autolock lock(mStateLock); if (mDebugDisplayModeSetByBackdoor) { // ignore this request as mode is overridden by backdoor return NO_ERROR; } auto& selector = display->refreshRateSelector(); using SetPolicyResult = scheduler::RefreshRateSelector::SetPolicyResult; switch (selector.setPolicy(policy)) { case SetPolicyResult::Invalid: return BAD_VALUE; case SetPolicyResult::Unchanged: return NO_ERROR; case SetPolicyResult::Changed: break; } return applyRefreshRateSelectorPolicy(displayId, selector); } status_t SurfaceFlinger::applyRefreshRateSelectorPolicy( PhysicalDisplayId displayId, const scheduler::RefreshRateSelector& selector) { const scheduler::RefreshRateSelector::Policy currentPolicy = selector.getCurrentPolicy(); ALOGV("Setting desired display mode specs: %s", currentPolicy.toString().c_str()); if (const bool isPacesetter = mScheduler->onDisplayModeChanged(displayId, selector.getActiveMode(), /*clearContentRequirements*/ true)) { mDisplayModeController.updateKernelIdleTimer(displayId); } auto preferredModeOpt = getPreferredDisplayMode(displayId, currentPolicy.defaultMode); if (!preferredModeOpt) { ALOGE("%s: Preferred mode is unknown", __func__); return NAME_NOT_FOUND; } auto preferredMode = std::move(*preferredModeOpt); const auto preferredModeId = preferredMode.modePtr->getId(); const Fps preferredFps = preferredMode.fps; ALOGV("Switching to Scheduler preferred mode %d (%s)", ftl::to_underlying(preferredModeId), to_string(preferredFps).c_str()); if (!selector.isModeAllowed(preferredMode)) { ALOGE("%s: Preferred mode %d is disallowed", __func__, ftl::to_underlying(preferredModeId)); return INVALID_OPERATION; } setDesiredMode({std::move(preferredMode), .emitEvent = true}); // Update the frameRateOverride list as the display render rate might have changed mScheduler->updateFrameRateOverrides(scheduler::GlobalSignals{}, preferredFps); return NO_ERROR; } namespace { FpsRange translate(const gui::DisplayModeSpecs::RefreshRateRanges::RefreshRateRange& aidlRange) { return FpsRange{Fps::fromValue(aidlRange.min), Fps::fromValue(aidlRange.max)}; } FpsRanges translate(const gui::DisplayModeSpecs::RefreshRateRanges& aidlRanges) { return FpsRanges{translate(aidlRanges.physical), translate(aidlRanges.render)}; } gui::DisplayModeSpecs::RefreshRateRanges::RefreshRateRange translate(const FpsRange& range) { gui::DisplayModeSpecs::RefreshRateRanges::RefreshRateRange aidlRange; aidlRange.min = range.min.getValue(); aidlRange.max = range.max.getValue(); return aidlRange; } gui::DisplayModeSpecs::RefreshRateRanges translate(const FpsRanges& ranges) { gui::DisplayModeSpecs::RefreshRateRanges aidlRanges; aidlRanges.physical = translate(ranges.physical); aidlRanges.render = translate(ranges.render); return aidlRanges; } } // namespace status_t SurfaceFlinger::setDesiredDisplayModeSpecs(const sp& displayToken, const gui::DisplayModeSpecs& specs) { SFTRACE_CALL(); if (!displayToken) { return BAD_VALUE; } auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(kMainThreadContext) -> status_t { const auto display = FTL_FAKE_GUARD(mStateLock, getDisplayDeviceLocked(displayToken)); if (!display) { ALOGE("Attempt to set desired display modes for invalid display token %p", displayToken.get()); return NAME_NOT_FOUND; } else if (display->isVirtual()) { ALOGW("Attempt to set desired display modes for virtual display"); return INVALID_OPERATION; } else { using Policy = scheduler::RefreshRateSelector::DisplayManagerPolicy; const auto idleScreenConfigOpt = FlagManager::getInstance().idle_screen_refresh_rate_timeout() ? specs.idleScreenRefreshRateConfig : std::nullopt; const Policy policy{DisplayModeId(specs.defaultMode), translate(specs.primaryRanges), translate(specs.appRequestRanges), specs.allowGroupSwitching, idleScreenConfigOpt}; return setDesiredDisplayModeSpecsInternal(display, policy); } }); return future.get(); } status_t SurfaceFlinger::getDesiredDisplayModeSpecs(const sp& displayToken, gui::DisplayModeSpecs* outSpecs) { SFTRACE_CALL(); if (!displayToken || !outSpecs) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } if (display->isVirtual()) { return INVALID_OPERATION; } scheduler::RefreshRateSelector::Policy policy = display->refreshRateSelector().getDisplayManagerPolicy(); outSpecs->defaultMode = ftl::to_underlying(policy.defaultMode); outSpecs->allowGroupSwitching = policy.allowGroupSwitching; outSpecs->primaryRanges = translate(policy.primaryRanges); outSpecs->appRequestRanges = translate(policy.appRequestRanges); return NO_ERROR; } void SurfaceFlinger::onLayerFirstRef(Layer* layer) { mNumLayers++; mScheduler->registerLayer(layer, scheduler::FrameRateCompatibility::Default); } void SurfaceFlinger::onLayerDestroyed(Layer* layer) { mNumLayers--; mScheduler->deregisterLayer(layer); if (mTransactionTracing) { mTransactionTracing->onLayerRemoved(layer->getSequence()); } mScheduler->onLayerDestroyed(layer); } void SurfaceFlinger::onLayerUpdate() { scheduleCommit(FrameHint::kActive); } status_t SurfaceFlinger::setGlobalShadowSettings(const half4& ambientColor, const half4& spotColor, float lightPosY, float lightPosZ, float lightRadius) { Mutex::Autolock _l(mStateLock); mCurrentState.globalShadowSettings.ambientColor = vec4(ambientColor); mCurrentState.globalShadowSettings.spotColor = vec4(spotColor); mCurrentState.globalShadowSettings.lightPos.y = lightPosY; mCurrentState.globalShadowSettings.lightPos.z = lightPosZ; mCurrentState.globalShadowSettings.lightRadius = lightRadius; // these values are overridden when calculating the shadow settings for a layer. mCurrentState.globalShadowSettings.lightPos.x = 0.f; mCurrentState.globalShadowSettings.length = 0.f; return NO_ERROR; } const std::unordered_map& SurfaceFlinger::getGenericLayerMetadataKeyMap() const { // TODO(b/149500060): Remove this fixed/static mapping. Please prefer taking // on the work to remove the table in that bug rather than adding more to // it. static const std::unordered_map genericLayerMetadataKeyMap{ {"org.chromium.arc.V1_0.TaskId", gui::METADATA_TASK_ID}, {"org.chromium.arc.V1_0.CursorInfo", gui::METADATA_MOUSE_CURSOR}, }; return genericLayerMetadataKeyMap; } status_t SurfaceFlinger::setGameModeFrameRateOverride(uid_t uid, float frameRate) { mScheduler->setGameModeFrameRateForUid(FrameRateOverride{uid, frameRate}); return NO_ERROR; } status_t SurfaceFlinger::setGameDefaultFrameRateOverride(uid_t uid, float frameRate) { if (FlagManager::getInstance().game_default_frame_rate()) { mScheduler->setGameDefaultFrameRateForUid( FrameRateOverride{static_cast(uid), frameRate}); } return NO_ERROR; } status_t SurfaceFlinger::updateSmallAreaDetection( std::vector>& appIdThresholdMappings) { mScheduler->updateSmallAreaDetection(appIdThresholdMappings); return NO_ERROR; } status_t SurfaceFlinger::setSmallAreaDetectionThreshold(int32_t appId, float threshold) { mScheduler->setSmallAreaDetectionThreshold(appId, threshold); return NO_ERROR; } void SurfaceFlinger::enableRefreshRateOverlay(bool enable) { bool setByHwc = getHwComposer().hasCapability(Capability::REFRESH_RATE_CHANGED_CALLBACK_DEBUG); for (const auto& [displayId, physical] : mPhysicalDisplays) { if (physical.snapshot().connectionType() == ui::DisplayConnectionType::Internal || FlagManager::getInstance().refresh_rate_overlay_on_external_display()) { if (const auto display = getDisplayDeviceLocked(displayId)) { const auto enableOverlay = [&](bool setByHwc) FTL_FAKE_GUARD(kMainThreadContext) { const auto activeMode = mDisplayModeController.getActiveMode(displayId); const Fps refreshRate = activeMode.modePtr->getVsyncRate(); const Fps renderFps = activeMode.fps; display->enableRefreshRateOverlay(enable, setByHwc, refreshRate, renderFps, mRefreshRateOverlaySpinner, mRefreshRateOverlayRenderRate, mRefreshRateOverlayShowInMiddle); }; enableOverlay(setByHwc); if (setByHwc) { const auto status = getHwComposer().setRefreshRateChangedCallbackDebugEnabled(displayId, enable); if (status != NO_ERROR) { ALOGE("Error %s refresh rate changed callback debug", enable ? "enabling" : "disabling"); enableOverlay(/*setByHwc*/ false); } } } } } } void SurfaceFlinger::enableHdrSdrRatioOverlay(bool enable) { for (const auto& [id, display] : mPhysicalDisplays) { if (display.snapshot().connectionType() == ui::DisplayConnectionType::Internal) { if (const auto device = getDisplayDeviceLocked(id)) { device->enableHdrSdrRatioOverlay(enable); } } } } int SurfaceFlinger::getGpuContextPriority() { return getRenderEngine().getContextPriority(); } int SurfaceFlinger::calculateMaxAcquiredBufferCount(Fps refreshRate, std::chrono::nanoseconds presentLatency) { auto pipelineDepth = presentLatency.count() / refreshRate.getPeriodNsecs(); if (presentLatency.count() % refreshRate.getPeriodNsecs()) { pipelineDepth++; } return std::max(minAcquiredBuffers, static_cast(pipelineDepth - 1)); } status_t SurfaceFlinger::getMaxAcquiredBufferCount(int* buffers) const { Fps maxRefreshRate = 60_Hz; if (!getHwComposer().isHeadless()) { if (const auto display = getDefaultDisplayDevice()) { maxRefreshRate = display->refreshRateSelector().getSupportedRefreshRateRange().max; } } *buffers = getMaxAcquiredBufferCountForRefreshRate(maxRefreshRate); return NO_ERROR; } uint32_t SurfaceFlinger::getMaxAcquiredBufferCountForCurrentRefreshRate(uid_t uid) const { Fps refreshRate = 60_Hz; if (const auto frameRateOverride = mScheduler->getFrameRateOverride(uid)) { refreshRate = *frameRateOverride; } else if (!getHwComposer().isHeadless()) { if (const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked())) { refreshRate = display->refreshRateSelector().getActiveMode().fps; } } return getMaxAcquiredBufferCountForRefreshRate(refreshRate); } int SurfaceFlinger::getMaxAcquiredBufferCountForRefreshRate(Fps refreshRate) const { const auto vsyncConfig = mScheduler->getVsyncConfiguration().getConfigsForRefreshRate(refreshRate).late; const auto presentLatency = vsyncConfig.appWorkDuration + vsyncConfig.sfWorkDuration; return calculateMaxAcquiredBufferCount(refreshRate, presentLatency); } void SurfaceFlinger::sample() { if (!mLumaSampling || !mRegionSamplingThread) { return; } const auto scheduledFrameResultOpt = mScheduler->getScheduledFrameResult(); const auto scheduleFrameTimeOpt = scheduledFrameResultOpt ? std::optional{scheduledFrameResultOpt->callbackTime} : std::nullopt; mRegionSamplingThread->onCompositionComplete(scheduleFrameTimeOpt); } void SurfaceFlinger::onActiveDisplaySizeChanged(const DisplayDevice& activeDisplay) { mScheduler->onActiveDisplayAreaChanged(activeDisplay.getWidth() * activeDisplay.getHeight()); getRenderEngine().onActiveDisplaySizeChanged(activeDisplay.getSize()); } sp SurfaceFlinger::getActivatableDisplay() const { if (mPhysicalDisplays.size() == 1) return nullptr; // TODO(b/255635821): Choose the pacesetter display, considering both internal and external // displays. For now, pick the other internal display, assuming a dual-display foldable. return findDisplay([this](const DisplayDevice& display) REQUIRES(mStateLock) { const auto idOpt = PhysicalDisplayId::tryCast(display.getId()); return idOpt && *idOpt != mActiveDisplayId && display.isPoweredOn() && mPhysicalDisplays.get(*idOpt) .transform(&PhysicalDisplay::isInternal) .value_or(false); }); } void SurfaceFlinger::onActiveDisplayChangedLocked(const DisplayDevice* inactiveDisplayPtr, const DisplayDevice& activeDisplay) { SFTRACE_CALL(); if (inactiveDisplayPtr) { inactiveDisplayPtr->getCompositionDisplay()->setLayerCachingTexturePoolEnabled(false); } mActiveDisplayId = activeDisplay.getPhysicalId(); activeDisplay.getCompositionDisplay()->setLayerCachingTexturePoolEnabled(true); // TODO(b/255635711): Check for pending mode changes on other displays. mScheduler->setModeChangePending(false); mScheduler->setPacesetterDisplay(mActiveDisplayId); onActiveDisplaySizeChanged(activeDisplay); mActiveDisplayTransformHint = activeDisplay.getTransformHint(); sActiveDisplayRotationFlags = ui::Transform::toRotationFlags(activeDisplay.getOrientation()); // Whether or not the policy of the new active/pacesetter display changed while it was inactive // (in which case its preferred mode has already been propagated to HWC via setDesiredMode), the // Scheduler's cachedModeChangedParams must be initialized to the newly active mode, and the // kernel idle timer of the newly active display must be toggled. applyRefreshRateSelectorPolicy(mActiveDisplayId, activeDisplay.refreshRateSelector()); } status_t SurfaceFlinger::addWindowInfosListener(const sp& windowInfosListener, gui::WindowInfosListenerInfo* outInfo) { mWindowInfosListenerInvoker->addWindowInfosListener(windowInfosListener, outInfo); setTransactionFlags(eInputInfoUpdateNeeded); return NO_ERROR; } status_t SurfaceFlinger::removeWindowInfosListener( const sp& windowInfosListener) const { mWindowInfosListenerInvoker->removeWindowInfosListener(windowInfosListener); return NO_ERROR; } status_t SurfaceFlinger::getStalledTransactionInfo( int pid, std::optional& result) { // Used to add a stalled transaction which uses an internal lock. ftl::FakeGuard guard(kMainThreadContext); result = mTransactionHandler.getStalledTransactionInfo(pid); return NO_ERROR; } void SurfaceFlinger::updateHdcpLevels(hal::HWDisplayId hwcDisplayId, int32_t connectedLevel, int32_t maxLevel) { if (!FlagManager::getInstance().connected_display()) { return; } Mutex::Autolock lock(mStateLock); const auto idOpt = getHwComposer().toPhysicalDisplayId(hwcDisplayId); if (!idOpt) { ALOGE("No display found for HDCP level changed event: connected=%d, max=%d for " "display=%" PRIu64, connectedLevel, maxLevel, hwcDisplayId); return; } const bool isInternalDisplay = mPhysicalDisplays.get(*idOpt).transform(&PhysicalDisplay::isInternal).value_or(false); if (isInternalDisplay) { ALOGW("Unexpected HDCP level changed for internal display: connected=%d, max=%d for " "display=%" PRIu64, connectedLevel, maxLevel, hwcDisplayId); return; } static_cast(mScheduler->schedule([this, displayId = *idOpt, connectedLevel, maxLevel]() { if (const auto display = FTL_FAKE_GUARD(mStateLock, getDisplayDeviceLocked(displayId))) { Mutex::Autolock lock(mStateLock); display->setSecure(connectedLevel >= 2 /* HDCP_V1 */); } mScheduler->onHdcpLevelsChanged(scheduler::Cycle::Render, displayId, connectedLevel, maxLevel); })); } void SurfaceFlinger::setActivePictureListener(const sp& listener) { if (com_android_graphics_libgui_flags_apply_picture_profiles()) { Mutex::Autolock lock(mStateLock); mActivePictureListener = listener; mHaveNewActivePictureListener = listener != nullptr; } } std::shared_ptr SurfaceFlinger::getExternalTextureFromBufferData( BufferData& bufferData, const char* layerName, uint64_t transactionId) { if (bufferData.buffer && exceedsMaxRenderTargetSize(bufferData.buffer->getWidth(), bufferData.buffer->getHeight())) { std::string errorMessage = base::StringPrintf("Attempted to create an ExternalTexture with size (%u, %u) for " "layer %s that exceeds render target size limit of %u.", bufferData.buffer->getWidth(), bufferData.buffer->getHeight(), layerName, static_cast(mMaxRenderTargetSize)); ALOGD("%s", errorMessage.c_str()); if (bufferData.releaseBufferListener) { bufferData.releaseBufferListener->onTransactionQueueStalled( String8(errorMessage.c_str())); } return nullptr; } bool cachedBufferChanged = bufferData.flags.test(BufferData::BufferDataChange::cachedBufferChanged); if (cachedBufferChanged && bufferData.buffer) { auto result = ClientCache::getInstance().add(bufferData.cachedBuffer, bufferData.buffer); if (result.ok()) { return result.value(); } if (result.error() == ClientCache::AddError::CacheFull) { ALOGE("Attempted to create an ExternalTexture for layer %s but CacheFull", layerName); if (bufferData.releaseBufferListener) { bufferData.releaseBufferListener->onTransactionQueueStalled( String8("Buffer processing hung due to full buffer cache")); } } return nullptr; } if (cachedBufferChanged) { return ClientCache::getInstance().get(bufferData.cachedBuffer); } if (bufferData.buffer) { return std::make_shared< renderengine::impl::ExternalTexture>(bufferData.buffer, getRenderEngine(), renderengine::impl::ExternalTexture::Usage:: READABLE); } return nullptr; } void SurfaceFlinger::moveSnapshotsFromCompositionArgs( compositionengine::CompositionRefreshArgs& refreshArgs, const std::vector>& layers) { std::vector>& snapshots = mLayerSnapshotBuilder.getSnapshots(); for (auto [_, layerFE] : layers) { auto i = layerFE->mSnapshot->globalZ; snapshots[i] = std::move(layerFE->mSnapshot); } } std::vector> SurfaceFlinger::moveSnapshotsToCompositionArgs( compositionengine::CompositionRefreshArgs& refreshArgs, bool cursorOnly) { std::vector> layers; nsecs_t currentTime = systemTime(); const bool needsMetadata = mCompositionEngine->getFeatureFlags().test( compositionengine::Feature::kSnapshotLayerMetadata); mLayerSnapshotBuilder.forEachSnapshot( [&](std::unique_ptr& snapshot) FTL_FAKE_GUARD( kMainThreadContext) { if (cursorOnly && snapshot->compositionType != aidl::android::hardware::graphics::composer3::Composition::CURSOR) { return; } if (!snapshot->hasSomethingToDraw()) { return; } auto it = mLegacyLayers.find(snapshot->sequence); LLOG_ALWAYS_FATAL_WITH_TRACE_IF(it == mLegacyLayers.end(), "Couldnt find layer object for %s", snapshot->getDebugString().c_str()); auto& legacyLayer = it->second; sp layerFE = legacyLayer->getCompositionEngineLayerFE(snapshot->path); snapshot->fps = getLayerFramerate(currentTime, snapshot->sequence); layerFE->mSnapshot = std::move(snapshot); refreshArgs.layers.push_back(layerFE); layers.emplace_back(legacyLayer.get(), layerFE.get()); }, [needsMetadata](const frontend::LayerSnapshot& snapshot) { return snapshot.isVisible || (needsMetadata && snapshot.changes.test(frontend::RequestedLayerState::Changes::Metadata)); }); return layers; } std::function>>()> SurfaceFlinger::getLayerSnapshotsForScreenshots( std::optional layerStack, uint32_t uid, std::function snapshotFilterFn) { return [&, layerStack, uid]() FTL_FAKE_GUARD(kMainThreadContext) { std::vector>> layers; bool stopTraversal = false; mLayerSnapshotBuilder.forEachVisibleSnapshot( [&](std::unique_ptr& snapshot) FTL_FAKE_GUARD( kMainThreadContext) { if (stopTraversal) { return; } if (layerStack && snapshot->outputFilter.layerStack != *layerStack) { return; } if (uid != CaptureArgs::UNSET_UID && snapshot->uid != gui::Uid(uid)) { return; } if (!snapshot->hasSomethingToDraw()) { return; } if (snapshotFilterFn && !snapshotFilterFn(*snapshot, stopTraversal)) { return; } auto it = mLegacyLayers.find(snapshot->sequence); LLOG_ALWAYS_FATAL_WITH_TRACE_IF(it == mLegacyLayers.end(), "Couldnt find layer object for %s", snapshot->getDebugString().c_str()); Layer* legacyLayer = (it == mLegacyLayers.end()) ? nullptr : it->second.get(); sp layerFE = getFactory().createLayerFE(snapshot->name, legacyLayer); layerFE->mSnapshot = std::make_unique(*snapshot); layers.emplace_back(legacyLayer, std::move(layerFE)); }); return layers; }; } std::function>>()> SurfaceFlinger::getLayerSnapshotsForScreenshots(std::optional layerStack, uint32_t uid, std::unordered_set excludeLayerIds) { return [&, layerStack, uid, excludeLayerIds = std::move(excludeLayerIds)]() FTL_FAKE_GUARD(kMainThreadContext) { if (excludeLayerIds.empty()) { auto getLayerSnapshotsFn = getLayerSnapshotsForScreenshots(layerStack, uid, /*snapshotFilterFn=*/nullptr); std::vector>> layers = getLayerSnapshotsFn(); return layers; } frontend::LayerSnapshotBuilder::Args args{.root = mLayerHierarchyBuilder.getHierarchy(), .layerLifecycleManager = mLayerLifecycleManager, .forceUpdate = frontend::LayerSnapshotBuilder::ForceUpdateFlags::HIERARCHY, .displays = mFrontEndDisplayInfos, .displayChanges = true, .globalShadowSettings = mDrawingState.globalShadowSettings, .supportsBlur = mSupportsBlur, .forceFullDamage = mForceFullDamage, .excludeLayerIds = std::move(excludeLayerIds), .supportedLayerGenericMetadata = getHwComposer().getSupportedLayerGenericMetadata(), .genericLayerMetadataKeyMap = getGenericLayerMetadataKeyMap(), .skipRoundCornersWhenProtected = !getRenderEngine().supportsProtectedContent()}; mLayerSnapshotBuilder.update(args); auto getLayerSnapshotsFn = getLayerSnapshotsForScreenshots(layerStack, uid, /*snapshotFilterFn=*/nullptr); std::vector>> layers = getLayerSnapshotsFn(); args.excludeLayerIds.clear(); mLayerSnapshotBuilder.update(args); return layers; }; } std::function>>()> SurfaceFlinger::getLayerSnapshotsForScreenshots(uint32_t rootLayerId, uint32_t uid, std::unordered_set excludeLayerIds, bool childrenOnly, const std::optional& parentCrop) { return [&, rootLayerId, uid, excludeLayerIds = std::move(excludeLayerIds), childrenOnly, parentCrop]() FTL_FAKE_GUARD(kMainThreadContext) { auto root = mLayerHierarchyBuilder.getPartialHierarchy(rootLayerId, childrenOnly); frontend::LayerSnapshotBuilder::Args args{.root = root, .layerLifecycleManager = mLayerLifecycleManager, .forceUpdate = frontend::LayerSnapshotBuilder::ForceUpdateFlags::HIERARCHY, .displays = mFrontEndDisplayInfos, .displayChanges = true, .globalShadowSettings = mDrawingState.globalShadowSettings, .supportsBlur = mSupportsBlur, .forceFullDamage = mForceFullDamage, .parentCrop = parentCrop, .excludeLayerIds = std::move(excludeLayerIds), .supportedLayerGenericMetadata = getHwComposer().getSupportedLayerGenericMetadata(), .genericLayerMetadataKeyMap = getGenericLayerMetadataKeyMap(), .skipRoundCornersWhenProtected = !getRenderEngine().supportsProtectedContent()}; // The layer may not exist if it was just created and a screenshot was requested immediately // after. In this case, the hierarchy will be empty so we will not render any layers. args.rootSnapshot.isSecure = mLayerLifecycleManager.getLayerFromId(rootLayerId) && mLayerLifecycleManager.isLayerSecure(rootLayerId); mLayerSnapshotBuilder.update(args); auto getLayerSnapshotsFn = getLayerSnapshotsForScreenshots({}, uid, /*snapshotFilterFn=*/nullptr); std::vector>> layers = getLayerSnapshotsFn(); args.root = mLayerHierarchyBuilder.getHierarchy(); args.parentCrop.reset(); args.excludeLayerIds.clear(); mLayerSnapshotBuilder.update(args); return layers; }; } void SurfaceFlinger::doActiveLayersTracingIfNeeded(bool isCompositionComputed, bool visibleRegionDirty, TimePoint time, VsyncId vsyncId) { if (!mLayerTracing.isActiveTracingStarted()) { return; } if (isCompositionComputed != mLayerTracing.isActiveTracingFlagSet(LayerTracing::Flag::TRACE_COMPOSITION)) { return; } if (!visibleRegionDirty && !mLayerTracing.isActiveTracingFlagSet(LayerTracing::Flag::TRACE_BUFFERS)) { return; } auto snapshot = takeLayersSnapshotProto(mLayerTracing.getActiveTracingFlags(), time, vsyncId, visibleRegionDirty); mLayerTracing.addProtoSnapshotToOstream(std::move(snapshot), LayerTracing::Mode::MODE_ACTIVE); } perfetto::protos::LayersSnapshotProto SurfaceFlinger::takeLayersSnapshotProto( uint32_t traceFlags, TimePoint time, VsyncId vsyncId, bool visibleRegionDirty) { SFTRACE_CALL(); perfetto::protos::LayersSnapshotProto snapshot; snapshot.set_elapsed_realtime_nanos(time.ns()); snapshot.set_vsync_id(ftl::to_underlying(vsyncId)); snapshot.set_where(visibleRegionDirty ? "visibleRegionsDirty" : "bufferLatched"); snapshot.set_excludes_composition_state((traceFlags & LayerTracing::Flag::TRACE_COMPOSITION) == 0); auto layers = dumpDrawingStateProto(traceFlags); *snapshot.mutable_layers() = std::move(layers); if (traceFlags & LayerTracing::Flag::TRACE_HWC) { std::string hwcDump; dumpHwc(hwcDump); snapshot.set_hwc_blob(std::move(hwcDump)); } *snapshot.mutable_displays() = dumpDisplayProto(); return snapshot; } // sfdo functions void SurfaceFlinger::sfdo_enableRefreshRateOverlay(bool active) { auto future = mScheduler->schedule( [&]() FTL_FAKE_GUARD(mStateLock) FTL_FAKE_GUARD(kMainThreadContext) { enableRefreshRateOverlay(active); }); future.wait(); } void SurfaceFlinger::sfdo_setDebugFlash(int delay) { if (delay > 0) { mDebugFlashDelay = delay; } else { mDebugFlashDelay = mDebugFlashDelay ? 0 : 1; } scheduleRepaint(); } void SurfaceFlinger::sfdo_scheduleComposite() { scheduleComposite(SurfaceFlinger::FrameHint::kActive); } void SurfaceFlinger::sfdo_scheduleCommit() { Mutex::Autolock lock(mStateLock); setTransactionFlags(eTransactionNeeded | eDisplayTransactionNeeded | eTraversalNeeded); } void SurfaceFlinger::sfdo_forceClientComposition(bool enabled) { mDebugDisableHWC = enabled; scheduleRepaint(); } // gui::ISurfaceComposer binder::Status SurfaceComposerAIDL::bootFinished() { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } mFlinger->bootFinished(); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::createDisplayEventConnection( VsyncSource vsyncSource, EventRegistration eventRegistration, const sp& layerHandle, sp* outConnection) { sp conn = mFlinger->createDisplayEventConnection(vsyncSource, eventRegistration, layerHandle); if (conn == nullptr) { *outConnection = nullptr; return binderStatusFromStatusT(BAD_VALUE); } else { *outConnection = conn; return binder::Status::ok(); } } binder::Status SurfaceComposerAIDL::createConnection(sp* outClient) { const sp client = sp::make(mFlinger); if (client->initCheck() == NO_ERROR) { *outClient = client; if (FlagManager::getInstance().misc1()) { const int policy = SCHED_FIFO; client->setMinSchedulerPolicy(policy, sched_get_priority_min(policy)); } return binder::Status::ok(); } else { *outClient = nullptr; return binderStatusFromStatusT(BAD_VALUE); } } binder::Status SurfaceComposerAIDL::createVirtualDisplay(const std::string& displayName, bool isSecure, const std::string& uniqueId, float requestedRefreshRate, sp* outDisplay) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } *outDisplay = mFlinger->createVirtualDisplay(displayName, isSecure, uniqueId, requestedRefreshRate); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::destroyVirtualDisplay(const sp& displayToken) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } return binder::Status::fromStatusT(mFlinger->destroyVirtualDisplay(displayToken)); } binder::Status SurfaceComposerAIDL::getPhysicalDisplayIds(std::vector* outDisplayIds) { std::vector physicalDisplayIds = mFlinger->getPhysicalDisplayIds(); std::vector displayIds; displayIds.reserve(physicalDisplayIds.size()); for (const auto id : physicalDisplayIds) { displayIds.push_back(static_cast(id.value)); } *outDisplayIds = std::move(displayIds); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::getPhysicalDisplayToken(int64_t displayId, sp* outDisplay) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } const auto id = DisplayId::fromValue(static_cast(displayId)); *outDisplay = mFlinger->getPhysicalDisplayToken(*id); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::setPowerMode(const sp& display, int mode) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } mFlinger->setPowerMode(display, mode); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::getSupportedFrameTimestamps( std::vector* outSupported) { status_t status; if (!outSupported) { status = UNEXPECTED_NULL; } else { outSupported->clear(); status = mFlinger->getSupportedFrameTimestamps(outSupported); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDisplayStats(const sp& display, gui::DisplayStatInfo* outStatInfo) { DisplayStatInfo statInfo; status_t status = mFlinger->getDisplayStats(display, &statInfo); if (status == NO_ERROR) { outStatInfo->vsyncTime = static_cast(statInfo.vsyncTime); outStatInfo->vsyncPeriod = static_cast(statInfo.vsyncPeriod); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDisplayState(const sp& display, gui::DisplayState* outState) { ui::DisplayState state; status_t status = mFlinger->getDisplayState(display, &state); if (status == NO_ERROR) { outState->layerStack = state.layerStack.id; outState->orientation = static_cast(state.orientation); outState->layerStackSpaceRect.width = state.layerStackSpaceRect.width; outState->layerStackSpaceRect.height = state.layerStackSpaceRect.height; } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getStaticDisplayInfo(int64_t displayId, gui::StaticDisplayInfo* outInfo) { using Tag = gui::DeviceProductInfo::ManufactureOrModelDate::Tag; ui::StaticDisplayInfo info; status_t status = mFlinger->getStaticDisplayInfo(displayId, &info); if (status == NO_ERROR) { // convert ui::StaticDisplayInfo to gui::StaticDisplayInfo outInfo->connectionType = static_cast(info.connectionType); outInfo->density = info.density; outInfo->secure = info.secure; outInfo->installOrientation = static_cast(info.installOrientation); if (const std::optional dpi = info.deviceProductInfo) { gui::DeviceProductInfo dinfo; dinfo.name = std::move(dpi->name); dinfo.manufacturerPnpId = std::vector(dpi->manufacturerPnpId.begin(), dpi->manufacturerPnpId.end()); dinfo.productId = dpi->productId; dinfo.relativeAddress = std::vector(dpi->relativeAddress.begin(), dpi->relativeAddress.end()); if (const auto* model = std::get_if(&dpi->manufactureOrModelDate)) { gui::DeviceProductInfo::ModelYear modelYear; modelYear.year = model->year; dinfo.manufactureOrModelDate.set(modelYear); } else if (const auto* manufacture = std::get_if( &dpi->manufactureOrModelDate)) { gui::DeviceProductInfo::ManufactureYear date; date.modelYear.year = manufacture->year; dinfo.manufactureOrModelDate.set(date); } else if (const auto* manufacture = std::get_if( &dpi->manufactureOrModelDate)) { gui::DeviceProductInfo::ManufactureWeekAndYear date; date.manufactureYear.modelYear.year = manufacture->year; date.week = manufacture->week; dinfo.manufactureOrModelDate.set(date); } outInfo->deviceProductInfo = dinfo; } } return binderStatusFromStatusT(status); } void SurfaceComposerAIDL::getDynamicDisplayInfoInternal(ui::DynamicDisplayInfo& info, gui::DynamicDisplayInfo*& outInfo) { // convert ui::DynamicDisplayInfo to gui::DynamicDisplayInfo outInfo->supportedDisplayModes.clear(); outInfo->supportedDisplayModes.reserve(info.supportedDisplayModes.size()); for (const auto& mode : info.supportedDisplayModes) { gui::DisplayMode outMode; outMode.id = mode.id; outMode.resolution.width = mode.resolution.width; outMode.resolution.height = mode.resolution.height; outMode.xDpi = mode.xDpi; outMode.yDpi = mode.yDpi; outMode.peakRefreshRate = mode.peakRefreshRate; outMode.vsyncRate = mode.vsyncRate; outMode.appVsyncOffset = mode.appVsyncOffset; outMode.sfVsyncOffset = mode.sfVsyncOffset; outMode.presentationDeadline = mode.presentationDeadline; outMode.group = mode.group; std::transform(mode.supportedHdrTypes.begin(), mode.supportedHdrTypes.end(), std::back_inserter(outMode.supportedHdrTypes), [](const ui::Hdr& value) { return static_cast(value); }); outInfo->supportedDisplayModes.push_back(outMode); } outInfo->activeDisplayModeId = info.activeDisplayModeId; outInfo->renderFrameRate = info.renderFrameRate; outInfo->hasArrSupport = info.hasArrSupport; gui::FrameRateCategoryRate& frameRateCategoryRate = outInfo->frameRateCategoryRate; frameRateCategoryRate.normal = info.frameRateCategoryRate.getNormal(); frameRateCategoryRate.high = info.frameRateCategoryRate.getHigh(); outInfo->supportedRefreshRates.clear(); outInfo->supportedRefreshRates.reserve(info.supportedRefreshRates.size()); for (float supportedRefreshRate : info.supportedRefreshRates) { outInfo->supportedRefreshRates.push_back(supportedRefreshRate); } outInfo->supportedColorModes.clear(); outInfo->supportedColorModes.reserve(info.supportedColorModes.size()); for (const auto& cmode : info.supportedColorModes) { outInfo->supportedColorModes.push_back(static_cast(cmode)); } outInfo->activeColorMode = static_cast(info.activeColorMode); gui::HdrCapabilities& hdrCapabilities = outInfo->hdrCapabilities; hdrCapabilities.supportedHdrTypes.clear(); hdrCapabilities.supportedHdrTypes.reserve(info.hdrCapabilities.getSupportedHdrTypes().size()); for (const auto& hdr : info.hdrCapabilities.getSupportedHdrTypes()) { hdrCapabilities.supportedHdrTypes.push_back(static_cast(hdr)); } hdrCapabilities.maxLuminance = info.hdrCapabilities.getDesiredMaxLuminance(); hdrCapabilities.maxAverageLuminance = info.hdrCapabilities.getDesiredMaxAverageLuminance(); hdrCapabilities.minLuminance = info.hdrCapabilities.getDesiredMinLuminance(); outInfo->autoLowLatencyModeSupported = info.autoLowLatencyModeSupported; outInfo->gameContentTypeSupported = info.gameContentTypeSupported; outInfo->preferredBootDisplayMode = info.preferredBootDisplayMode; } binder::Status SurfaceComposerAIDL::getDynamicDisplayInfoFromToken( const sp& display, gui::DynamicDisplayInfo* outInfo) { ui::DynamicDisplayInfo info; status_t status = mFlinger->getDynamicDisplayInfoFromToken(display, &info); if (status == NO_ERROR) { getDynamicDisplayInfoInternal(info, outInfo); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDynamicDisplayInfoFromId(int64_t displayId, gui::DynamicDisplayInfo* outInfo) { ui::DynamicDisplayInfo info; status_t status = mFlinger->getDynamicDisplayInfoFromId(displayId, &info); if (status == NO_ERROR) { getDynamicDisplayInfoInternal(info, outInfo); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDisplayNativePrimaries(const sp& display, gui::DisplayPrimaries* outPrimaries) { ui::DisplayPrimaries primaries; status_t status = mFlinger->getDisplayNativePrimaries(display, primaries); if (status == NO_ERROR) { outPrimaries->red.X = primaries.red.X; outPrimaries->red.Y = primaries.red.Y; outPrimaries->red.Z = primaries.red.Z; outPrimaries->green.X = primaries.green.X; outPrimaries->green.Y = primaries.green.Y; outPrimaries->green.Z = primaries.green.Z; outPrimaries->blue.X = primaries.blue.X; outPrimaries->blue.Y = primaries.blue.Y; outPrimaries->blue.Z = primaries.blue.Z; outPrimaries->white.X = primaries.white.X; outPrimaries->white.Y = primaries.white.Y; outPrimaries->white.Z = primaries.white.Z; } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setActiveColorMode(const sp& display, int colorMode) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->setActiveColorMode(display, static_cast(colorMode)); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setBootDisplayMode(const sp& display, int displayModeId) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->setBootDisplayMode(display, DisplayModeId{displayModeId}); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::clearBootDisplayMode(const sp& display) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->clearBootDisplayMode(display); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getOverlaySupport(gui::OverlayProperties* outProperties) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->getOverlaySupport(outProperties); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getBootDisplayModeSupport(bool* outMode) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->getBootDisplayModeSupport(outMode); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getHdrConversionCapabilities( std::vector* hdrConversionCapabilities) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->getHdrConversionCapabilities(hdrConversionCapabilities); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setHdrConversionStrategy( const gui::HdrConversionStrategy& hdrConversionStrategy, int32_t* outPreferredHdrOutputType) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->setHdrConversionStrategy(hdrConversionStrategy, outPreferredHdrOutputType); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getHdrOutputConversionSupport(bool* outMode) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->getHdrOutputConversionSupport(outMode); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setAutoLowLatencyMode(const sp& display, bool on) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } mFlinger->setAutoLowLatencyMode(display, on); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::setGameContentType(const sp& display, bool on) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } mFlinger->setGameContentType(display, on); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::getMaxLayerPictureProfiles(const sp& display, int32_t* outMaxProfiles) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } mFlinger->getMaxLayerPictureProfiles(display, outMaxProfiles); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::captureDisplay( const DisplayCaptureArgs& args, const sp& captureListener) { mFlinger->captureDisplay(args, captureListener); return binderStatusFromStatusT(NO_ERROR); } binder::Status SurfaceComposerAIDL::captureDisplayById( int64_t displayId, const CaptureArgs& args, const sp& captureListener) { // status_t status; IPCThreadState* ipc = IPCThreadState::self(); const int uid = ipc->getCallingUid(); if (uid == AID_ROOT || uid == AID_GRAPHICS || uid == AID_SYSTEM || uid == AID_SHELL) { std::optional id = DisplayId::fromValue(static_cast(displayId)); mFlinger->captureDisplay(*id, args, captureListener); } else { ALOGD("Permission denied to captureDisplayById"); invokeScreenCaptureError(PERMISSION_DENIED, captureListener); } return binderStatusFromStatusT(NO_ERROR); } binder::Status SurfaceComposerAIDL::captureLayersSync(const LayerCaptureArgs& args, ScreenCaptureResults* outResults) { *outResults = mFlinger->captureLayersSync(args); return binderStatusFromStatusT(NO_ERROR); } binder::Status SurfaceComposerAIDL::captureLayers( const LayerCaptureArgs& args, const sp& captureListener) { mFlinger->captureLayers(args, captureListener); return binderStatusFromStatusT(NO_ERROR); } binder::Status SurfaceComposerAIDL::overrideHdrTypes(const sp& display, const std::vector& hdrTypes) { // overrideHdrTypes is used by CTS tests, which acquire the necessary // permission dynamically. Don't use the permission cache for this check. status_t status = checkAccessPermission(false); if (status != OK) { return binderStatusFromStatusT(status); } std::vector hdrTypesVector; for (int32_t i : hdrTypes) { hdrTypesVector.push_back(static_cast(i)); } status = mFlinger->overrideHdrTypes(display, hdrTypesVector); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::onPullAtom(int32_t atomId, gui::PullAtomData* outPullData) { status_t status; const int uid = IPCThreadState::self()->getCallingUid(); if (uid != AID_SYSTEM) { status = PERMISSION_DENIED; } else { status = mFlinger->onPullAtom(atomId, &outPullData->data, &outPullData->success); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getCompositionPreference(gui::CompositionPreference* outPref) { ui::Dataspace dataspace; ui::PixelFormat pixelFormat; ui::Dataspace wideColorGamutDataspace; ui::PixelFormat wideColorGamutPixelFormat; status_t status = mFlinger->getCompositionPreference(&dataspace, &pixelFormat, &wideColorGamutDataspace, &wideColorGamutPixelFormat); if (status == NO_ERROR) { outPref->defaultDataspace = static_cast(dataspace); outPref->defaultPixelFormat = static_cast(pixelFormat); outPref->wideColorGamutDataspace = static_cast(wideColorGamutDataspace); outPref->wideColorGamutPixelFormat = static_cast(wideColorGamutPixelFormat); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDisplayedContentSamplingAttributes( const sp& display, gui::ContentSamplingAttributes* outAttrs) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } ui::PixelFormat format; ui::Dataspace dataspace; uint8_t componentMask; status = mFlinger->getDisplayedContentSamplingAttributes(display, &format, &dataspace, &componentMask); if (status == NO_ERROR) { outAttrs->format = static_cast(format); outAttrs->dataspace = static_cast(dataspace); outAttrs->componentMask = static_cast(componentMask); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setDisplayContentSamplingEnabled(const sp& display, bool enable, int8_t componentMask, int64_t maxFrames) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->setDisplayContentSamplingEnabled(display, enable, static_cast(componentMask), static_cast(maxFrames)); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDisplayedContentSample(const sp& display, int64_t maxFrames, int64_t timestamp, gui::DisplayedFrameStats* outStats) { if (!outStats) { return binderStatusFromStatusT(BAD_VALUE); } status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } DisplayedFrameStats stats; status = mFlinger->getDisplayedContentSample(display, static_cast(maxFrames), static_cast(timestamp), &stats); if (status == NO_ERROR) { // convert from ui::DisplayedFrameStats to gui::DisplayedFrameStats outStats->numFrames = static_cast(stats.numFrames); outStats->component_0_sample.reserve(stats.component_0_sample.size()); for (const auto& s : stats.component_0_sample) { outStats->component_0_sample.push_back(static_cast(s)); } outStats->component_1_sample.reserve(stats.component_1_sample.size()); for (const auto& s : stats.component_1_sample) { outStats->component_1_sample.push_back(static_cast(s)); } outStats->component_2_sample.reserve(stats.component_2_sample.size()); for (const auto& s : stats.component_2_sample) { outStats->component_2_sample.push_back(static_cast(s)); } outStats->component_3_sample.reserve(stats.component_3_sample.size()); for (const auto& s : stats.component_3_sample) { outStats->component_3_sample.push_back(static_cast(s)); } } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getProtectedContentSupport(bool* outSupported) { status_t status = mFlinger->getProtectedContentSupport(outSupported); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::isWideColorDisplay(const sp& token, bool* outIsWideColorDisplay) { status_t status = mFlinger->isWideColorDisplay(token, outIsWideColorDisplay); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::addRegionSamplingListener( const gui::ARect& samplingArea, const sp& stopLayerHandle, const sp& listener) { status_t status = checkReadFrameBufferPermission(); if (status != OK) { return binderStatusFromStatusT(status); } android::Rect rect; rect.left = samplingArea.left; rect.top = samplingArea.top; rect.right = samplingArea.right; rect.bottom = samplingArea.bottom; status = mFlinger->addRegionSamplingListener(rect, stopLayerHandle, listener); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::removeRegionSamplingListener( const sp& listener) { status_t status = checkReadFrameBufferPermission(); if (status == OK) { status = mFlinger->removeRegionSamplingListener(listener); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::addFpsListener(int32_t taskId, const sp& listener) { status_t status = checkReadFrameBufferPermission(); if (status == OK) { status = mFlinger->addFpsListener(taskId, listener); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::removeFpsListener(const sp& listener) { status_t status = checkReadFrameBufferPermission(); if (status == OK) { status = mFlinger->removeFpsListener(listener); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::addTunnelModeEnabledListener( const sp& listener) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->addTunnelModeEnabledListener(listener); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::removeTunnelModeEnabledListener( const sp& listener) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->removeTunnelModeEnabledListener(listener); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setDesiredDisplayModeSpecs(const sp& displayToken, const gui::DisplayModeSpecs& specs) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->setDesiredDisplayModeSpecs(displayToken, specs); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDesiredDisplayModeSpecs(const sp& displayToken, gui::DisplayModeSpecs* outSpecs) { if (!outSpecs) { return binderStatusFromStatusT(BAD_VALUE); } status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } status = mFlinger->getDesiredDisplayModeSpecs(displayToken, outSpecs); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDisplayBrightnessSupport(const sp& displayToken, bool* outSupport) { status_t status = mFlinger->getDisplayBrightnessSupport(displayToken, outSupport); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setDisplayBrightness(const sp& displayToken, const gui::DisplayBrightness& brightness) { status_t status = checkControlDisplayBrightnessPermission(); if (status == OK) { status = mFlinger->setDisplayBrightness(displayToken, brightness); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::addHdrLayerInfoListener( const sp& displayToken, const sp& listener) { status_t status = checkControlDisplayBrightnessPermission(); if (status == OK) { status = mFlinger->addHdrLayerInfoListener(displayToken, listener); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::removeHdrLayerInfoListener( const sp& displayToken, const sp& listener) { status_t status = checkControlDisplayBrightnessPermission(); if (status == OK) { status = mFlinger->removeHdrLayerInfoListener(displayToken, listener); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setActivePictureListener( const sp& listener) { status_t status = checkObservePictureProfilesPermission(); if (status == OK) { mFlinger->setActivePictureListener(listener); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::notifyPowerBoost(int boostId) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->notifyPowerBoost(boostId); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setGlobalShadowSettings(const gui::Color& ambientColor, const gui::Color& spotColor, float lightPosY, float lightPosZ, float lightRadius) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } half4 ambientColorHalf = {ambientColor.r, ambientColor.g, ambientColor.b, ambientColor.a}; half4 spotColorHalf = {spotColor.r, spotColor.g, spotColor.b, spotColor.a}; status = mFlinger->setGlobalShadowSettings(ambientColorHalf, spotColorHalf, lightPosY, lightPosZ, lightRadius); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDisplayDecorationSupport( const sp& displayToken, std::optional* outSupport) { std::optional support; status_t status = mFlinger->getDisplayDecorationSupport(displayToken, &support); if (status != NO_ERROR) { ALOGE("getDisplayDecorationSupport failed with error %d", status); return binderStatusFromStatusT(status); } if (!support || !support.has_value()) { outSupport->reset(); } else { outSupport->emplace(); outSupport->value().format = static_cast(support->format); outSupport->value().alphaInterpretation = static_cast(support->alphaInterpretation); } return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::setGameModeFrameRateOverride(int32_t uid, float frameRate) { status_t status; const int c_uid = IPCThreadState::self()->getCallingUid(); if (c_uid == AID_ROOT || c_uid == AID_SYSTEM) { status = mFlinger->setGameModeFrameRateOverride(uid, frameRate); } else { ALOGE("setGameModeFrameRateOverride() permission denied for uid: %d", c_uid); status = PERMISSION_DENIED; } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setGameDefaultFrameRateOverride(int32_t uid, float frameRate) { status_t status; const int c_uid = IPCThreadState::self()->getCallingUid(); if (c_uid == AID_ROOT || c_uid == AID_SYSTEM) { status = mFlinger->setGameDefaultFrameRateOverride(uid, frameRate); } else { ALOGE("setGameDefaultFrameRateOverride() permission denied for uid: %d", c_uid); status = PERMISSION_DENIED; } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::enableRefreshRateOverlay(bool active) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } mFlinger->sfdo_enableRefreshRateOverlay(active); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::setDebugFlash(int delay) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } mFlinger->sfdo_setDebugFlash(delay); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::scheduleComposite() { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } mFlinger->sfdo_scheduleComposite(); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::scheduleCommit() { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } mFlinger->sfdo_scheduleCommit(); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::forceClientComposition(bool enabled) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } mFlinger->sfdo_forceClientComposition(enabled); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::updateSmallAreaDetection(const std::vector& appIds, const std::vector& thresholds) { status_t status; const int c_uid = IPCThreadState::self()->getCallingUid(); if (c_uid == AID_ROOT || c_uid == AID_SYSTEM) { if (appIds.size() != thresholds.size()) return binderStatusFromStatusT(BAD_VALUE); std::vector> mappings; const size_t size = appIds.size(); mappings.reserve(size); for (int i = 0; i < size; i++) { auto row = std::make_pair(appIds[i], thresholds[i]); mappings.push_back(row); } status = mFlinger->updateSmallAreaDetection(mappings); } else { ALOGE("updateSmallAreaDetection() permission denied for uid: %d", c_uid); status = PERMISSION_DENIED; } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setSmallAreaDetectionThreshold(int32_t appId, float threshold) { status_t status; const int c_uid = IPCThreadState::self()->getCallingUid(); if (c_uid == AID_ROOT || c_uid == AID_SYSTEM) { status = mFlinger->setSmallAreaDetectionThreshold(appId, threshold); } else { ALOGE("setSmallAreaDetectionThreshold() permission denied for uid: %d", c_uid); status = PERMISSION_DENIED; } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getGpuContextPriority(int32_t* outPriority) { *outPriority = mFlinger->getGpuContextPriority(); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::getMaxAcquiredBufferCount(int32_t* buffers) { status_t status = mFlinger->getMaxAcquiredBufferCount(buffers); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::addWindowInfosListener( const sp& windowInfosListener, gui::WindowInfosListenerInfo* outInfo) { status_t status; const int pid = IPCThreadState::self()->getCallingPid(); const int uid = IPCThreadState::self()->getCallingUid(); // TODO(b/270566761) update permissions check so that only system_server and shell can add // WindowInfosListeners if (uid == AID_SYSTEM || uid == AID_GRAPHICS || checkPermission(sAccessSurfaceFlinger, pid, uid)) { status = mFlinger->addWindowInfosListener(windowInfosListener, outInfo); } else { status = PERMISSION_DENIED; } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::removeWindowInfosListener( const sp& windowInfosListener) { status_t status; const int pid = IPCThreadState::self()->getCallingPid(); const int uid = IPCThreadState::self()->getCallingUid(); if (uid == AID_SYSTEM || uid == AID_GRAPHICS || checkPermission(sAccessSurfaceFlinger, pid, uid)) { status = mFlinger->removeWindowInfosListener(windowInfosListener); } else { status = PERMISSION_DENIED; } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getStalledTransactionInfo( int pid, std::optional* outInfo) { const int callingPid = IPCThreadState::self()->getCallingPid(); const int callingUid = IPCThreadState::self()->getCallingUid(); if (!checkPermission(sAccessSurfaceFlinger, callingPid, callingUid)) { return binderStatusFromStatusT(PERMISSION_DENIED); } std::optional stalledTransactionInfo; status_t status = mFlinger->getStalledTransactionInfo(pid, stalledTransactionInfo); if (stalledTransactionInfo) { gui::StalledTransactionInfo result; result.layerName = String16{stalledTransactionInfo->layerName.c_str()}, result.bufferId = stalledTransactionInfo->bufferId, result.frameNumber = stalledTransactionInfo->frameNumber, outInfo->emplace(std::move(result)); } else { outInfo->reset(); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getSchedulingPolicy(gui::SchedulingPolicy* outPolicy) { return gui::getSchedulingPolicy(outPolicy); } binder::Status SurfaceComposerAIDL::notifyShutdown() { TransactionTraceWriter::getInstance().invoke("systemShutdown_", /* overwrite= */ false); return ::android::binder::Status::ok(); } binder::Status SurfaceComposerAIDL::addJankListener(const sp& layerHandle, const sp& listener) { sp layer = LayerHandle::getLayer(layerHandle); if (layer == nullptr) { return binder::Status::fromExceptionCode(binder::Status::EX_NULL_POINTER); } JankTracker::addJankListener(layer->sequence, IInterface::asBinder(listener)); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::flushJankData(int32_t layerId) { JankTracker::flushJankData(layerId); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::removeJankListener(int32_t layerId, const sp& listener, int64_t afterVsync) { JankTracker::removeJankListener(layerId, IInterface::asBinder(listener), afterVsync); return binder::Status::ok(); } status_t SurfaceComposerAIDL::checkAccessPermission(bool usePermissionCache) { if (!mFlinger->callingThreadHasUnscopedSurfaceFlingerAccess(usePermissionCache)) { IPCThreadState* ipc = IPCThreadState::self(); ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d", ipc->getCallingPid(), ipc->getCallingUid()); return PERMISSION_DENIED; } return OK; } status_t SurfaceComposerAIDL::checkControlDisplayBrightnessPermission() { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if ((uid != AID_GRAPHICS) && (uid != AID_SYSTEM) && !PermissionCache::checkPermission(sControlDisplayBrightness, pid, uid)) { ALOGE("Permission Denial: can't control brightness pid=%d, uid=%d", pid, uid); return PERMISSION_DENIED; } return OK; } status_t SurfaceComposerAIDL::checkReadFrameBufferPermission() { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if ((uid != AID_GRAPHICS) && !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) { ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid); return PERMISSION_DENIED; } return OK; } status_t SurfaceComposerAIDL::checkObservePictureProfilesPermission() { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if (!PermissionCache::checkPermission(sObservePictureProfiles, pid, uid)) { ALOGE("Permission Denial: can't manage picture profiles pid=%d, uid=%d", pid, uid); return PERMISSION_DENIED; } return OK; } void SurfaceFlinger::forceFutureUpdate(int delayInMs) { static_cast(mScheduler->scheduleDelayed([&]() { scheduleRepaint(); }, ms2ns(delayInMs))); } const DisplayDevice* SurfaceFlinger::getDisplayFromLayerStack(ui::LayerStack layerStack) { for (const auto& [_, display] : mDisplays) { if (display->getLayerStack() == layerStack) { return display.get(); } } return nullptr; } } // namespace android #if defined(__gl_h_) #error "don't include gl/gl.h in this file" #endif #if defined(__gl2_h_) #error "don't include gl2/gl2.h in this file" #endif // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic pop // ignored "-Wconversion -Wextra"