/* * Copyright (C) 2021 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include "SensorsAidlEnvironment.h" #include "SensorsAidlTestSharedMemory.h" #include "sensors-vts-utils/SensorsVtsEnvironmentBase.h" #include #include #include #include #include #include using aidl::android::hardware::sensors::Event; using aidl::android::hardware::sensors::ISensors; using aidl::android::hardware::sensors::SensorInfo; using aidl::android::hardware::sensors::SensorStatus; using aidl::android::hardware::sensors::SensorType; using aidl::android::hardware::sensors::AdditionalInfo; using android::ProcessState; using std::chrono::duration_cast; constexpr size_t kEventSize = static_cast(ISensors::DIRECT_REPORT_SENSOR_EVENT_TOTAL_LENGTH); namespace { static void assertTypeMatchStringType(SensorType type, const std::string& stringType) { if (type >= SensorType::DEVICE_PRIVATE_BASE) { return; } switch (type) { #define CHECK_TYPE_STRING_FOR_SENSOR_TYPE(type) \ case SensorType::type: \ ASSERT_STREQ(SENSOR_STRING_TYPE_##type, stringType.c_str()); \ break; CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_LIMITED_AXES); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_LIMITED_AXES_UNCALIBRATED); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_UNCALIBRATED); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ADDITIONAL_INFO); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(AMBIENT_TEMPERATURE); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DEVICE_ORIENTATION); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DYNAMIC_SENSOR_META); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GAME_ROTATION_VECTOR); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GEOMAGNETIC_ROTATION_VECTOR); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GLANCE_GESTURE); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GRAVITY); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_LIMITED_AXES); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_LIMITED_AXES_UNCALIBRATED); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_UNCALIBRATED); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEADING); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_BEAT); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_RATE); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LIGHT); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LINEAR_ACCELERATION); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LOW_LATENCY_OFFBODY_DETECT); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD_UNCALIBRATED); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MOTION_DETECT); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ORIENTATION); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PICK_UP_GESTURE); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(POSE_6DOF); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PRESSURE); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PROXIMITY); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(RELATIVE_HUMIDITY); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ROTATION_VECTOR); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(SIGNIFICANT_MOTION); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STATIONARY_DETECT); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_COUNTER); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_DETECTOR); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(TILT_DETECTOR); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WAKE_GESTURE); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WRIST_TILT_GESTURE); CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HINGE_ANGLE); default: FAIL() << "Type " << static_cast(type) << " in android defined range is not checked, " << "stringType = " << stringType; #undef CHECK_TYPE_STRING_FOR_SENSOR_TYPE } } bool isDirectChannelTypeSupported(SensorInfo sensor, ISensors::SharedMemInfo::SharedMemType type) { switch (type) { case ISensors::SharedMemInfo::SharedMemType::ASHMEM: return (sensor.flags & SensorInfo::SENSOR_FLAG_BITS_DIRECT_CHANNEL_ASHMEM) != 0; case ISensors::SharedMemInfo::SharedMemType::GRALLOC: return (sensor.flags & SensorInfo::SENSOR_FLAG_BITS_DIRECT_CHANNEL_GRALLOC) != 0; default: return false; } } bool isDirectReportRateSupported(SensorInfo sensor, ISensors::RateLevel rate) { unsigned int r = static_cast(sensor.flags & SensorInfo::SENSOR_FLAG_BITS_MASK_DIRECT_REPORT) >> static_cast(SensorInfo::SENSOR_FLAG_SHIFT_DIRECT_REPORT); return r >= static_cast(rate); } int expectedReportModeForType(SensorType type) { switch (type) { case SensorType::ACCELEROMETER: case SensorType::ACCELEROMETER_LIMITED_AXES: case SensorType::ACCELEROMETER_UNCALIBRATED: case SensorType::ACCELEROMETER_LIMITED_AXES_UNCALIBRATED: case SensorType::GYROSCOPE: case SensorType::GYROSCOPE_LIMITED_AXES: case SensorType::MAGNETIC_FIELD: case SensorType::ORIENTATION: case SensorType::PRESSURE: case SensorType::GRAVITY: case SensorType::LINEAR_ACCELERATION: case SensorType::ROTATION_VECTOR: case SensorType::MAGNETIC_FIELD_UNCALIBRATED: case SensorType::GAME_ROTATION_VECTOR: case SensorType::GYROSCOPE_UNCALIBRATED: case SensorType::GYROSCOPE_LIMITED_AXES_UNCALIBRATED: case SensorType::GEOMAGNETIC_ROTATION_VECTOR: case SensorType::POSE_6DOF: case SensorType::HEART_BEAT: case SensorType::HEADING: return SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE; case SensorType::LIGHT: case SensorType::PROXIMITY: case SensorType::RELATIVE_HUMIDITY: case SensorType::AMBIENT_TEMPERATURE: case SensorType::HEART_RATE: case SensorType::DEVICE_ORIENTATION: case SensorType::STEP_COUNTER: case SensorType::LOW_LATENCY_OFFBODY_DETECT: return SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE; case SensorType::SIGNIFICANT_MOTION: case SensorType::WAKE_GESTURE: case SensorType::GLANCE_GESTURE: case SensorType::PICK_UP_GESTURE: case SensorType::MOTION_DETECT: case SensorType::STATIONARY_DETECT: return SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE; case SensorType::STEP_DETECTOR: case SensorType::TILT_DETECTOR: case SensorType::WRIST_TILT_GESTURE: case SensorType::DYNAMIC_SENSOR_META: return SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE; default: ALOGW("Type %d is not implemented in expectedReportModeForType", (int)type); return INT32_MAX; } } void assertTypeMatchReportMode(SensorType type, int reportMode) { if (type >= SensorType::DEVICE_PRIVATE_BASE) { return; } int expected = expectedReportModeForType(type); ASSERT_TRUE(expected == INT32_MAX || expected == reportMode) << "reportMode=" << static_cast(reportMode) << "expected=" << static_cast(expected); } void assertDelayMatchReportMode(int32_t minDelayUs, int32_t maxDelayUs, int reportMode) { switch (reportMode) { case SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE: ASSERT_LT(0, minDelayUs); ASSERT_LE(0, maxDelayUs); break; case SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE: ASSERT_LE(0, minDelayUs); ASSERT_LE(0, maxDelayUs); break; case SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE: ASSERT_EQ(-1, minDelayUs); ASSERT_EQ(0, maxDelayUs); break; case SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE: // do not enforce anything for special reporting mode break; default: FAIL() << "Report mode " << static_cast(reportMode) << " not checked"; } } void checkIsOk(ndk::ScopedAStatus status) { ASSERT_TRUE(status.isOk()); } } // namespace class EventCallback : public IEventCallback { public: void reset() { mFlushMap.clear(); mEventMap.clear(); } void onEvent(const Event& event) override { if (event.sensorType == SensorType::META_DATA && event.payload.get().what == Event::EventPayload::MetaData::MetaDataEventType::META_DATA_FLUSH_COMPLETE) { std::unique_lock lock(mFlushMutex); mFlushMap[event.sensorHandle]++; mFlushCV.notify_all(); } else if (event.sensorType != SensorType::ADDITIONAL_INFO) { std::unique_lock lock(mEventMutex); mEventMap[event.sensorHandle].push_back(event); mEventCV.notify_all(); } } int32_t getFlushCount(int32_t sensorHandle) { std::unique_lock lock(mFlushMutex); return mFlushMap[sensorHandle]; } void waitForFlushEvents(const std::vector& sensorsToWaitFor, int32_t numCallsToFlush, std::chrono::milliseconds timeout) { std::unique_lock lock(mFlushMutex); mFlushCV.wait_for(lock, timeout, [&] { return flushesReceived(sensorsToWaitFor, numCallsToFlush); }); } const std::vector getEvents(int32_t sensorHandle) { std::unique_lock lock(mEventMutex); return mEventMap[sensorHandle]; } void waitForEvents(const std::vector& sensorsToWaitFor, std::chrono::milliseconds timeout) { std::unique_lock lock(mEventMutex); mEventCV.wait_for(lock, timeout, [&] { return eventsReceived(sensorsToWaitFor); }); } protected: bool flushesReceived(const std::vector& sensorsToWaitFor, int32_t numCallsToFlush) { for (const SensorInfo& sensor : sensorsToWaitFor) { if (getFlushCount(sensor.sensorHandle) < numCallsToFlush) { return false; } } return true; } bool eventsReceived(const std::vector& sensorsToWaitFor) { for (const SensorInfo& sensor : sensorsToWaitFor) { if (getEvents(sensor.sensorHandle).size() == 0) { return false; } } return true; } std::map mFlushMap; std::recursive_mutex mFlushMutex; std::condition_variable_any mFlushCV; std::map> mEventMap; std::recursive_mutex mEventMutex; std::condition_variable_any mEventCV; }; class SensorsAidlTest : public testing::TestWithParam { public: virtual void SetUp() override { mEnvironment = new SensorsAidlEnvironment(GetParam()); mEnvironment->SetUp(); // Ensure that we have a valid environment before performing tests ASSERT_NE(getSensors(), nullptr); } virtual void TearDown() override { for (int32_t handle : mSensorHandles) { activate(handle, false); } mSensorHandles.clear(); mEnvironment->TearDown(); delete mEnvironment; mEnvironment = nullptr; } protected: std::vector getNonOneShotSensors(); std::vector getNonOneShotAndNonSpecialSensors(); std::vector getNonOneShotAndNonOnChangeAndNonSpecialSensors(); std::vector getOneShotSensors(); std::vector getInjectEventSensors(); void verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType); void verifyRegisterDirectChannel( std::shared_ptr> mem, int32_t* directChannelHandle, bool supportsSharedMemType, bool supportsAnyDirectChannel); void verifyConfigure(const SensorInfo& sensor, ISensors::SharedMemInfo::SharedMemType memType, int32_t directChannelHandle, bool directChannelSupported); void queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType, bool* supportsSharedMemType, bool* supportsAnyDirectChannel); void verifyUnregisterDirectChannel(int32_t* directChannelHandle, bool supportsAnyDirectChannel); void checkRateLevel(const SensorInfo& sensor, int32_t directChannelHandle, ISensors::RateLevel rateLevel, int32_t* reportToken); inline std::shared_ptr& getSensors() { return mEnvironment->mSensors; } inline SensorsAidlEnvironment* getEnvironment() { return mEnvironment; } inline bool isValidType(SensorType sensorType) { return (int)sensorType > 0; } std::vector getSensorsList(); int32_t getInvalidSensorHandle() { // Find a sensor handle that does not exist in the sensor list int32_t maxHandle = 0; for (const SensorInfo& sensor : getSensorsList()) { maxHandle = std::max(maxHandle, sensor.sensorHandle); } return maxHandle + 1; } ndk::ScopedAStatus activate(int32_t sensorHandle, bool enable); void activateAllSensors(bool enable); ndk::ScopedAStatus batch(int32_t sensorHandle, int64_t samplingPeriodNs, int64_t maxReportLatencyNs) { return getSensors()->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs); } ndk::ScopedAStatus flush(int32_t sensorHandle) { return getSensors()->flush(sensorHandle); } ndk::ScopedAStatus registerDirectChannel(const ISensors::SharedMemInfo& mem, int32_t* aidlReturn); ndk::ScopedAStatus unregisterDirectChannel(int32_t* channelHandle) { return getSensors()->unregisterDirectChannel(*channelHandle); } ndk::ScopedAStatus configDirectReport(int32_t sensorHandle, int32_t channelHandle, ISensors::RateLevel rate, int32_t* reportToken) { return getSensors()->configDirectReport(sensorHandle, channelHandle, rate, reportToken); } void runSingleFlushTest(const std::vector& sensors, bool activateSensor, int32_t expectedFlushCount, bool expectedResult); void runFlushTest(const std::vector& sensors, bool activateSensor, int32_t flushCalls, int32_t expectedFlushCount, bool expectedResult); inline static int32_t extractReportMode(int32_t flag) { return (flag & (SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE | SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE | SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE | SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE)); } // All sensors and direct channnels used std::unordered_set mSensorHandles; std::unordered_set mDirectChannelHandles; private: SensorsAidlEnvironment* mEnvironment; }; ndk::ScopedAStatus SensorsAidlTest::registerDirectChannel(const ISensors::SharedMemInfo& mem, int32_t* aidlReturn) { // If registeration of a channel succeeds, add the handle of channel to a set so that it can be // unregistered when test fails. Unregister a channel does not remove the handle on purpose. // Unregistering a channel more than once should not have negative effect. ndk::ScopedAStatus status = getSensors()->registerDirectChannel(mem, aidlReturn); if (status.isOk()) { mDirectChannelHandles.insert(*aidlReturn); } return status; } std::vector SensorsAidlTest::getSensorsList() { std::vector sensorInfoList; checkIsOk(getSensors()->getSensorsList(&sensorInfoList)); return sensorInfoList; } ndk::ScopedAStatus SensorsAidlTest::activate(int32_t sensorHandle, bool enable) { // If activating a sensor, add the handle in a set so that when test fails it can be turned off. // The handle is not removed when it is deactivating on purpose so that it is not necessary to // check the return value of deactivation. Deactivating a sensor more than once does not have // negative effect. if (enable) { mSensorHandles.insert(sensorHandle); } return getSensors()->activate(sensorHandle, enable); } void SensorsAidlTest::activateAllSensors(bool enable) { for (const SensorInfo& sensorInfo : getSensorsList()) { if (isValidType(sensorInfo.type)) { checkIsOk(batch(sensorInfo.sensorHandle, sensorInfo.minDelayUs, 0 /* maxReportLatencyNs */)); checkIsOk(activate(sensorInfo.sensorHandle, enable)); } } } std::vector SensorsAidlTest::getNonOneShotSensors() { std::vector sensors; for (const SensorInfo& info : getSensorsList()) { if (extractReportMode(info.flags) != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE) { sensors.push_back(info); } } return sensors; } std::vector SensorsAidlTest::getNonOneShotAndNonSpecialSensors() { std::vector sensors; for (const SensorInfo& info : getSensorsList()) { int reportMode = extractReportMode(info.flags); if (reportMode != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE && reportMode != SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE) { sensors.push_back(info); } } return sensors; } std::vector SensorsAidlTest::getNonOneShotAndNonOnChangeAndNonSpecialSensors() { std::vector sensors; for (const SensorInfo& info : getSensorsList()) { int reportMode = extractReportMode(info.flags); if (reportMode != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE && reportMode != SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE && reportMode != SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE) { sensors.push_back(info); } } return sensors; } std::vector SensorsAidlTest::getOneShotSensors() { std::vector sensors; for (const SensorInfo& info : getSensorsList()) { if (extractReportMode(info.flags) == SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE) { sensors.push_back(info); } } return sensors; } std::vector SensorsAidlTest::getInjectEventSensors() { std::vector out; std::vector sensorInfoList = getSensorsList(); for (const SensorInfo& info : sensorInfoList) { if (info.flags & SensorInfo::SENSOR_FLAG_BITS_DATA_INJECTION) { out.push_back(info); } } return out; } void SensorsAidlTest::runSingleFlushTest(const std::vector& sensors, bool activateSensor, int32_t expectedFlushCount, bool expectedResult) { runFlushTest(sensors, activateSensor, 1 /* flushCalls */, expectedFlushCount, expectedResult); } void SensorsAidlTest::runFlushTest(const std::vector& sensors, bool activateSensor, int32_t flushCalls, int32_t expectedFlushCount, bool expectedResult) { EventCallback callback; getEnvironment()->registerCallback(&callback); for (const SensorInfo& sensor : sensors) { // Configure and activate the sensor batch(sensor.sensorHandle, sensor.maxDelayUs, 0 /* maxReportLatencyNs */); activate(sensor.sensorHandle, activateSensor); // Flush the sensor for (int32_t i = 0; i < flushCalls; i++) { SCOPED_TRACE(::testing::Message() << "Flush " << i << "/" << flushCalls << ": " << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << sensor.sensorHandle << std::dec << " type=" << static_cast(sensor.type) << " name=" << sensor.name); EXPECT_EQ(flush(sensor.sensorHandle).isOk(), expectedResult); } } // Wait up to one second for the flush events callback.waitForFlushEvents(sensors, flushCalls, std::chrono::milliseconds(1000) /* timeout */); // Deactivate all sensors after waiting for flush events so pending flush events are not // abandoned by the HAL. for (const SensorInfo& sensor : sensors) { activate(sensor.sensorHandle, false); } getEnvironment()->unregisterCallback(); // Check that the correct number of flushes are present for each sensor for (const SensorInfo& sensor : sensors) { SCOPED_TRACE(::testing::Message() << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << sensor.sensorHandle << std::dec << " type=" << static_cast(sensor.type) << " name=" << sensor.name); ASSERT_EQ(callback.getFlushCount(sensor.sensorHandle), expectedFlushCount); } } TEST_P(SensorsAidlTest, SensorListValid) { std::vector sensorInfoList = getSensorsList(); std::unordered_map> sensorTypeNameMap; for (size_t i = 0; i < sensorInfoList.size(); ++i) { const SensorInfo& info = sensorInfoList[i]; SCOPED_TRACE(::testing::Message() << i << "/" << sensorInfoList.size() << ": " << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << info.sensorHandle << std::dec << " type=" << static_cast(info.type) << " name=" << info.name); // Test type string non-empty only for private sensor typeinfo. if (info.type >= SensorType::DEVICE_PRIVATE_BASE) { EXPECT_FALSE(info.typeAsString.empty()); } else if (!info.typeAsString.empty()) { // Test type string matches framework string if specified for non-private typeinfo. EXPECT_NO_FATAL_FAILURE(assertTypeMatchStringType(info.type, info.typeAsString)); } // Test if all sensors have name and vendor EXPECT_FALSE(info.name.empty()); EXPECT_FALSE(info.vendor.empty()); // Make sure that the sensor handle is not within the reserved range for runtime // sensors. EXPECT_FALSE(ISensors::RUNTIME_SENSORS_HANDLE_BASE <= info.sensorHandle && info.sensorHandle <= ISensors::RUNTIME_SENSORS_HANDLE_END); // Make sure that sensors of the same type have a unique name. std::vector& v = sensorTypeNameMap[static_cast(info.type)]; bool isUniqueName = std::find(v.begin(), v.end(), info.name) == v.end(); EXPECT_TRUE(isUniqueName) << "Duplicate sensor Name: " << info.name; if (isUniqueName) { v.push_back(info.name); } EXPECT_LE(0, info.power); EXPECT_LT(0, info.maxRange); // Info type, should have no sensor EXPECT_FALSE(info.type == SensorType::ADDITIONAL_INFO || info.type == SensorType::META_DATA); EXPECT_GE(info.fifoMaxEventCount, info.fifoReservedEventCount); // Test Reporting mode valid EXPECT_NO_FATAL_FAILURE( assertTypeMatchReportMode(info.type, extractReportMode(info.flags))); // Test min max are in the right order EXPECT_LE(info.minDelayUs, info.maxDelayUs); // Test min/max delay matches reporting mode EXPECT_NO_FATAL_FAILURE(assertDelayMatchReportMode(info.minDelayUs, info.maxDelayUs, extractReportMode(info.flags))); } } TEST_P(SensorsAidlTest, SetOperationMode) { if (getInjectEventSensors().size() > 0) { ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk()); ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::DATA_INJECTION).isOk()); ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk()); } else { int errorCode = getSensors() ->setOperationMode(ISensors::OperationMode::DATA_INJECTION) .getExceptionCode(); ASSERT_TRUE((errorCode == EX_UNSUPPORTED_OPERATION) || (errorCode == EX_ILLEGAL_ARGUMENT)); } } TEST_P(SensorsAidlTest, InjectSensorEventData) { std::vector sensors = getInjectEventSensors(); if (sensors.size() == 0) { return; } ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::DATA_INJECTION).isOk()); EventCallback callback; getEnvironment()->registerCallback(&callback); // AdditionalInfo event should not be sent to Event FMQ Event additionalInfoEvent; additionalInfoEvent.sensorType = SensorType::ADDITIONAL_INFO; additionalInfoEvent.timestamp = android::elapsedRealtimeNano(); AdditionalInfo info; info.type = AdditionalInfo::AdditionalInfoType::AINFO_BEGIN; info.serial = 1; AdditionalInfo::AdditionalInfoPayload::Int32Values infoData; for (int32_t i = 0; i < 14; i++) { infoData.values[i] = i; } info.payload.set(infoData); additionalInfoEvent.payload.set(info); Event injectedEvent; injectedEvent.timestamp = android::elapsedRealtimeNano(); Event::EventPayload::Vec3 data = {1, 2, 3, SensorStatus::ACCURACY_HIGH}; injectedEvent.payload.set(data); for (const auto& s : sensors) { additionalInfoEvent.sensorHandle = s.sensorHandle; ASSERT_TRUE(getSensors()->injectSensorData(additionalInfoEvent).isOk()); injectedEvent.sensorType = s.type; injectedEvent.sensorHandle = s.sensorHandle; ASSERT_TRUE(getSensors()->injectSensorData(injectedEvent).isOk()); } // Wait for events to be written back to the Event FMQ callback.waitForEvents(sensors, std::chrono::milliseconds(1000) /* timeout */); getEnvironment()->unregisterCallback(); for (const auto& s : sensors) { auto events = callback.getEvents(s.sensorHandle); if (events.empty()) { FAIL() << "Received no events"; } else { auto lastEvent = events.back(); SCOPED_TRACE(::testing::Message() << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << s.sensorHandle << std::dec << " type=" << static_cast(s.type) << " name=" << s.name); // Verify that only a single event has been received ASSERT_EQ(events.size(), 1); // Verify that the event received matches the event injected and is not the additional // info event ASSERT_EQ(lastEvent.sensorType, s.type); ASSERT_EQ(lastEvent.timestamp, injectedEvent.timestamp); ASSERT_EQ(lastEvent.payload.get().x, injectedEvent.payload.get().x); ASSERT_EQ(lastEvent.payload.get().y, injectedEvent.payload.get().y); ASSERT_EQ(lastEvent.payload.get().z, injectedEvent.payload.get().z); ASSERT_EQ(lastEvent.payload.get().status, injectedEvent.payload.get().status); } } ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk()); } TEST_P(SensorsAidlTest, CallInitializeTwice) { // Create a helper class so that a second environment is able to be instantiated class SensorsAidlEnvironmentTest : public SensorsAidlEnvironment { public: SensorsAidlEnvironmentTest(const std::string& service_name) : SensorsAidlEnvironment(service_name) {} }; if (getSensorsList().size() == 0) { // No sensors return; } constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000; // 1s constexpr int32_t kNumEvents = 1; // Create a new environment that calls initialize() std::unique_ptr newEnv = std::make_unique(GetParam()); newEnv->SetUp(); if (HasFatalFailure()) { return; // Exit early if setting up the new environment failed } size_t numNonOneShotAndNonSpecialSensors = getNonOneShotAndNonSpecialSensors().size(); activateAllSensors(true); // Verify that the old environment does not receive any events EXPECT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0); if (numNonOneShotAndNonSpecialSensors > 0) { // Verify that the new event queue receives sensor events EXPECT_GE(newEnv.get()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents); } activateAllSensors(false); // Cleanup the test environment newEnv->TearDown(); // Restore the test environment for future tests getEnvironment()->TearDown(); getEnvironment()->SetUp(); if (HasFatalFailure()) { return; // Exit early if resetting the environment failed } // Ensure that the original environment is receiving events activateAllSensors(true); if (numNonOneShotAndNonSpecialSensors > 0) { EXPECT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents); } activateAllSensors(false); } TEST_P(SensorsAidlTest, CleanupConnectionsOnInitialize) { activateAllSensors(true); // Verify that events are received constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000; // 1s constexpr int32_t kNumEvents = 1; size_t numNonOneShotAndNonSpecialSensors = getNonOneShotAndNonSpecialSensors().size(); if (numNonOneShotAndNonSpecialSensors > 0) { ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents); } // Clear the active sensor handles so they are not disabled during TearDown auto handles = mSensorHandles; mSensorHandles.clear(); getEnvironment()->TearDown(); getEnvironment()->SetUp(); if (HasFatalFailure()) { return; // Exit early if resetting the environment failed } // Verify no events are received until sensors are re-activated ASSERT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0); activateAllSensors(true); if (numNonOneShotAndNonSpecialSensors > 0) { ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents); } // Disable sensors activateAllSensors(false); // Restore active sensors prior to clearing the environment mSensorHandles = handles; } TEST_P(SensorsAidlTest, FlushSensor) { std::vector sensors = getNonOneShotSensors(); if (sensors.size() == 0) { return; } constexpr int32_t kFlushes = 5; runSingleFlushTest(sensors, true /* activateSensor */, 1 /* expectedFlushCount */, true /* expectedResult */); runFlushTest(sensors, true /* activateSensor */, kFlushes, kFlushes, true /* expectedResult */); } TEST_P(SensorsAidlTest, FlushOneShotSensor) { // Find a sensor that is a one-shot sensor std::vector sensors = getOneShotSensors(); if (sensors.size() == 0) { return; } runSingleFlushTest(sensors, true /* activateSensor */, 0 /* expectedFlushCount */, false /* expectedResult */); } TEST_P(SensorsAidlTest, FlushInactiveSensor) { // Attempt to find a non-one shot sensor, then a one-shot sensor if necessary std::vector sensors = getNonOneShotSensors(); if (sensors.size() == 0) { sensors = getOneShotSensors(); if (sensors.size() == 0) { return; } } runSingleFlushTest(sensors, false /* activateSensor */, 0 /* expectedFlushCount */, false /* expectedResult */); } TEST_P(SensorsAidlTest, Batch) { if (getSensorsList().size() == 0) { return; } activateAllSensors(false /* enable */); for (const SensorInfo& sensor : getSensorsList()) { SCOPED_TRACE(::testing::Message() << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << sensor.sensorHandle << std::dec << " type=" << static_cast(sensor.type) << " name=" << sensor.name); // Call batch on inactive sensor // One shot sensors have minDelay set to -1 which is an invalid // parameter. Use 0 instead to avoid errors. int64_t samplingPeriodNs = extractReportMode(sensor.flags) == SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE ? 0 : sensor.minDelayUs; checkIsOk(batch(sensor.sensorHandle, samplingPeriodNs, 0 /* maxReportLatencyNs */)); // Activate the sensor activate(sensor.sensorHandle, true /* enabled */); // Call batch on an active sensor checkIsOk(batch(sensor.sensorHandle, sensor.maxDelayUs, 0 /* maxReportLatencyNs */)); } activateAllSensors(false /* enable */); // Call batch on an invalid sensor SensorInfo sensor = getSensorsList().front(); sensor.sensorHandle = getInvalidSensorHandle(); ASSERT_EQ(batch(sensor.sensorHandle, sensor.minDelayUs, 0 /* maxReportLatencyNs */) .getExceptionCode(), EX_ILLEGAL_ARGUMENT); } TEST_P(SensorsAidlTest, Activate) { if (getSensorsList().size() == 0) { return; } // Verify that sensor events are generated when activate is called for (const SensorInfo& sensor : getSensorsList()) { SCOPED_TRACE(::testing::Message() << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << sensor.sensorHandle << std::dec << " type=" << static_cast(sensor.type) << " name=" << sensor.name); checkIsOk(batch(sensor.sensorHandle, sensor.minDelayUs, 0 /* maxReportLatencyNs */)); checkIsOk(activate(sensor.sensorHandle, true)); // Call activate on a sensor that is already activated checkIsOk(activate(sensor.sensorHandle, true)); // Deactivate the sensor checkIsOk(activate(sensor.sensorHandle, false)); // Call deactivate on a sensor that is already deactivated checkIsOk(activate(sensor.sensorHandle, false)); } // Attempt to activate an invalid sensor int32_t invalidHandle = getInvalidSensorHandle(); ASSERT_EQ(activate(invalidHandle, true).getExceptionCode(), EX_ILLEGAL_ARGUMENT); ASSERT_EQ(activate(invalidHandle, false).getExceptionCode(), EX_ILLEGAL_ARGUMENT); } TEST_P(SensorsAidlTest, NoStaleEvents) { constexpr std::chrono::milliseconds kFiveHundredMs(500); constexpr std::chrono::milliseconds kOneSecond(1000); // Register the callback to receive sensor events EventCallback callback; getEnvironment()->registerCallback(&callback); // This test is not valid for one-shot, on-change or special-report-mode sensors const std::vector sensors = getNonOneShotAndNonOnChangeAndNonSpecialSensors(); std::chrono::milliseconds maxMinDelay(0); for (const SensorInfo& sensor : sensors) { std::chrono::milliseconds minDelay = duration_cast( std::chrono::microseconds(sensor.minDelayUs)); maxMinDelay = std::chrono::milliseconds(std::max(maxMinDelay.count(), minDelay.count())); } // Activate the sensors so that they start generating events activateAllSensors(true); // According to the CDD, the first sample must be generated within 400ms + 2 * sample_time // and the maximum reporting latency is 100ms + 2 * sample_time. Wait a sufficient amount // of time to guarantee that a sample has arrived. callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay)); activateAllSensors(false); // Save the last received event for each sensor std::map lastEventTimestampMap; for (const SensorInfo& sensor : sensors) { SCOPED_TRACE(::testing::Message() << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << sensor.sensorHandle << std::dec << " type=" << static_cast(sensor.type) << " name=" << sensor.name); if (callback.getEvents(sensor.sensorHandle).size() >= 1) { lastEventTimestampMap[sensor.sensorHandle] = callback.getEvents(sensor.sensorHandle).back().timestamp; } } // Allow some time to pass, reset the callback, then reactivate the sensors usleep(duration_cast(kOneSecond + (5 * maxMinDelay)).count()); callback.reset(); activateAllSensors(true); callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay)); activateAllSensors(false); getEnvironment()->unregisterCallback(); for (const SensorInfo& sensor : sensors) { SCOPED_TRACE(::testing::Message() << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << sensor.sensorHandle << std::dec << " type=" << static_cast(sensor.type) << " name=" << sensor.name); // Skip sensors that did not previously report an event if (lastEventTimestampMap.find(sensor.sensorHandle) == lastEventTimestampMap.end()) { continue; } // Skip sensors with no events const std::vector events = callback.getEvents(sensor.sensorHandle); if (events.empty()) { continue; } // Ensure that the first event received is not stale by ensuring that its timestamp is // sufficiently different from the previous event const Event newEvent = events.front(); std::chrono::milliseconds delta = duration_cast(std::chrono::nanoseconds( newEvent.timestamp - lastEventTimestampMap[sensor.sensorHandle])); std::chrono::milliseconds sensorMinDelay = duration_cast( std::chrono::microseconds(sensor.minDelayUs)); ASSERT_GE(delta, kFiveHundredMs + (3 * sensorMinDelay)); } } void SensorsAidlTest::checkRateLevel(const SensorInfo& sensor, int32_t directChannelHandle, ISensors::RateLevel rateLevel, int32_t* reportToken) { ndk::ScopedAStatus status = configDirectReport(sensor.sensorHandle, directChannelHandle, rateLevel, reportToken); SCOPED_TRACE(::testing::Message() << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << sensor.sensorHandle << std::dec << " type=" << static_cast(sensor.type) << " name=" << sensor.name); if (isDirectReportRateSupported(sensor, rateLevel)) { ASSERT_TRUE(status.isOk()); if (rateLevel != ISensors::RateLevel::STOP) { ASSERT_GT(*reportToken, 0); } } else { ASSERT_EQ(status.getExceptionCode(), EX_ILLEGAL_ARGUMENT); } } void SensorsAidlTest::queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType, bool* supportsSharedMemType, bool* supportsAnyDirectChannel) { *supportsSharedMemType = false; *supportsAnyDirectChannel = false; for (const SensorInfo& curSensor : getSensorsList()) { if (isDirectChannelTypeSupported(curSensor, memType)) { *supportsSharedMemType = true; } if (isDirectChannelTypeSupported(curSensor, ISensors::SharedMemInfo::SharedMemType::ASHMEM) || isDirectChannelTypeSupported(curSensor, ISensors::SharedMemInfo::SharedMemType::GRALLOC)) { *supportsAnyDirectChannel = true; } if (*supportsSharedMemType && *supportsAnyDirectChannel) { break; } } } void SensorsAidlTest::verifyRegisterDirectChannel( std::shared_ptr> mem, int32_t* directChannelHandle, bool supportsSharedMemType, bool supportsAnyDirectChannel) { char* buffer = mem->getBuffer(); size_t size = mem->getSize(); if (supportsSharedMemType) { memset(buffer, 0xff, size); } int32_t channelHandle; ::ndk::ScopedAStatus status = registerDirectChannel(mem->getSharedMemInfo(), &channelHandle); if (supportsSharedMemType) { ASSERT_TRUE(status.isOk()); ASSERT_GT(channelHandle, 0); // Verify that the memory has been zeroed for (size_t i = 0; i < mem->getSize(); i++) { ASSERT_EQ(buffer[i], 0x00); } } else { int32_t error = supportsAnyDirectChannel ? EX_ILLEGAL_ARGUMENT : EX_UNSUPPORTED_OPERATION; ASSERT_EQ(status.getExceptionCode(), error); } *directChannelHandle = channelHandle; } void SensorsAidlTest::verifyUnregisterDirectChannel(int32_t* channelHandle, bool supportsAnyDirectChannel) { int result = supportsAnyDirectChannel ? EX_NONE : EX_UNSUPPORTED_OPERATION; ndk::ScopedAStatus status = unregisterDirectChannel(channelHandle); ASSERT_EQ(status.getExceptionCode(), result); } void SensorsAidlTest::verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType) { constexpr size_t kNumEvents = 1; constexpr size_t kMemSize = kNumEvents * kEventSize; std::shared_ptr> mem( SensorsAidlTestSharedMemory::create(memType, kMemSize)); ASSERT_NE(mem, nullptr); bool supportsSharedMemType; bool supportsAnyDirectChannel; queryDirectChannelSupport(memType, &supportsSharedMemType, &supportsAnyDirectChannel); for (const SensorInfo& sensor : getSensorsList()) { int32_t directChannelHandle = 0; verifyRegisterDirectChannel(mem, &directChannelHandle, supportsSharedMemType, supportsAnyDirectChannel); verifyConfigure(sensor, memType, directChannelHandle, supportsAnyDirectChannel); verifyUnregisterDirectChannel(&directChannelHandle, supportsAnyDirectChannel); } } void SensorsAidlTest::verifyConfigure(const SensorInfo& sensor, ISensors::SharedMemInfo::SharedMemType memType, int32_t directChannelHandle, bool supportsAnyDirectChannel) { SCOPED_TRACE(::testing::Message() << " handle=0x" << std::hex << std::setw(8) << std::setfill('0') << sensor.sensorHandle << std::dec << " type=" << static_cast(sensor.type) << " name=" << sensor.name); int32_t reportToken = 0; if (isDirectChannelTypeSupported(sensor, memType)) { // Verify that each rate level is properly supported checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::NORMAL, &reportToken); checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::FAST, &reportToken); checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::VERY_FAST, &reportToken); checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::STOP, &reportToken); // Verify that a sensor handle of -1 is only acceptable when using RateLevel::STOP ndk::ScopedAStatus status = configDirectReport(-1 /* sensorHandle */, directChannelHandle, ISensors::RateLevel::NORMAL, &reportToken); ASSERT_EQ(status.getExceptionCode(), EX_ILLEGAL_ARGUMENT); status = configDirectReport(-1 /* sensorHandle */, directChannelHandle, ISensors::RateLevel::STOP, &reportToken); ASSERT_TRUE(status.isOk()); } else { // directChannelHandle will be -1 here, HAL should either reject it as a bad value if there // is some level of direct channel report, otherwise return INVALID_OPERATION if direct // channel is not supported at all int error = supportsAnyDirectChannel ? EX_ILLEGAL_ARGUMENT : EX_UNSUPPORTED_OPERATION; ndk::ScopedAStatus status = configDirectReport(sensor.sensorHandle, directChannelHandle, ISensors::RateLevel::NORMAL, &reportToken); ASSERT_EQ(status.getExceptionCode(), error); } } TEST_P(SensorsAidlTest, DirectChannelAshmem) { verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType::ASHMEM); } TEST_P(SensorsAidlTest, DirectChannelGralloc) { verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType::GRALLOC); } GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SensorsAidlTest); INSTANTIATE_TEST_SUITE_P(Sensors, SensorsAidlTest, testing::ValuesIn(android::getAidlHalInstanceNames(ISensors::descriptor)), android::PrintInstanceNameToString); int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); ProcessState::self()->setThreadPoolMaxThreadCount(1); ProcessState::self()->startThreadPool(); return RUN_ALL_TESTS(); }