// Copyright 2022, The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! Logic for handling the DICE values and boot operations. use anyhow::{anyhow, bail, Context, Error, Result}; use byteorder::{NativeEndian, ReadBytesExt}; use diced_open_dice::{ bcc_handover_parse, retry_bcc_main_flow, BccHandover, Config, DiceArtifacts, DiceMode, Hash, Hidden, InputValues, OwnedDiceArtifacts, }; use keystore2_crypto::ZVec; use libc::{c_void, mmap, munmap, MAP_FAILED, MAP_PRIVATE, PROT_READ}; use openssl::hkdf::hkdf; use openssl::md::Md; use std::fs; use std::os::unix::io::AsRawFd; use std::path::{Path, PathBuf}; use std::ptr::null_mut; use std::slice; /// Artifacts that are mapped into the process address space from the driver. pub enum DiceDriver<'a> { /// Implementation that reads bcc handover from the dice driver. Real { /// Path to the driver character device (e.g. /dev/open-dice0). driver_path: PathBuf, /// Address of the memory to mmap driver to. mmap_addr: *mut c_void, /// Size of the mmap. mmap_size: usize, /// BCC handover. bcc_handover: BccHandover<'a>, }, /// Fake implementation used in tests and non-protected VMs. Fake(OwnedDiceArtifacts), /// Implementation that reads bcc handover from the file. FromFile { /// Path to the file to read dice chain from, file_path: PathBuf, /// Dice artifacts read from file_path, dice_artifacts: OwnedDiceArtifacts, }, } impl DiceDriver<'_> { fn dice_artifacts(&self) -> &dyn DiceArtifacts { match self { Self::Real { bcc_handover, .. } => bcc_handover, Self::Fake(owned_dice_artifacts) => owned_dice_artifacts, Self::FromFile { dice_artifacts, .. } => dice_artifacts, } } /// Creates a new dice driver from the given driver_path. pub fn new(driver_path: &Path, is_strict_boot: bool) -> Result { log::info!("Creating DiceDriver backed by {driver_path:?} driver"); if driver_path.exists() { log::info!("Using DICE values from driver"); } else if is_strict_boot { bail!("Strict boot requires DICE value from driver but none were found"); } else { log::warn!("Using sample DICE values"); let dice_artifacts = diced_sample_inputs::make_sample_bcc_and_cdis() .expect("Failed to create sample dice artifacts."); return Ok(Self::Fake(dice_artifacts)); }; let mut file = fs::File::open(driver_path) .map_err(|error| Error::new(error).context("Opening driver"))?; let mmap_size = file.read_u64::() .map_err(|error| Error::new(error).context("Reading driver"))? as usize; // SAFETY: It's safe to map the driver as the service will only create a single // mapping per process. let mmap_addr = unsafe { let fd = file.as_raw_fd(); mmap(null_mut(), mmap_size, PROT_READ, MAP_PRIVATE, fd, 0) }; if mmap_addr == MAP_FAILED { bail!("Failed to mmap {:?}", driver_path); } let mmap_buf = // SAFETY: The slice is created for the region of memory that was just // successfully mapped into the process address space so it will be // accessible and not referenced from anywhere else. unsafe { slice::from_raw_parts((mmap_addr as *const u8).as_ref().unwrap(), mmap_size) }; let bcc_handover = bcc_handover_parse(mmap_buf).map_err(|_| anyhow!("Failed to parse Bcc Handover"))?; Ok(Self::Real { driver_path: driver_path.to_path_buf(), mmap_addr, mmap_size, bcc_handover, }) } /// Create a new dice driver that reads dice_artifacts from the given file. pub fn from_file(file_path: &Path) -> Result { log::info!("Creating DiceDriver backed by {file_path:?} file"); let file = fs::File::open(file_path).map_err(|error| Error::new(error).context("open file"))?; let dice_artifacts = serde_cbor::from_reader(file) .map_err(|error| Error::new(error).context("read file"))?; Ok(Self::FromFile { file_path: file_path.to_path_buf(), dice_artifacts }) } /// Derives a sealing key of `key_length` bytes from the DICE sealing CDI. pub fn get_sealing_key(&self, identifier: &[u8], key_length: usize) -> Result { // Deterministically derive a key to use for sealing data, rather than using the CDI // directly, so we have the chance to rotate the key if needed. A salt isn't needed as the // input key material is already cryptographically strong. let mut key = ZVec::new(key_length)?; let salt = &[]; hkdf(&mut key, Md::sha256(), self.dice_artifacts().cdi_seal(), salt, identifier)?; Ok(key) } /// Derives a new dice chain. pub fn derive( self, code_hash: Hash, config_desc: &[u8], authority_hash: Hash, debug: bool, hidden: Hidden, ) -> Result { let input_values = InputValues::new( code_hash, Config::Descriptor(config_desc), authority_hash, if debug { DiceMode::kDiceModeDebug } else { DiceMode::kDiceModeNormal }, hidden, ); let current_dice_artifacts = self.dice_artifacts(); let next_dice_artifacts = retry_bcc_main_flow( current_dice_artifacts.cdi_attest(), current_dice_artifacts.cdi_seal(), current_dice_artifacts.bcc().ok_or_else(|| anyhow!("bcc is none"))?, &input_values, ) .context("DICE derive from driver")?; match &self { Self::Real { driver_path, .. } => { // Writing to the device wipes the artifacts. The string is ignored by the driver // but included for documentation. fs::write(driver_path, "wipe") .map_err(|err| Error::new(err).context("Wiping driver"))?; } Self::FromFile { file_path, .. } => { fs::remove_file(file_path) .map_err(|err| Error::new(err).context("Deleting file"))?; } Self::Fake { .. } => (), } Ok(next_dice_artifacts) } } impl Drop for DiceDriver<'_> { fn drop(&mut self) { if let &mut Self::Real { mmap_addr, mmap_size, .. } = self { // SAFETY: All references to the mapped region have the same lifetime as self. Since // self is being dropped, so are all the references to the mapped region meaning it's // safe to unmap. let ret = unsafe { munmap(mmap_addr, mmap_size) }; if ret != 0 { log::warn!("Failed to munmap ({})", ret); } } } } #[cfg(test)] mod tests { use super::*; use core::ffi::CStr; use diced_open_dice::{ hash, retry_bcc_format_config_descriptor, DiceConfigValues, HIDDEN_SIZE, }; use std::fs::File; fn assert_eq_bytes(expected: &[u8], actual: &[u8]) { assert_eq!( expected, actual, "Expected {}, got {}", hex::encode(expected), hex::encode(actual) ) } #[test] fn test_write_bcc_to_file_read_from_file() -> Result<()> { let dice_artifacts = diced_sample_inputs::make_sample_bcc_and_cdis()?; let test_file = tempfile::NamedTempFile::new()?; serde_cbor::to_writer(test_file.as_file(), &dice_artifacts)?; test_file.as_file().sync_all()?; let dice = DiceDriver::from_file(test_file.as_ref())?; let dice_artifacts2 = dice.dice_artifacts(); assert_eq_bytes(dice_artifacts.cdi_attest(), dice_artifacts2.cdi_attest()); assert_eq_bytes(dice_artifacts.cdi_seal(), dice_artifacts2.cdi_seal()); assert_eq_bytes(dice_artifacts.bcc().expect("bcc"), dice_artifacts2.bcc().expect("bcc")); Ok(()) } #[test] fn test_dice_driver_from_file_deletes_file_after_derive() -> Result<()> { let tmp_dir = tempfile::tempdir()?; let file_path = tmp_dir.path().join("test-dice-chain.raw"); { let dice_artifacts = diced_sample_inputs::make_sample_bcc_and_cdis()?; let file = File::create(&file_path)?; serde_cbor::to_writer(file, &dice_artifacts)?; } let dice = DiceDriver::from_file(&file_path)?; let values = DiceConfigValues { component_name: Some(CStr::from_bytes_with_nul(b"test\0")?), ..Default::default() }; let desc = retry_bcc_format_config_descriptor(&values)?; let code_hash = hash(&String::from("test code hash").into_bytes())?; let authority_hash = hash(&String::from("test authority hash").into_bytes())?; let hidden = [0; HIDDEN_SIZE]; let _ = dice.derive(code_hash, &desc, authority_hash, false, hidden)?; assert!(!file_path.exists()); Ok(()) } }