xref: /aosp_15_r20/art/runtime/base/mutex.cc (revision 795d594fd825385562da6b089ea9b2033f3abf5a)
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "mutex.h"
18 
19 #include <errno.h>
20 #include <sys/time.h>
21 
22 #include <sstream>
23 
24 #include "android-base/stringprintf.h"
25 
26 #include "base/atomic.h"
27 #include "base/logging.h"
28 #include "base/systrace.h"
29 #include "base/time_utils.h"
30 #include "base/value_object.h"
31 #include "monitor.h"
32 #include "mutex-inl.h"
33 #include "scoped_thread_state_change-inl.h"
34 #include "thread-inl.h"
35 #include "thread.h"
36 #include "thread_list.h"
37 
38 namespace art HIDDEN {
39 
40 using android::base::StringPrintf;
41 
42 static constexpr uint64_t kIntervalMillis = 50;
43 static constexpr int kMonitorTimeoutTryMax = 5;
44 
45 static const char* kLastDumpStackTime = "LastDumpStackTime";
46 
47 struct AllMutexData {
48   // A guard for all_mutexes_ that's not a mutex (Mutexes must CAS to acquire and busy wait).
49   Atomic<const BaseMutex*> all_mutexes_guard;
50   // All created mutexes guarded by all_mutexes_guard_.
51   std::set<BaseMutex*>* all_mutexes;
AllMutexDataart::AllMutexData52   AllMutexData() : all_mutexes(nullptr) {}
53 };
54 static struct AllMutexData gAllMutexData[kAllMutexDataSize];
55 
56 struct DumpStackLastTimeTLSData : public art::TLSData {
DumpStackLastTimeTLSDataart::DumpStackLastTimeTLSData57   explicit DumpStackLastTimeTLSData(uint64_t last_dump_time_ms)
58       : last_dump_time_ms_(last_dump_time_ms) {}
59   std::atomic<uint64_t> last_dump_time_ms_;
60 };
61 
62 #if ART_USE_FUTEXES
63 // Compute a relative timespec as *result_ts = lhs - rhs.
64 // Return false (and produce an invalid *result_ts) if lhs < rhs.
ComputeRelativeTimeSpec(timespec * result_ts,const timespec & lhs,const timespec & rhs)65 static bool ComputeRelativeTimeSpec(timespec* result_ts, const timespec& lhs, const timespec& rhs) {
66   const int32_t one_sec = 1000 * 1000 * 1000;  // one second in nanoseconds.
67   static_assert(std::is_signed<decltype(result_ts->tv_sec)>::value);  // Signed on Linux.
68   result_ts->tv_sec = lhs.tv_sec - rhs.tv_sec;
69   result_ts->tv_nsec = lhs.tv_nsec - rhs.tv_nsec;
70   if (result_ts->tv_nsec < 0) {
71     result_ts->tv_sec--;
72     result_ts->tv_nsec += one_sec;
73   }
74   DCHECK(result_ts->tv_nsec >= 0 && result_ts->tv_nsec < one_sec);
75   return result_ts->tv_sec >= 0;
76 }
77 #endif
78 
79 #if ART_USE_FUTEXES
80 // If we wake up from a futex wake, and the runtime disappeared while we were asleep,
81 // it's important to stop in our tracks before we touch deallocated memory.
SleepIfRuntimeDeleted(Thread * self)82 static inline void SleepIfRuntimeDeleted(Thread* self) {
83   if (self != nullptr) {
84     JNIEnvExt* const env = self->GetJniEnv();
85     if (UNLIKELY(env != nullptr && env->IsRuntimeDeleted())) {
86       DCHECK(self->IsDaemon());
87       // If the runtime has been deleted, then we cannot proceed. Just sleep forever. This may
88       // occur for user daemon threads that get a spurious wakeup. This occurs for test 132 with
89       // --host and --gdb.
90       // After we wake up, the runtime may have been shutdown, which means that this condition may
91       // have been deleted. It is not safe to retry the wait.
92       SleepForever();
93     }
94   }
95 }
96 #else
97 // We should be doing this for pthreads to, but it seems to be impossible for something
98 // like a condition variable wait. Thus we don't bother trying.
99 #endif
100 
101 // Wait for an amount of time that roughly increases in the argument i.
102 // Spin for small arguments and yield/sleep for longer ones.
BackOff(uint32_t i)103 static void BackOff(uint32_t i) {
104   static constexpr uint32_t kSpinMax = 10;
105   static constexpr uint32_t kYieldMax = 20;
106   if (i <= kSpinMax) {
107     // TODO: Esp. in very latency-sensitive cases, consider replacing this with an explicit
108     // test-and-test-and-set loop in the caller.  Possibly skip entirely on a uniprocessor.
109     volatile uint32_t x = 0;
110     const uint32_t spin_count = 10 * i;
111     for (uint32_t spin = 0; spin < spin_count; ++spin) {
112       x = x + 1;  // Volatile; hence should not be optimized away.
113     }
114     // TODO: Consider adding x86 PAUSE and/or ARM YIELD here.
115   } else if (i <= kYieldMax) {
116     sched_yield();
117   } else {
118     NanoSleep(1000ull * (i - kYieldMax));
119   }
120 }
121 
122 // Wait until pred(testLoc->load(std::memory_order_relaxed)) holds, or until a
123 // short time interval, on the order of kernel context-switch time, passes.
124 // Return true if the predicate test succeeded, false if we timed out.
125 template<typename Pred>
WaitBrieflyFor(AtomicInteger * testLoc,Thread * self,Pred pred)126 static inline bool WaitBrieflyFor(AtomicInteger* testLoc, Thread* self, Pred pred) {
127   // TODO: Tune these parameters correctly. BackOff(3) should take on the order of 100 cycles. So
128   // this should result in retrying <= 10 times, usually waiting around 100 cycles each. The
129   // maximum delay should be significantly less than the expected futex() context switch time, so
130   // there should be little danger of this worsening things appreciably. If the lock was only
131   // held briefly by a running thread, this should help immensely.
132   static constexpr uint32_t kMaxBackOff = 3;  // Should probably be <= kSpinMax above.
133   static constexpr uint32_t kMaxIters = 50;
134   JNIEnvExt* const env = self == nullptr ? nullptr : self->GetJniEnv();
135   for (uint32_t i = 1; i <= kMaxIters; ++i) {
136     BackOff(std::min(i, kMaxBackOff));
137     if (pred(testLoc->load(std::memory_order_relaxed))) {
138       return true;
139     }
140     if (UNLIKELY(env != nullptr && env->IsRuntimeDeleted())) {
141       // This returns true once we've started shutting down. We then try to reach a quiescent
142       // state as soon as possible to avoid touching data that may be deallocated by the shutdown
143       // process. It currently relies on a timeout.
144       return false;
145     }
146   }
147   return false;
148 }
149 
150 class ScopedAllMutexesLock final {
151  public:
ScopedAllMutexesLock(const BaseMutex * mutex)152   explicit ScopedAllMutexesLock(const BaseMutex* mutex) : mutex_(mutex) {
153     for (uint32_t i = 0;
154          !gAllMutexData->all_mutexes_guard.CompareAndSetWeakAcquire(nullptr, mutex);
155          ++i) {
156       BackOff(i);
157     }
158   }
159 
~ScopedAllMutexesLock()160   ~ScopedAllMutexesLock() {
161     DCHECK_EQ(gAllMutexData->all_mutexes_guard.load(std::memory_order_relaxed), mutex_);
162     gAllMutexData->all_mutexes_guard.store(nullptr, std::memory_order_release);
163   }
164 
165  private:
166   const BaseMutex* const mutex_;
167 };
168 
169 // Scoped class that generates events at the beginning and end of lock contention.
170 class ScopedContentionRecorder final : public ValueObject {
171  public:
ScopedContentionRecorder(BaseMutex * mutex,uint64_t blocked_tid,uint64_t owner_tid)172   ScopedContentionRecorder(BaseMutex* mutex, uint64_t blocked_tid, uint64_t owner_tid)
173       : mutex_(kLogLockContentions ? mutex : nullptr),
174         blocked_tid_(kLogLockContentions ? blocked_tid : 0),
175         owner_tid_(kLogLockContentions ? owner_tid : 0),
176         start_nano_time_(kLogLockContentions ? NanoTime() : 0) {
177     if (ATraceEnabled()) {
178       std::string msg = StringPrintf("Lock contention on %s (owner tid: %" PRIu64 ")",
179                                      mutex->GetName(), owner_tid);
180       ATraceBegin(msg.c_str());
181     }
182   }
183 
~ScopedContentionRecorder()184   ~ScopedContentionRecorder() {
185     ATraceEnd();
186     if (kLogLockContentions) {
187       uint64_t end_nano_time = NanoTime();
188       mutex_->RecordContention(blocked_tid_, owner_tid_, end_nano_time - start_nano_time_);
189     }
190   }
191 
192  private:
193   BaseMutex* const mutex_;
194   const uint64_t blocked_tid_;
195   const uint64_t owner_tid_;
196   const uint64_t start_nano_time_;
197 };
198 
BaseMutex(const char * name,LockLevel level)199 BaseMutex::BaseMutex(const char* name, LockLevel level)
200     : name_(name),
201       level_(level),
202       should_respond_to_empty_checkpoint_request_(false) {
203   if (kLogLockContentions) {
204     ScopedAllMutexesLock mu(this);
205     std::set<BaseMutex*>** all_mutexes_ptr = &gAllMutexData->all_mutexes;
206     if (*all_mutexes_ptr == nullptr) {
207       // We leak the global set of all mutexes to avoid ordering issues in global variable
208       // construction/destruction.
209       *all_mutexes_ptr = new std::set<BaseMutex*>();
210     }
211     (*all_mutexes_ptr)->insert(this);
212   }
213 }
214 
~BaseMutex()215 BaseMutex::~BaseMutex() {
216   if (kLogLockContentions) {
217     ScopedAllMutexesLock mu(this);
218     gAllMutexData->all_mutexes->erase(this);
219   }
220 }
221 
DumpAll(std::ostream & os)222 void BaseMutex::DumpAll(std::ostream& os) {
223   if (kLogLockContentions) {
224     os << "Mutex logging:\n";
225     ScopedAllMutexesLock mu(reinterpret_cast<const BaseMutex*>(-1));
226     std::set<BaseMutex*>* all_mutexes = gAllMutexData->all_mutexes;
227     if (all_mutexes == nullptr) {
228       // No mutexes have been created yet during at startup.
229       return;
230     }
231     os << "(Contended)\n";
232     for (const BaseMutex* mutex : *all_mutexes) {
233       if (mutex->HasEverContended()) {
234         mutex->Dump(os);
235         os << "\n";
236       }
237     }
238     os << "(Never contented)\n";
239     for (const BaseMutex* mutex : *all_mutexes) {
240       if (!mutex->HasEverContended()) {
241         mutex->Dump(os);
242         os << "\n";
243       }
244     }
245   }
246 }
247 
CheckSafeToWait(Thread * self)248 void BaseMutex::CheckSafeToWait(Thread* self) {
249   if (!kDebugLocking) {
250     return;
251   }
252   // Avoid repeated reporting of the same violation in the common case.
253   // We somewhat ignore races in the duplicate elision code. The first kMaxReports and the first
254   // report for a given level_ should always appear.
255   static std::atomic<uint> last_level_reported(kLockLevelCount);
256   static constexpr int kMaxReports = 5;
257   static std::atomic<uint> num_reports(0);  // For the current level, more or less.
258 
259   if (self == nullptr) {
260     CheckUnattachedThread(level_);
261   } else if (num_reports.load(std::memory_order_relaxed) > kMaxReports &&
262              last_level_reported.load(std::memory_order_relaxed) == level_) {
263     LOG(ERROR) << "Eliding probably redundant CheckSafeToWait() complaints";
264     return;
265   } else {
266     CHECK(self->GetHeldMutex(level_) == this || level_ == kMonitorLock)
267         << "Waiting on unacquired mutex: " << name_;
268     bool bad_mutexes_held = false;
269     std::string error_msg;
270     for (int i = kLockLevelCount - 1; i >= 0; --i) {
271       if (i != level_) {
272         BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
273         // We allow the thread to wait even if the user_code_suspension_lock_ is held so long. This
274         // just means that gc or some other internal process is suspending the thread while it is
275         // trying to suspend some other thread. So long as the current thread is not being suspended
276         // by a SuspendReason::kForUserCode (which needs the user_code_suspension_lock_ to clear)
277         // this is fine. This is needed due to user_code_suspension_lock_ being the way untrusted
278         // code interacts with suspension. One holds the lock to prevent user-code-suspension from
279         // occurring. Since this is only initiated from user-supplied native-code this is safe.
280         if (held_mutex == Locks::user_code_suspension_lock_) {
281           // No thread safety analysis is fine since we have both the user_code_suspension_lock_
282           // from the line above and the ThreadSuspendCountLock since it is our level_. We use this
283           // lambda to avoid having to annotate the whole function as NO_THREAD_SAFETY_ANALYSIS.
284           auto is_suspending_for_user_code = [self]() NO_THREAD_SAFETY_ANALYSIS {
285             return self->GetUserCodeSuspendCount() != 0;
286           };
287           if (is_suspending_for_user_code()) {
288             std::ostringstream oss;
289             oss << "Holding \"" << held_mutex->name_ << "\" "
290                 << "(level " << LockLevel(i) << ") while performing wait on "
291                 << "\"" << name_ << "\" (level " << level_ << ") "
292                 << "with SuspendReason::kForUserCode pending suspensions";
293             error_msg = oss.str();
294             LOG(ERROR) << error_msg;
295             bad_mutexes_held = true;
296           }
297         } else if (held_mutex != nullptr) {
298           if (last_level_reported.load(std::memory_order_relaxed) == level_) {
299             num_reports.fetch_add(1, std::memory_order_relaxed);
300           } else {
301             last_level_reported.store(level_, std::memory_order_relaxed);
302             num_reports.store(0, std::memory_order_relaxed);
303           }
304           std::ostringstream oss;
305           oss << "Holding \"" << held_mutex->name_ << "\" "
306               << "(level " << LockLevel(i) << ") while performing wait on "
307               << "\"" << name_ << "\" (level " << level_ << ")";
308           error_msg = oss.str();
309           LOG(ERROR) << error_msg;
310           bad_mutexes_held = true;
311         }
312       }
313     }
314     if (gAborting == 0) {  // Avoid recursive aborts.
315       CHECK(!bad_mutexes_held) << error_msg;
316     }
317   }
318 }
319 
AddToWaitTime(uint64_t value)320 void BaseMutex::ContentionLogData::AddToWaitTime(uint64_t value) {
321   if (kLogLockContentions) {
322     // Atomically add value to wait_time.
323     wait_time.fetch_add(value, std::memory_order_seq_cst);
324   }
325 }
326 
RecordContention(uint64_t blocked_tid,uint64_t owner_tid,uint64_t nano_time_blocked)327 void BaseMutex::RecordContention(uint64_t blocked_tid,
328                                  uint64_t owner_tid,
329                                  uint64_t nano_time_blocked) {
330   if (kLogLockContentions) {
331     ContentionLogData* data = contention_log_data_;
332     ++(data->contention_count);
333     data->AddToWaitTime(nano_time_blocked);
334     ContentionLogEntry* log = data->contention_log;
335     // This code is intentionally racy as it is only used for diagnostics.
336     int32_t slot = data->cur_content_log_entry.load(std::memory_order_relaxed);
337     if (log[slot].blocked_tid == blocked_tid &&
338         log[slot].owner_tid == blocked_tid) {
339       ++log[slot].count;
340     } else {
341       uint32_t new_slot;
342       do {
343         slot = data->cur_content_log_entry.load(std::memory_order_relaxed);
344         new_slot = (slot + 1) % kContentionLogSize;
345       } while (!data->cur_content_log_entry.CompareAndSetWeakRelaxed(slot, new_slot));
346       log[new_slot].blocked_tid = blocked_tid;
347       log[new_slot].owner_tid = owner_tid;
348       log[new_slot].count.store(1, std::memory_order_relaxed);
349     }
350   }
351 }
352 
DumpContention(std::ostream & os) const353 void BaseMutex::DumpContention(std::ostream& os) const {
354   if (kLogLockContentions) {
355     const ContentionLogData* data = contention_log_data_;
356     const ContentionLogEntry* log = data->contention_log;
357     uint64_t wait_time = data->wait_time.load(std::memory_order_relaxed);
358     uint32_t contention_count = data->contention_count.load(std::memory_order_relaxed);
359     if (contention_count == 0) {
360       os << "never contended";
361     } else {
362       os << "contended " << contention_count
363          << " total wait of contender " << PrettyDuration(wait_time)
364          << " average " << PrettyDuration(wait_time / contention_count);
365       SafeMap<uint64_t, size_t> most_common_blocker;
366       SafeMap<uint64_t, size_t> most_common_blocked;
367       for (size_t i = 0; i < kContentionLogSize; ++i) {
368         uint64_t blocked_tid = log[i].blocked_tid;
369         uint64_t owner_tid = log[i].owner_tid;
370         uint32_t count = log[i].count.load(std::memory_order_relaxed);
371         if (count > 0) {
372           auto it = most_common_blocked.find(blocked_tid);
373           if (it != most_common_blocked.end()) {
374             most_common_blocked.Overwrite(blocked_tid, it->second + count);
375           } else {
376             most_common_blocked.Put(blocked_tid, count);
377           }
378           it = most_common_blocker.find(owner_tid);
379           if (it != most_common_blocker.end()) {
380             most_common_blocker.Overwrite(owner_tid, it->second + count);
381           } else {
382             most_common_blocker.Put(owner_tid, count);
383           }
384         }
385       }
386       uint64_t max_tid = 0;
387       size_t max_tid_count = 0;
388       for (const auto& pair : most_common_blocked) {
389         if (pair.second > max_tid_count) {
390           max_tid = pair.first;
391           max_tid_count = pair.second;
392         }
393       }
394       if (max_tid != 0) {
395         os << " sample shows most blocked tid=" << max_tid;
396       }
397       max_tid = 0;
398       max_tid_count = 0;
399       for (const auto& pair : most_common_blocker) {
400         if (pair.second > max_tid_count) {
401           max_tid = pair.first;
402           max_tid_count = pair.second;
403         }
404       }
405       if (max_tid != 0) {
406         os << " sample shows tid=" << max_tid << " owning during this time";
407       }
408     }
409   }
410 }
411 
412 
Mutex(const char * name,LockLevel level,bool recursive)413 Mutex::Mutex(const char* name, LockLevel level, bool recursive)
414     : BaseMutex(name, level), exclusive_owner_(0), recursion_count_(0), recursive_(recursive) {
415 #if ART_USE_FUTEXES
416   DCHECK_EQ(0, state_and_contenders_.load(std::memory_order_relaxed));
417 #else
418   CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, nullptr));
419 #endif
420 }
421 
422 // Helper to allow checking shutdown while locking for thread safety.
IsSafeToCallAbortSafe()423 static bool IsSafeToCallAbortSafe() {
424   MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
425   return Locks::IsSafeToCallAbortRacy();
426 }
427 
~Mutex()428 Mutex::~Mutex() {
429   bool safe_to_call_abort = Locks::IsSafeToCallAbortRacy();
430 #if ART_USE_FUTEXES
431   if (state_and_contenders_.load(std::memory_order_relaxed) != 0) {
432     LOG(safe_to_call_abort ? FATAL : WARNING)
433         << "destroying mutex with owner or contenders. Owner:" << GetExclusiveOwnerTid();
434   } else {
435     if (GetExclusiveOwnerTid() != 0) {
436       LOG(safe_to_call_abort ? FATAL : WARNING)
437           << "unexpectedly found an owner on unlocked mutex " << name_;
438     }
439   }
440 #else
441   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
442   // may still be using locks.
443   int rc = pthread_mutex_destroy(&mutex_);
444   if (rc != 0) {
445     errno = rc;
446     PLOG(safe_to_call_abort ? FATAL : WARNING)
447         << "pthread_mutex_destroy failed for " << name_;
448   }
449 #endif
450 }
451 
ExclusiveLock(Thread * self)452 void Mutex::ExclusiveLock(Thread* self) {
453   DCHECK(self == nullptr || self == Thread::Current());
454   if (kDebugLocking && !recursive_) {
455     AssertNotHeld(self);
456   }
457   if (!recursive_ || !IsExclusiveHeld(self)) {
458 #if ART_USE_FUTEXES
459     bool done = false;
460     do {
461       int32_t cur_state = state_and_contenders_.load(std::memory_order_relaxed);
462       if (LIKELY((cur_state & kHeldMask) == 0) /* lock not held */) {
463         done = state_and_contenders_.CompareAndSetWeakAcquire(cur_state, cur_state | kHeldMask);
464       } else {
465         // Failed to acquire, hang up.
466         // We don't hold the mutex: GetExclusiveOwnerTid() is usually, but not always, correct.
467         ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
468         // Empirically, it appears important to spin again each time through the loop; if we
469         // bother to go to sleep and wake up, we should be fairly persistent in trying for the
470         // lock.
471         if (!WaitBrieflyFor(&state_and_contenders_, self,
472                             [](int32_t v) { return (v & kHeldMask) == 0; })) {
473           // Increment contender count. We can't create enough threads for this to overflow.
474           increment_contenders();
475           // Make cur_state again reflect the expected value of state_and_contenders.
476           cur_state += kContenderIncrement;
477           if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
478             self->CheckEmptyCheckpointFromMutex();
479           }
480 
481           uint64_t wait_start_ms = enable_monitor_timeout_ ? MilliTime() : 0;
482           uint64_t try_times = 0;
483           do {
484             timespec timeout_ts;
485             timeout_ts.tv_sec = 0;
486             // NB: Some tests use the mutex without the runtime.
487             timeout_ts.tv_nsec = Runtime::Current() != nullptr
488                 ? Runtime::Current()->GetMonitorTimeoutNs()
489                 : Monitor::kDefaultMonitorTimeoutMs;
490             if (futex(state_and_contenders_.Address(), FUTEX_WAIT_PRIVATE, cur_state,
491                       enable_monitor_timeout_ ? &timeout_ts : nullptr , nullptr, 0) != 0) {
492               // We only went to sleep after incrementing and contenders and checking that the
493               // lock is still held by someone else.  EAGAIN and EINTR both indicate a spurious
494               // failure, try again from the beginning.  We don't use TEMP_FAILURE_RETRY so we can
495               // intentionally retry to acquire the lock.
496               if ((errno != EAGAIN) && (errno != EINTR)) {
497                 if (errno == ETIMEDOUT) {
498                   try_times++;
499                   if (try_times <= kMonitorTimeoutTryMax) {
500                     DumpStack(self, wait_start_ms, try_times);
501                   }
502                 } else {
503                   PLOG(FATAL) << "futex wait failed for " << name_;
504                 }
505               }
506             }
507             SleepIfRuntimeDeleted(self);
508             // Retry until not held. In heavy contention situations we otherwise get redundant
509             // futex wakeups as a result of repeatedly decrementing and incrementing contenders.
510             cur_state = state_and_contenders_.load(std::memory_order_relaxed);
511           } while ((cur_state & kHeldMask) != 0);
512           decrement_contenders();
513         }
514       }
515     } while (!done);
516     // Confirm that lock is now held.
517     DCHECK_NE(state_and_contenders_.load(std::memory_order_relaxed) & kHeldMask, 0);
518 #else
519     CHECK_MUTEX_CALL(pthread_mutex_lock, (&mutex_));
520 #endif
521     DCHECK_EQ(GetExclusiveOwnerTid(), 0) << " my tid = " << SafeGetTid(self)
522                                          << " recursive_ = " << recursive_;
523     exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
524     RegisterAsLocked(self);
525   }
526   recursion_count_++;
527   if (kDebugLocking) {
528     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
529         << name_ << " " << recursion_count_;
530     AssertHeld(self);
531   }
532 }
533 
DumpStack(Thread * self,uint64_t wait_start_ms,uint64_t try_times)534 void Mutex::DumpStack(Thread* self, uint64_t wait_start_ms, uint64_t try_times) {
535   ScopedObjectAccess soa(self);
536   Locks::thread_list_lock_->ExclusiveLock(self);
537   std::string owner_stack_dump;
538   pid_t owner_tid = GetExclusiveOwnerTid();
539   CHECK(Runtime::Current() != nullptr);
540   Thread *owner = Runtime::Current()->GetThreadList()->FindThreadByTid(owner_tid);
541   if (owner != nullptr) {
542     if (IsDumpFrequent(owner, try_times)) {
543       Locks::thread_list_lock_->ExclusiveUnlock(self);
544       LOG(WARNING) << "Contention with tid " << owner_tid << ", monitor id " << monitor_id_;
545       return;
546     }
547     struct CollectStackTrace : public Closure {
548       void Run(art::Thread* thread) override
549         REQUIRES_SHARED(art::Locks::mutator_lock_) {
550         if (IsDumpFrequent(thread)) {
551           return;
552         }
553         DumpStackLastTimeTLSData* tls_data =
554             reinterpret_cast<DumpStackLastTimeTLSData*>(thread->GetCustomTLS(kLastDumpStackTime));
555         if (tls_data == nullptr) {
556           thread->SetCustomTLS(kLastDumpStackTime, new DumpStackLastTimeTLSData(MilliTime()));
557         } else {
558           tls_data->last_dump_time_ms_.store(MilliTime());
559         }
560         thread->DumpJavaStack(oss);
561       }
562       std::ostringstream oss;
563     };
564     CollectStackTrace owner_trace;
565     owner->RequestSynchronousCheckpoint(&owner_trace);
566     owner_stack_dump = owner_trace.oss.str();
567     uint64_t wait_ms = MilliTime() - wait_start_ms;
568     LOG(WARNING) << "Monitor contention with tid " << owner_tid << ", wait time: " << wait_ms
569                  << "ms, monitor id: " << monitor_id_
570                  << "\nPerfMonitor owner thread(" << owner_tid << ") stack is:\n"
571                  << owner_stack_dump;
572   } else {
573     Locks::thread_list_lock_->ExclusiveUnlock(self);
574   }
575 }
576 
IsDumpFrequent(Thread * thread,uint64_t try_times)577 bool Mutex::IsDumpFrequent(Thread* thread, uint64_t try_times) {
578   uint64_t last_dump_time_ms = 0;
579   DumpStackLastTimeTLSData* tls_data =
580       reinterpret_cast<DumpStackLastTimeTLSData*>(thread->GetCustomTLS(kLastDumpStackTime));
581   if (tls_data != nullptr) {
582      last_dump_time_ms = tls_data->last_dump_time_ms_.load();
583   }
584   uint64_t interval = MilliTime() - last_dump_time_ms;
585   if (interval < kIntervalMillis * try_times) {
586     return true;
587   } else {
588     return false;
589   }
590 }
591 
592 template <bool kCheck>
ExclusiveTryLock(Thread * self)593 bool Mutex::ExclusiveTryLock(Thread* self) {
594   DCHECK(self == nullptr || self == Thread::Current());
595   if (kDebugLocking && !recursive_) {
596     AssertNotHeld(self);
597   }
598   if (!recursive_ || !IsExclusiveHeld(self)) {
599 #if ART_USE_FUTEXES
600     bool done = false;
601     do {
602       int32_t cur_state = state_and_contenders_.load(std::memory_order_relaxed);
603       if ((cur_state & kHeldMask) == 0) {
604         // Change state to held and impose load/store ordering appropriate for lock acquisition.
605         done = state_and_contenders_.CompareAndSetWeakAcquire(cur_state, cur_state | kHeldMask);
606       } else {
607         return false;
608       }
609     } while (!done);
610     DCHECK_NE(state_and_contenders_.load(std::memory_order_relaxed) & kHeldMask, 0);
611 #else
612     int result = pthread_mutex_trylock(&mutex_);
613     if (result == EBUSY) {
614       return false;
615     }
616     if (result != 0) {
617       errno = result;
618       PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
619     }
620 #endif
621     DCHECK_EQ(GetExclusiveOwnerTid(), 0);
622     exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
623     RegisterAsLocked(self, kCheck);
624   }
625   recursion_count_++;
626   if (kDebugLocking) {
627     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
628         << name_ << " " << recursion_count_;
629     AssertHeld(self);
630   }
631   return true;
632 }
633 
634 template bool Mutex::ExclusiveTryLock<false>(Thread* self);
635 template bool Mutex::ExclusiveTryLock<true>(Thread* self);
636 
ExclusiveTryLockWithSpinning(Thread * self)637 bool Mutex::ExclusiveTryLockWithSpinning(Thread* self) {
638   // Spin a small number of times, since this affects our ability to respond to suspension
639   // requests. We spin repeatedly only if the mutex repeatedly becomes available and unavailable
640   // in rapid succession, and then we will typically not spin for the maximal period.
641   const int kMaxSpins = 5;
642   for (int i = 0; i < kMaxSpins; ++i) {
643     if (ExclusiveTryLock(self)) {
644       return true;
645     }
646 #if ART_USE_FUTEXES
647     if (!WaitBrieflyFor(&state_and_contenders_, self,
648             [](int32_t v) { return (v & kHeldMask) == 0; })) {
649       return false;
650     }
651 #endif
652   }
653   return ExclusiveTryLock(self);
654 }
655 
656 #if ART_USE_FUTEXES
ExclusiveLockUncontendedFor(Thread * new_owner)657 void Mutex::ExclusiveLockUncontendedFor(Thread* new_owner) {
658   DCHECK_EQ(level_, kMonitorLock);
659   DCHECK(!recursive_);
660   state_and_contenders_.store(kHeldMask, std::memory_order_relaxed);
661   recursion_count_ = 1;
662   exclusive_owner_.store(SafeGetTid(new_owner), std::memory_order_relaxed);
663   // Don't call RegisterAsLocked(). It wouldn't register anything anyway.  And
664   // this happens as we're inflating a monitor, which doesn't logically affect
665   // held "locks"; it effectively just converts a thin lock to a mutex.  By doing
666   // this while the lock is already held, we're delaying the acquisition of a
667   // logically held mutex, which can introduce bogus lock order violations.
668 }
669 
ExclusiveUnlockUncontended()670 void Mutex::ExclusiveUnlockUncontended() {
671   DCHECK_EQ(level_, kMonitorLock);
672   state_and_contenders_.store(0, std::memory_order_relaxed);
673   recursion_count_ = 0;
674   exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
675   // Skip RegisterAsUnlocked(), which wouldn't do anything anyway.
676 }
677 #endif  // ART_USE_FUTEXES
678 
ExclusiveUnlock(Thread * self)679 void Mutex::ExclusiveUnlock(Thread* self) {
680   if (kIsDebugBuild && self != nullptr && self != Thread::Current()) {
681     std::string name1 = "<null>";
682     std::string name2 = "<null>";
683     if (self != nullptr) {
684       self->GetThreadName(name1);
685     }
686     if (Thread::Current() != nullptr) {
687       Thread::Current()->GetThreadName(name2);
688     }
689     LOG(FATAL) << GetName() << " level=" << level_ << " self=" << name1
690                << " Thread::Current()=" << name2;
691   }
692   AssertHeld(self);
693   DCHECK_NE(GetExclusiveOwnerTid(), 0);
694   recursion_count_--;
695   if (!recursive_ || recursion_count_ == 0) {
696     if (kDebugLocking) {
697       CHECK(recursion_count_ == 0 || recursive_) << "Unexpected recursion count on mutex: "
698           << name_ << " " << recursion_count_;
699     }
700     RegisterAsUnlocked(self);
701 #if ART_USE_FUTEXES
702     bool done = false;
703     do {
704       int32_t cur_state = state_and_contenders_.load(std::memory_order_relaxed);
705       if (LIKELY((cur_state & kHeldMask) != 0)) {
706         // We're no longer the owner.
707         exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
708         // Change state to not held and impose load/store ordering appropriate for lock release.
709         uint32_t new_state = cur_state & ~kHeldMask;  // Same number of contenders.
710         done = state_and_contenders_.CompareAndSetWeakRelease(cur_state, new_state);
711         if (LIKELY(done)) {  // Spurious fail or waiters changed ?
712           if (UNLIKELY(new_state != 0) /* have contenders */) {
713             futex(state_and_contenders_.Address(), FUTEX_WAKE_PRIVATE, kWakeOne,
714                   nullptr, nullptr, 0);
715           }
716           // We only do a futex wait after incrementing contenders and verifying the lock was
717           // still held. If we didn't see waiters, then there couldn't have been any futexes
718           // waiting on this lock when we did the CAS. New arrivals after that cannot wait for us,
719           // since the futex wait call would see the lock available and immediately return.
720         }
721       } else {
722         // Logging acquires the logging lock, avoid infinite recursion in that case.
723         if (this != Locks::logging_lock_) {
724           LOG(FATAL) << "Unexpected state_ in unlock " << cur_state << " for " << name_;
725         } else {
726           LogHelper::LogLineLowStack(__FILE__,
727                                      __LINE__,
728                                      ::android::base::FATAL_WITHOUT_ABORT,
729                                      StringPrintf("Unexpected state_ %d in unlock for %s",
730                                                   cur_state, name_).c_str());
731           _exit(1);
732         }
733       }
734     } while (!done);
735 #else
736     exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
737     CHECK_MUTEX_CALL(pthread_mutex_unlock, (&mutex_));
738 #endif
739   }
740 }
741 
Dump(std::ostream & os) const742 void Mutex::Dump(std::ostream& os) const {
743   os << (recursive_ ? "recursive " : "non-recursive ") << name_
744      << " level=" << static_cast<int>(level_) << " rec=" << recursion_count_
745 #if ART_USE_FUTEXES
746      << " state_and_contenders = " << std::hex << state_and_contenders_ << std::dec
747 #endif
748      << " owner=" << GetExclusiveOwnerTid() << " ";
749   DumpContention(os);
750 }
751 
operator <<(std::ostream & os,const Mutex & mu)752 std::ostream& operator<<(std::ostream& os, const Mutex& mu) {
753   mu.Dump(os);
754   return os;
755 }
756 
WakeupToRespondToEmptyCheckpoint()757 void Mutex::WakeupToRespondToEmptyCheckpoint() {
758 #if ART_USE_FUTEXES
759   // Wake up all the waiters so they will respond to the emtpy checkpoint.
760   DCHECK(should_respond_to_empty_checkpoint_request_);
761   if (UNLIKELY(get_contenders() != 0)) {
762     futex(state_and_contenders_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
763   }
764 #else
765   LOG(FATAL) << "Non futex case isn't supported.";
766 #endif
767 }
768 
ReaderWriterMutex(const char * name,LockLevel level)769 ReaderWriterMutex::ReaderWriterMutex(const char* name, LockLevel level)
770     : BaseMutex(name, level)
771 #if ART_USE_FUTEXES
772     , state_(0), exclusive_owner_(0), num_contenders_(0)
773 #endif
774 {
775 #if !ART_USE_FUTEXES
776   CHECK_MUTEX_CALL(pthread_rwlock_init, (&rwlock_, nullptr));
777 #endif
778 }
779 
~ReaderWriterMutex()780 ReaderWriterMutex::~ReaderWriterMutex() {
781 #if ART_USE_FUTEXES
782   CHECK_EQ(state_.load(std::memory_order_relaxed), 0);
783   CHECK_EQ(GetExclusiveOwnerTid(), 0);
784   CHECK_EQ(num_contenders_.load(std::memory_order_relaxed), 0);
785 #else
786   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
787   // may still be using locks.
788   int rc = pthread_rwlock_destroy(&rwlock_);
789   if (rc != 0) {
790     errno = rc;
791     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
792     PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_rwlock_destroy failed for " << name_;
793   }
794 #endif
795 }
796 
ExclusiveLock(Thread * self)797 void ReaderWriterMutex::ExclusiveLock(Thread* self) {
798   DCHECK(self == nullptr || self == Thread::Current());
799   AssertNotExclusiveHeld(self);
800 #if ART_USE_FUTEXES
801   bool done = false;
802   do {
803     int32_t cur_state = state_.load(std::memory_order_relaxed);
804     if (LIKELY(cur_state == 0)) {
805       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
806       done = state_.CompareAndSetWeakAcquire(0 /* cur_state*/, -1 /* new state */);
807     } else {
808       // Failed to acquire, hang up.
809       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
810       if (!WaitBrieflyFor(&state_, self, [](int32_t v) { return v == 0; })) {
811         num_contenders_.fetch_add(1);
812         if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
813           self->CheckEmptyCheckpointFromMutex();
814         }
815         if (futex(state_.Address(), FUTEX_WAIT_PRIVATE, cur_state, nullptr, nullptr, 0) != 0) {
816           // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
817           // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
818           if ((errno != EAGAIN) && (errno != EINTR)) {
819             PLOG(FATAL) << "futex wait failed for " << name_;
820           }
821         }
822         SleepIfRuntimeDeleted(self);
823         num_contenders_.fetch_sub(1);
824       }
825     }
826   } while (!done);
827   DCHECK_EQ(state_.load(std::memory_order_relaxed), -1);
828 #else
829   CHECK_MUTEX_CALL(pthread_rwlock_wrlock, (&rwlock_));
830 #endif
831   DCHECK_EQ(GetExclusiveOwnerTid(), 0);
832   exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
833   RegisterAsLocked(self);
834   AssertExclusiveHeld(self);
835 }
836 
ExclusiveUnlock(Thread * self)837 void ReaderWriterMutex::ExclusiveUnlock(Thread* self) {
838   DCHECK(self == nullptr || self == Thread::Current());
839   AssertExclusiveHeld(self);
840   RegisterAsUnlocked(self);
841   DCHECK_NE(GetExclusiveOwnerTid(), 0);
842 #if ART_USE_FUTEXES
843   bool done = false;
844   do {
845     int32_t cur_state = state_.load(std::memory_order_relaxed);
846     if (LIKELY(cur_state == -1)) {
847       // We're no longer the owner.
848       exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
849       // Change state from -1 to 0 and impose load/store ordering appropriate for lock release.
850       // Note, the num_contenders_ load below musn't reorder before the CompareAndSet.
851       done = state_.CompareAndSetWeakSequentiallyConsistent(-1 /* cur_state*/, 0 /* new state */);
852       if (LIKELY(done)) {  // Weak CAS may fail spuriously.
853         // Wake any waiters.
854         if (UNLIKELY(num_contenders_.load(std::memory_order_seq_cst) > 0)) {
855           futex(state_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
856         }
857       }
858     } else {
859       LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
860     }
861   } while (!done);
862 #else
863   exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
864   CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
865 #endif
866 }
867 
868 #if HAVE_TIMED_RWLOCK
ExclusiveLockWithTimeout(Thread * self,int64_t ms,int32_t ns)869 bool ReaderWriterMutex::ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) {
870   DCHECK(self == nullptr || self == Thread::Current());
871 #if ART_USE_FUTEXES
872   bool done = false;
873   timespec end_abs_ts;
874   InitTimeSpec(true, CLOCK_MONOTONIC, ms, ns, &end_abs_ts);
875   do {
876     int32_t cur_state = state_.load(std::memory_order_relaxed);
877     if (cur_state == 0) {
878       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
879       done = state_.CompareAndSetWeakAcquire(0 /* cur_state */, -1 /* new state */);
880     } else {
881       // Failed to acquire, hang up.
882       timespec now_abs_ts;
883       InitTimeSpec(true, CLOCK_MONOTONIC, 0, 0, &now_abs_ts);
884       timespec rel_ts;
885       if (!ComputeRelativeTimeSpec(&rel_ts, end_abs_ts, now_abs_ts)) {
886         return false;  // Timed out.
887       }
888       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
889       if (!WaitBrieflyFor(&state_, self, [](int32_t v) { return v == 0; })) {
890         num_contenders_.fetch_add(1);
891         if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
892           self->CheckEmptyCheckpointFromMutex();
893         }
894         if (futex(state_.Address(), FUTEX_WAIT_PRIVATE, cur_state, &rel_ts, nullptr, 0) != 0) {
895           if (errno == ETIMEDOUT) {
896             num_contenders_.fetch_sub(1);
897             return false;  // Timed out.
898           } else if ((errno != EAGAIN) && (errno != EINTR)) {
899             // EAGAIN and EINTR both indicate a spurious failure,
900             // recompute the relative time out from now and try again.
901             // We don't use TEMP_FAILURE_RETRY so we can recompute rel_ts;
902             num_contenders_.fetch_sub(1);  // Unlikely to matter.
903             PLOG(FATAL) << "timed futex wait failed for " << name_;
904           }
905         }
906         SleepIfRuntimeDeleted(self);
907         num_contenders_.fetch_sub(1);
908       }
909     }
910   } while (!done);
911 #else
912   timespec ts;
913   InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &ts);
914   int result = pthread_rwlock_timedwrlock(&rwlock_, &ts);
915   if (result == ETIMEDOUT) {
916     return false;
917   }
918   if (result != 0) {
919     errno = result;
920     PLOG(FATAL) << "pthread_rwlock_timedwrlock failed for " << name_;
921   }
922 #endif
923   exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
924   RegisterAsLocked(self);
925   AssertSharedHeld(self);
926   return true;
927 }
928 #endif
929 
930 #if ART_USE_FUTEXES
HandleSharedLockContention(Thread * self,int32_t cur_state)931 void ReaderWriterMutex::HandleSharedLockContention(Thread* self, int32_t cur_state) {
932   // Owner holds it exclusively, hang up.
933   ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
934   if (!WaitBrieflyFor(&state_, self, [](int32_t v) { return v >= 0; })) {
935     num_contenders_.fetch_add(1);
936     if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
937       self->CheckEmptyCheckpointFromMutex();
938     }
939     if (futex(state_.Address(), FUTEX_WAIT_PRIVATE, cur_state, nullptr, nullptr, 0) != 0) {
940       if (errno != EAGAIN && errno != EINTR) {
941         PLOG(FATAL) << "futex wait failed for " << name_;
942       }
943     }
944     SleepIfRuntimeDeleted(self);
945     num_contenders_.fetch_sub(1);
946   }
947 }
948 #endif
949 
SharedTryLock(Thread * self,bool check)950 bool ReaderWriterMutex::SharedTryLock(Thread* self, bool check) {
951   DCHECK(self == nullptr || self == Thread::Current());
952 #if ART_USE_FUTEXES
953   bool done = false;
954   do {
955     int32_t cur_state = state_.load(std::memory_order_relaxed);
956     if (cur_state >= 0) {
957       // Add as an extra reader and impose load/store ordering appropriate for lock acquisition.
958       done = state_.CompareAndSetWeakAcquire(cur_state, cur_state + 1);
959     } else {
960       // Owner holds it exclusively.
961       return false;
962     }
963   } while (!done);
964 #else
965   int result = pthread_rwlock_tryrdlock(&rwlock_);
966   if (result == EBUSY) {
967     return false;
968   }
969   if (result != 0) {
970     errno = result;
971     PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
972   }
973 #endif
974   RegisterAsLocked(self, check);
975   AssertSharedHeld(self);
976   return true;
977 }
978 
IsSharedHeld(const Thread * self) const979 bool ReaderWriterMutex::IsSharedHeld(const Thread* self) const {
980   DCHECK(self == nullptr || self == Thread::Current());
981   bool result;
982   if (UNLIKELY(self == nullptr)) {  // Handle unattached threads.
983     result = IsExclusiveHeld(self);  // TODO: a better best effort here.
984   } else {
985     result = (self->GetHeldMutex(level_) == this);
986   }
987   return result;
988 }
989 
Dump(std::ostream & os) const990 void ReaderWriterMutex::Dump(std::ostream& os) const {
991   os << name_
992       << " level=" << static_cast<int>(level_)
993       << " owner=" << GetExclusiveOwnerTid()
994 #if ART_USE_FUTEXES
995       << " state=" << state_.load(std::memory_order_seq_cst)
996       << " num_contenders=" << num_contenders_.load(std::memory_order_seq_cst)
997 #endif
998       << " ";
999   DumpContention(os);
1000 }
1001 
operator <<(std::ostream & os,const ReaderWriterMutex & mu)1002 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu) {
1003   mu.Dump(os);
1004   return os;
1005 }
1006 
operator <<(std::ostream & os,const MutatorMutex & mu)1007 std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu) {
1008   mu.Dump(os);
1009   return os;
1010 }
1011 
WakeupToRespondToEmptyCheckpoint()1012 void ReaderWriterMutex::WakeupToRespondToEmptyCheckpoint() {
1013 #if ART_USE_FUTEXES
1014   // Wake up all the waiters so they will respond to the emtpy checkpoint.
1015   DCHECK(should_respond_to_empty_checkpoint_request_);
1016   if (UNLIKELY(num_contenders_.load(std::memory_order_relaxed) > 0)) {
1017     futex(state_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
1018   }
1019 #else
1020   LOG(FATAL) << "Non futex case isn't supported.";
1021 #endif
1022 }
1023 
ConditionVariable(const char * name,Mutex & guard)1024 ConditionVariable::ConditionVariable(const char* name, Mutex& guard)
1025     : name_(name), guard_(guard) {
1026 #if ART_USE_FUTEXES
1027   DCHECK_EQ(0, sequence_.load(std::memory_order_relaxed));
1028   num_waiters_ = 0;
1029 #else
1030   pthread_condattr_t cond_attrs;
1031   CHECK_MUTEX_CALL(pthread_condattr_init, (&cond_attrs));
1032 #if !defined(__APPLE__)
1033   // Apple doesn't have CLOCK_MONOTONIC or pthread_condattr_setclock.
1034   CHECK_MUTEX_CALL(pthread_condattr_setclock, (&cond_attrs, CLOCK_MONOTONIC));
1035 #endif
1036   CHECK_MUTEX_CALL(pthread_cond_init, (&cond_, &cond_attrs));
1037 #endif
1038 }
1039 
~ConditionVariable()1040 ConditionVariable::~ConditionVariable() {
1041 #if ART_USE_FUTEXES
1042   if (num_waiters_!= 0) {
1043     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
1044     LOG(is_safe_to_call_abort ? FATAL : WARNING)
1045         << "ConditionVariable::~ConditionVariable for " << name_
1046         << " called with " << num_waiters_ << " waiters.";
1047   }
1048 #else
1049   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
1050   // may still be using condition variables.
1051   int rc = pthread_cond_destroy(&cond_);
1052   if (rc != 0) {
1053     errno = rc;
1054     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
1055     PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_cond_destroy failed for " << name_;
1056   }
1057 #endif
1058 }
1059 
Broadcast(Thread * self)1060 void ConditionVariable::Broadcast(Thread* self) {
1061   DCHECK(self == nullptr || self == Thread::Current());
1062   // TODO: enable below, there's a race in thread creation that causes false failures currently.
1063   // guard_.AssertExclusiveHeld(self);
1064   DCHECK_EQ(guard_.GetExclusiveOwnerTid(), SafeGetTid(self));
1065 #if ART_USE_FUTEXES
1066   RequeueWaiters(std::numeric_limits<int32_t>::max());
1067 #else
1068   CHECK_MUTEX_CALL(pthread_cond_broadcast, (&cond_));
1069 #endif
1070 }
1071 
1072 #if ART_USE_FUTEXES
RequeueWaiters(int32_t count)1073 void ConditionVariable::RequeueWaiters(int32_t count) {
1074   if (num_waiters_ > 0) {
1075     sequence_++;  // Indicate a signal occurred.
1076     // Move waiters from the condition variable's futex to the guard's futex,
1077     // so that they will be woken up when the mutex is released.
1078     bool done = futex(sequence_.Address(),
1079                       FUTEX_REQUEUE_PRIVATE,
1080                       /* Threads to wake */ 0,
1081                       /* Threads to requeue*/ reinterpret_cast<const timespec*>(count),
1082                       guard_.state_and_contenders_.Address(),
1083                       0) != -1;
1084     if (!done && errno != EAGAIN && errno != EINTR) {
1085       PLOG(FATAL) << "futex requeue failed for " << name_;
1086     }
1087   }
1088 }
1089 #endif
1090 
1091 
Signal(Thread * self)1092 void ConditionVariable::Signal(Thread* self) {
1093   DCHECK(self == nullptr || self == Thread::Current());
1094   guard_.AssertExclusiveHeld(self);
1095 #if ART_USE_FUTEXES
1096   RequeueWaiters(1);
1097 #else
1098   CHECK_MUTEX_CALL(pthread_cond_signal, (&cond_));
1099 #endif
1100 }
1101 
Wait(Thread * self)1102 void ConditionVariable::Wait(Thread* self) {
1103   guard_.CheckSafeToWait(self);
1104   WaitHoldingLocks(self);
1105 }
1106 
WaitHoldingLocks(Thread * self)1107 void ConditionVariable::WaitHoldingLocks(Thread* self) {
1108   DCHECK(self == nullptr || self == Thread::Current());
1109   guard_.AssertExclusiveHeld(self);
1110   unsigned int old_recursion_count = guard_.recursion_count_;
1111 #if ART_USE_FUTEXES
1112   num_waiters_++;
1113   // Ensure the Mutex is contended so that requeued threads are awoken.
1114   guard_.increment_contenders();
1115   guard_.recursion_count_ = 1;
1116   int32_t cur_sequence = sequence_.load(std::memory_order_relaxed);
1117   guard_.ExclusiveUnlock(self);
1118   if (futex(sequence_.Address(), FUTEX_WAIT_PRIVATE, cur_sequence, nullptr, nullptr, 0) != 0) {
1119     // Futex failed, check it is an expected error.
1120     // EAGAIN == EWOULDBLK, so we let the caller try again.
1121     // EINTR implies a signal was sent to this thread.
1122     if ((errno != EINTR) && (errno != EAGAIN)) {
1123       PLOG(FATAL) << "futex wait failed for " << name_;
1124     }
1125   }
1126   SleepIfRuntimeDeleted(self);
1127   guard_.ExclusiveLock(self);
1128   CHECK_GT(num_waiters_, 0);
1129   num_waiters_--;
1130   // We awoke and so no longer require awakes from the guard_'s unlock.
1131   CHECK_GT(guard_.get_contenders(), 0);
1132   guard_.decrement_contenders();
1133 #else
1134   pid_t old_owner = guard_.GetExclusiveOwnerTid();
1135   guard_.exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
1136   guard_.recursion_count_ = 0;
1137   CHECK_MUTEX_CALL(pthread_cond_wait, (&cond_, &guard_.mutex_));
1138   guard_.exclusive_owner_.store(old_owner, std::memory_order_relaxed);
1139 #endif
1140   guard_.recursion_count_ = old_recursion_count;
1141 }
1142 
TimedWait(Thread * self,int64_t ms,int32_t ns)1143 bool ConditionVariable::TimedWait(Thread* self, int64_t ms, int32_t ns) {
1144   DCHECK(self == nullptr || self == Thread::Current());
1145   bool timed_out = false;
1146   guard_.AssertExclusiveHeld(self);
1147   guard_.CheckSafeToWait(self);
1148   unsigned int old_recursion_count = guard_.recursion_count_;
1149 #if ART_USE_FUTEXES
1150   timespec rel_ts;
1151   InitTimeSpec(false, CLOCK_REALTIME, ms, ns, &rel_ts);
1152   num_waiters_++;
1153   // Ensure the Mutex is contended so that requeued threads are awoken.
1154   guard_.increment_contenders();
1155   guard_.recursion_count_ = 1;
1156   int32_t cur_sequence = sequence_.load(std::memory_order_relaxed);
1157   guard_.ExclusiveUnlock(self);
1158   if (futex(sequence_.Address(), FUTEX_WAIT_PRIVATE, cur_sequence, &rel_ts, nullptr, 0) != 0) {
1159     if (errno == ETIMEDOUT) {
1160       // Timed out we're done.
1161       timed_out = true;
1162     } else if ((errno == EAGAIN) || (errno == EINTR)) {
1163       // A signal or ConditionVariable::Signal/Broadcast has come in.
1164     } else {
1165       PLOG(FATAL) << "timed futex wait failed for " << name_;
1166     }
1167   }
1168   SleepIfRuntimeDeleted(self);
1169   guard_.ExclusiveLock(self);
1170   CHECK_GT(num_waiters_, 0);
1171   num_waiters_--;
1172   // We awoke and so no longer require awakes from the guard_'s unlock.
1173   CHECK_GT(guard_.get_contenders(), 0);
1174   guard_.decrement_contenders();
1175 #else
1176 #if !defined(__APPLE__)
1177   int clock = CLOCK_MONOTONIC;
1178 #else
1179   int clock = CLOCK_REALTIME;
1180 #endif
1181   pid_t old_owner = guard_.GetExclusiveOwnerTid();
1182   guard_.exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
1183   guard_.recursion_count_ = 0;
1184   timespec ts;
1185   InitTimeSpec(true, clock, ms, ns, &ts);
1186   int rc;
1187   while ((rc = pthread_cond_timedwait(&cond_, &guard_.mutex_, &ts)) == EINTR) {
1188     continue;
1189   }
1190 
1191   if (rc == ETIMEDOUT) {
1192     timed_out = true;
1193   } else if (rc != 0) {
1194     errno = rc;
1195     PLOG(FATAL) << "TimedWait failed for " << name_;
1196   }
1197   guard_.exclusive_owner_.store(old_owner, std::memory_order_relaxed);
1198 #endif
1199   guard_.recursion_count_ = old_recursion_count;
1200   return timed_out;
1201 }
1202 
1203 }  // namespace art
1204