1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/PatternMatch.h"
24 #include "llvm/Transforms/InstCombine/InstCombiner.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 using namespace llvm;
27 using namespace PatternMatch;
28
29 #define DEBUG_TYPE "instcombine"
30
31 STATISTIC(NumDeadStore, "Number of dead stores eliminated");
32 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
33
34 static cl::opt<unsigned> MaxCopiedFromConstantUsers(
35 "instcombine-max-copied-from-constant-users", cl::init(128),
36 cl::desc("Maximum users to visit in copy from constant transform"),
37 cl::Hidden);
38
39 /// isOnlyCopiedFromConstantMemory - Recursively walk the uses of a (derived)
40 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
41 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
42 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
43 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
44 /// the alloca, and if the source pointer is a pointer to a constant memory
45 /// location, we can optimize this.
46 static bool
isOnlyCopiedFromConstantMemory(AAResults * AA,AllocaInst * V,MemTransferInst * & TheCopy,SmallVectorImpl<Instruction * > & ToDelete)47 isOnlyCopiedFromConstantMemory(AAResults *AA, AllocaInst *V,
48 MemTransferInst *&TheCopy,
49 SmallVectorImpl<Instruction *> &ToDelete) {
50 // We track lifetime intrinsics as we encounter them. If we decide to go
51 // ahead and replace the value with the memory location, this lets the caller
52 // quickly eliminate the markers.
53
54 using ValueAndIsOffset = PointerIntPair<Value *, 1, bool>;
55 SmallVector<ValueAndIsOffset, 32> Worklist;
56 SmallPtrSet<ValueAndIsOffset, 32> Visited;
57 Worklist.emplace_back(V, false);
58 while (!Worklist.empty()) {
59 ValueAndIsOffset Elem = Worklist.pop_back_val();
60 if (!Visited.insert(Elem).second)
61 continue;
62 if (Visited.size() > MaxCopiedFromConstantUsers)
63 return false;
64
65 const auto [Value, IsOffset] = Elem;
66 for (auto &U : Value->uses()) {
67 auto *I = cast<Instruction>(U.getUser());
68
69 if (auto *LI = dyn_cast<LoadInst>(I)) {
70 // Ignore non-volatile loads, they are always ok.
71 if (!LI->isSimple()) return false;
72 continue;
73 }
74
75 if (isa<PHINode, SelectInst>(I)) {
76 // We set IsOffset=true, to forbid the memcpy from occurring after the
77 // phi: If one of the phi operands is not based on the alloca, we
78 // would incorrectly omit a write.
79 Worklist.emplace_back(I, true);
80 continue;
81 }
82 if (isa<BitCastInst, AddrSpaceCastInst>(I)) {
83 // If uses of the bitcast are ok, we are ok.
84 Worklist.emplace_back(I, IsOffset);
85 continue;
86 }
87 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
88 // If the GEP has all zero indices, it doesn't offset the pointer. If it
89 // doesn't, it does.
90 Worklist.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
91 continue;
92 }
93
94 if (auto *Call = dyn_cast<CallBase>(I)) {
95 // If this is the function being called then we treat it like a load and
96 // ignore it.
97 if (Call->isCallee(&U))
98 continue;
99
100 unsigned DataOpNo = Call->getDataOperandNo(&U);
101 bool IsArgOperand = Call->isArgOperand(&U);
102
103 // Inalloca arguments are clobbered by the call.
104 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
105 return false;
106
107 // If this call site doesn't modify the memory, then we know it is just
108 // a load (but one that potentially returns the value itself), so we can
109 // ignore it if we know that the value isn't captured.
110 bool NoCapture = Call->doesNotCapture(DataOpNo);
111 if ((Call->onlyReadsMemory() && (Call->use_empty() || NoCapture)) ||
112 (Call->onlyReadsMemory(DataOpNo) && NoCapture))
113 continue;
114
115 // If this is being passed as a byval argument, the caller is making a
116 // copy, so it is only a read of the alloca.
117 if (IsArgOperand && Call->isByValArgument(DataOpNo))
118 continue;
119 }
120
121 // Lifetime intrinsics can be handled by the caller.
122 if (I->isLifetimeStartOrEnd()) {
123 assert(I->use_empty() && "Lifetime markers have no result to use!");
124 ToDelete.push_back(I);
125 continue;
126 }
127
128 // If this is isn't our memcpy/memmove, reject it as something we can't
129 // handle.
130 MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
131 if (!MI)
132 return false;
133
134 // If the transfer is volatile, reject it.
135 if (MI->isVolatile())
136 return false;
137
138 // If the transfer is using the alloca as a source of the transfer, then
139 // ignore it since it is a load (unless the transfer is volatile).
140 if (U.getOperandNo() == 1)
141 continue;
142
143 // If we already have seen a copy, reject the second one.
144 if (TheCopy) return false;
145
146 // If the pointer has been offset from the start of the alloca, we can't
147 // safely handle this.
148 if (IsOffset) return false;
149
150 // If the memintrinsic isn't using the alloca as the dest, reject it.
151 if (U.getOperandNo() != 0) return false;
152
153 // If the source of the memcpy/move is not constant, reject it.
154 if (isModSet(AA->getModRefInfoMask(MI->getSource())))
155 return false;
156
157 // Otherwise, the transform is safe. Remember the copy instruction.
158 TheCopy = MI;
159 }
160 }
161 return true;
162 }
163
164 /// isOnlyCopiedFromConstantMemory - Return true if the specified alloca is only
165 /// modified by a copy from a constant memory location. If we can prove this, we
166 /// can replace any uses of the alloca with uses of the memory location
167 /// directly.
168 static MemTransferInst *
isOnlyCopiedFromConstantMemory(AAResults * AA,AllocaInst * AI,SmallVectorImpl<Instruction * > & ToDelete)169 isOnlyCopiedFromConstantMemory(AAResults *AA,
170 AllocaInst *AI,
171 SmallVectorImpl<Instruction *> &ToDelete) {
172 MemTransferInst *TheCopy = nullptr;
173 if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete))
174 return TheCopy;
175 return nullptr;
176 }
177
178 /// Returns true if V is dereferenceable for size of alloca.
isDereferenceableForAllocaSize(const Value * V,const AllocaInst * AI,const DataLayout & DL)179 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
180 const DataLayout &DL) {
181 if (AI->isArrayAllocation())
182 return false;
183 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
184 if (!AllocaSize)
185 return false;
186 return isDereferenceableAndAlignedPointer(V, AI->getAlign(),
187 APInt(64, AllocaSize), DL);
188 }
189
simplifyAllocaArraySize(InstCombinerImpl & IC,AllocaInst & AI,DominatorTree & DT)190 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC,
191 AllocaInst &AI, DominatorTree &DT) {
192 // Check for array size of 1 (scalar allocation).
193 if (!AI.isArrayAllocation()) {
194 // i32 1 is the canonical array size for scalar allocations.
195 if (AI.getArraySize()->getType()->isIntegerTy(32))
196 return nullptr;
197
198 // Canonicalize it.
199 return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
200 }
201
202 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
203 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
204 if (C->getValue().getActiveBits() <= 64) {
205 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
206 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, AI.getAddressSpace(),
207 nullptr, AI.getName());
208 New->setAlignment(AI.getAlign());
209
210 replaceAllDbgUsesWith(AI, *New, *New, DT);
211
212 // Scan to the end of the allocation instructions, to skip over a block of
213 // allocas if possible...also skip interleaved debug info
214 //
215 BasicBlock::iterator It(New);
216 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
217 ++It;
218
219 // Now that I is pointing to the first non-allocation-inst in the block,
220 // insert our getelementptr instruction...
221 //
222 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
223 Value *NullIdx = Constant::getNullValue(IdxTy);
224 Value *Idx[2] = {NullIdx, NullIdx};
225 Instruction *GEP = GetElementPtrInst::CreateInBounds(
226 NewTy, New, Idx, New->getName() + ".sub");
227 IC.InsertNewInstBefore(GEP, *It);
228
229 // Now make everything use the getelementptr instead of the original
230 // allocation.
231 return IC.replaceInstUsesWith(AI, GEP);
232 }
233 }
234
235 if (isa<UndefValue>(AI.getArraySize()))
236 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
237
238 // Ensure that the alloca array size argument has type intptr_t, so that
239 // any casting is exposed early.
240 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
241 if (AI.getArraySize()->getType() != IntPtrTy) {
242 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
243 return IC.replaceOperand(AI, 0, V);
244 }
245
246 return nullptr;
247 }
248
249 namespace {
250 // If I and V are pointers in different address space, it is not allowed to
251 // use replaceAllUsesWith since I and V have different types. A
252 // non-target-specific transformation should not use addrspacecast on V since
253 // the two address space may be disjoint depending on target.
254 //
255 // This class chases down uses of the old pointer until reaching the load
256 // instructions, then replaces the old pointer in the load instructions with
257 // the new pointer. If during the chasing it sees bitcast or GEP, it will
258 // create new bitcast or GEP with the new pointer and use them in the load
259 // instruction.
260 class PointerReplacer {
261 public:
PointerReplacer(InstCombinerImpl & IC,Instruction & Root)262 PointerReplacer(InstCombinerImpl &IC, Instruction &Root)
263 : IC(IC), Root(Root) {}
264
265 bool collectUsers();
266 void replacePointer(Value *V);
267
268 private:
269 bool collectUsersRecursive(Instruction &I);
270 void replace(Instruction *I);
271 Value *getReplacement(Value *I);
isAvailable(Instruction * I) const272 bool isAvailable(Instruction *I) const {
273 return I == &Root || Worklist.contains(I);
274 }
275
276 SmallPtrSet<Instruction *, 32> ValuesToRevisit;
277 SmallSetVector<Instruction *, 4> Worklist;
278 MapVector<Value *, Value *> WorkMap;
279 InstCombinerImpl &IC;
280 Instruction &Root;
281 };
282 } // end anonymous namespace
283
collectUsers()284 bool PointerReplacer::collectUsers() {
285 if (!collectUsersRecursive(Root))
286 return false;
287
288 // Ensure that all outstanding (indirect) users of I
289 // are inserted into the Worklist. Return false
290 // otherwise.
291 for (auto *Inst : ValuesToRevisit)
292 if (!Worklist.contains(Inst))
293 return false;
294 return true;
295 }
296
collectUsersRecursive(Instruction & I)297 bool PointerReplacer::collectUsersRecursive(Instruction &I) {
298 for (auto *U : I.users()) {
299 auto *Inst = cast<Instruction>(&*U);
300 if (auto *Load = dyn_cast<LoadInst>(Inst)) {
301 if (Load->isVolatile())
302 return false;
303 Worklist.insert(Load);
304 } else if (auto *PHI = dyn_cast<PHINode>(Inst)) {
305 // All incoming values must be instructions for replacability
306 if (any_of(PHI->incoming_values(),
307 [](Value *V) { return !isa<Instruction>(V); }))
308 return false;
309
310 // If at least one incoming value of the PHI is not in Worklist,
311 // store the PHI for revisiting and skip this iteration of the
312 // loop.
313 if (any_of(PHI->incoming_values(), [this](Value *V) {
314 return !isAvailable(cast<Instruction>(V));
315 })) {
316 ValuesToRevisit.insert(Inst);
317 continue;
318 }
319
320 Worklist.insert(PHI);
321 if (!collectUsersRecursive(*PHI))
322 return false;
323 } else if (auto *SI = dyn_cast<SelectInst>(Inst)) {
324 if (!isa<Instruction>(SI->getTrueValue()) ||
325 !isa<Instruction>(SI->getFalseValue()))
326 return false;
327
328 if (!isAvailable(cast<Instruction>(SI->getTrueValue())) ||
329 !isAvailable(cast<Instruction>(SI->getFalseValue()))) {
330 ValuesToRevisit.insert(Inst);
331 continue;
332 }
333 Worklist.insert(SI);
334 if (!collectUsersRecursive(*SI))
335 return false;
336 } else if (isa<GetElementPtrInst, BitCastInst>(Inst)) {
337 Worklist.insert(Inst);
338 if (!collectUsersRecursive(*Inst))
339 return false;
340 } else if (auto *MI = dyn_cast<MemTransferInst>(Inst)) {
341 if (MI->isVolatile())
342 return false;
343 Worklist.insert(Inst);
344 } else if (Inst->isLifetimeStartOrEnd()) {
345 continue;
346 } else {
347 LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n');
348 return false;
349 }
350 }
351
352 return true;
353 }
354
getReplacement(Value * V)355 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); }
356
replace(Instruction * I)357 void PointerReplacer::replace(Instruction *I) {
358 if (getReplacement(I))
359 return;
360
361 if (auto *LT = dyn_cast<LoadInst>(I)) {
362 auto *V = getReplacement(LT->getPointerOperand());
363 assert(V && "Operand not replaced");
364 auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(),
365 LT->getAlign(), LT->getOrdering(),
366 LT->getSyncScopeID());
367 NewI->takeName(LT);
368 copyMetadataForLoad(*NewI, *LT);
369
370 IC.InsertNewInstWith(NewI, *LT);
371 IC.replaceInstUsesWith(*LT, NewI);
372 WorkMap[LT] = NewI;
373 } else if (auto *PHI = dyn_cast<PHINode>(I)) {
374 Type *NewTy = getReplacement(PHI->getIncomingValue(0))->getType();
375 auto *NewPHI = PHINode::Create(NewTy, PHI->getNumIncomingValues(),
376 PHI->getName(), PHI);
377 for (unsigned int I = 0; I < PHI->getNumIncomingValues(); ++I)
378 NewPHI->addIncoming(getReplacement(PHI->getIncomingValue(I)),
379 PHI->getIncomingBlock(I));
380 WorkMap[PHI] = NewPHI;
381 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
382 auto *V = getReplacement(GEP->getPointerOperand());
383 assert(V && "Operand not replaced");
384 SmallVector<Value *, 8> Indices;
385 Indices.append(GEP->idx_begin(), GEP->idx_end());
386 auto *NewI =
387 GetElementPtrInst::Create(GEP->getSourceElementType(), V, Indices);
388 IC.InsertNewInstWith(NewI, *GEP);
389 NewI->takeName(GEP);
390 WorkMap[GEP] = NewI;
391 } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
392 auto *V = getReplacement(BC->getOperand(0));
393 assert(V && "Operand not replaced");
394 auto *NewT = PointerType::getWithSamePointeeType(
395 cast<PointerType>(BC->getType()),
396 V->getType()->getPointerAddressSpace());
397 auto *NewI = new BitCastInst(V, NewT);
398 IC.InsertNewInstWith(NewI, *BC);
399 NewI->takeName(BC);
400 WorkMap[BC] = NewI;
401 } else if (auto *SI = dyn_cast<SelectInst>(I)) {
402 auto *NewSI = SelectInst::Create(
403 SI->getCondition(), getReplacement(SI->getTrueValue()),
404 getReplacement(SI->getFalseValue()), SI->getName(), nullptr, SI);
405 IC.InsertNewInstWith(NewSI, *SI);
406 NewSI->takeName(SI);
407 WorkMap[SI] = NewSI;
408 } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) {
409 auto *SrcV = getReplacement(MemCpy->getRawSource());
410 // The pointer may appear in the destination of a copy, but we don't want to
411 // replace it.
412 if (!SrcV) {
413 assert(getReplacement(MemCpy->getRawDest()) &&
414 "destination not in replace list");
415 return;
416 }
417
418 IC.Builder.SetInsertPoint(MemCpy);
419 auto *NewI = IC.Builder.CreateMemTransferInst(
420 MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(),
421 SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(),
422 MemCpy->isVolatile());
423 AAMDNodes AAMD = MemCpy->getAAMetadata();
424 if (AAMD)
425 NewI->setAAMetadata(AAMD);
426
427 IC.eraseInstFromFunction(*MemCpy);
428 WorkMap[MemCpy] = NewI;
429 } else {
430 llvm_unreachable("should never reach here");
431 }
432 }
433
replacePointer(Value * V)434 void PointerReplacer::replacePointer(Value *V) {
435 #ifndef NDEBUG
436 auto *PT = cast<PointerType>(Root.getType());
437 auto *NT = cast<PointerType>(V->getType());
438 assert(PT != NT && PT->hasSameElementTypeAs(NT) && "Invalid usage");
439 #endif
440 WorkMap[&Root] = V;
441
442 for (Instruction *Workitem : Worklist)
443 replace(Workitem);
444 }
445
visitAllocaInst(AllocaInst & AI)446 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) {
447 if (auto *I = simplifyAllocaArraySize(*this, AI, DT))
448 return I;
449
450 if (AI.getAllocatedType()->isSized()) {
451 // Move all alloca's of zero byte objects to the entry block and merge them
452 // together. Note that we only do this for alloca's, because malloc should
453 // allocate and return a unique pointer, even for a zero byte allocation.
454 if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinValue() == 0) {
455 // For a zero sized alloca there is no point in doing an array allocation.
456 // This is helpful if the array size is a complicated expression not used
457 // elsewhere.
458 if (AI.isArrayAllocation())
459 return replaceOperand(AI, 0,
460 ConstantInt::get(AI.getArraySize()->getType(), 1));
461
462 // Get the first instruction in the entry block.
463 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
464 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
465 if (FirstInst != &AI) {
466 // If the entry block doesn't start with a zero-size alloca then move
467 // this one to the start of the entry block. There is no problem with
468 // dominance as the array size was forced to a constant earlier already.
469 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
470 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
471 DL.getTypeAllocSize(EntryAI->getAllocatedType())
472 .getKnownMinValue() != 0) {
473 AI.moveBefore(FirstInst);
474 return &AI;
475 }
476
477 // Replace this zero-sized alloca with the one at the start of the entry
478 // block after ensuring that the address will be aligned enough for both
479 // types.
480 const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign());
481 EntryAI->setAlignment(MaxAlign);
482 if (AI.getType() != EntryAI->getType())
483 return new BitCastInst(EntryAI, AI.getType());
484 return replaceInstUsesWith(AI, EntryAI);
485 }
486 }
487 }
488
489 // Check to see if this allocation is only modified by a memcpy/memmove from
490 // a memory location whose alignment is equal to or exceeds that of the
491 // allocation. If this is the case, we can change all users to use the
492 // constant memory location instead. This is commonly produced by the CFE by
493 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
494 // is only subsequently read.
495 SmallVector<Instruction *, 4> ToDelete;
496 if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) {
497 Value *TheSrc = Copy->getSource();
498 Align AllocaAlign = AI.getAlign();
499 Align SourceAlign = getOrEnforceKnownAlignment(
500 TheSrc, AllocaAlign, DL, &AI, &AC, &DT);
501 if (AllocaAlign <= SourceAlign &&
502 isDereferenceableForAllocaSize(TheSrc, &AI, DL) &&
503 !isa<Instruction>(TheSrc)) {
504 // FIXME: Can we sink instructions without violating dominance when TheSrc
505 // is an instruction instead of a constant or argument?
506 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
507 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
508 unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace();
509 auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace);
510 if (AI.getAddressSpace() == SrcAddrSpace) {
511 for (Instruction *Delete : ToDelete)
512 eraseInstFromFunction(*Delete);
513
514 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
515 Instruction *NewI = replaceInstUsesWith(AI, Cast);
516 eraseInstFromFunction(*Copy);
517 ++NumGlobalCopies;
518 return NewI;
519 }
520
521 PointerReplacer PtrReplacer(*this, AI);
522 if (PtrReplacer.collectUsers()) {
523 for (Instruction *Delete : ToDelete)
524 eraseInstFromFunction(*Delete);
525
526 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
527 PtrReplacer.replacePointer(Cast);
528 ++NumGlobalCopies;
529 }
530 }
531 }
532
533 // At last, use the generic allocation site handler to aggressively remove
534 // unused allocas.
535 return visitAllocSite(AI);
536 }
537
538 // Are we allowed to form a atomic load or store of this type?
isSupportedAtomicType(Type * Ty)539 static bool isSupportedAtomicType(Type *Ty) {
540 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
541 }
542
543 /// Helper to combine a load to a new type.
544 ///
545 /// This just does the work of combining a load to a new type. It handles
546 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
547 /// loaded *value* type. This will convert it to a pointer, cast the operand to
548 /// that pointer type, load it, etc.
549 ///
550 /// Note that this will create all of the instructions with whatever insert
551 /// point the \c InstCombinerImpl currently is using.
combineLoadToNewType(LoadInst & LI,Type * NewTy,const Twine & Suffix)552 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy,
553 const Twine &Suffix) {
554 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
555 "can't fold an atomic load to requested type");
556
557 Value *Ptr = LI.getPointerOperand();
558 unsigned AS = LI.getPointerAddressSpace();
559 Type *NewPtrTy = NewTy->getPointerTo(AS);
560 Value *NewPtr = nullptr;
561 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
562 NewPtr->getType() == NewPtrTy))
563 NewPtr = Builder.CreateBitCast(Ptr, NewPtrTy);
564
565 LoadInst *NewLoad = Builder.CreateAlignedLoad(
566 NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix);
567 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
568 copyMetadataForLoad(*NewLoad, LI);
569 return NewLoad;
570 }
571
572 /// Combine a store to a new type.
573 ///
574 /// Returns the newly created store instruction.
combineStoreToNewValue(InstCombinerImpl & IC,StoreInst & SI,Value * V)575 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI,
576 Value *V) {
577 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
578 "can't fold an atomic store of requested type");
579
580 Value *Ptr = SI.getPointerOperand();
581 unsigned AS = SI.getPointerAddressSpace();
582 SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
583 SI.getAllMetadata(MD);
584
585 StoreInst *NewStore = IC.Builder.CreateAlignedStore(
586 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
587 SI.getAlign(), SI.isVolatile());
588 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
589 for (const auto &MDPair : MD) {
590 unsigned ID = MDPair.first;
591 MDNode *N = MDPair.second;
592 // Note, essentially every kind of metadata should be preserved here! This
593 // routine is supposed to clone a store instruction changing *only its
594 // type*. The only metadata it makes sense to drop is metadata which is
595 // invalidated when the pointer type changes. This should essentially
596 // never be the case in LLVM, but we explicitly switch over only known
597 // metadata to be conservatively correct. If you are adding metadata to
598 // LLVM which pertains to stores, you almost certainly want to add it
599 // here.
600 switch (ID) {
601 case LLVMContext::MD_dbg:
602 case LLVMContext::MD_DIAssignID:
603 case LLVMContext::MD_tbaa:
604 case LLVMContext::MD_prof:
605 case LLVMContext::MD_fpmath:
606 case LLVMContext::MD_tbaa_struct:
607 case LLVMContext::MD_alias_scope:
608 case LLVMContext::MD_noalias:
609 case LLVMContext::MD_nontemporal:
610 case LLVMContext::MD_mem_parallel_loop_access:
611 case LLVMContext::MD_access_group:
612 // All of these directly apply.
613 NewStore->setMetadata(ID, N);
614 break;
615 case LLVMContext::MD_invariant_load:
616 case LLVMContext::MD_nonnull:
617 case LLVMContext::MD_noundef:
618 case LLVMContext::MD_range:
619 case LLVMContext::MD_align:
620 case LLVMContext::MD_dereferenceable:
621 case LLVMContext::MD_dereferenceable_or_null:
622 // These don't apply for stores.
623 break;
624 }
625 }
626
627 return NewStore;
628 }
629
630 /// Returns true if instruction represent minmax pattern like:
631 /// select ((cmp load V1, load V2), V1, V2).
isMinMaxWithLoads(Value * V,Type * & LoadTy)632 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
633 assert(V->getType()->isPointerTy() && "Expected pointer type.");
634 // Ignore possible ty* to ixx* bitcast.
635 V = InstCombiner::peekThroughBitcast(V);
636 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
637 // pattern.
638 CmpInst::Predicate Pred;
639 Instruction *L1;
640 Instruction *L2;
641 Value *LHS;
642 Value *RHS;
643 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
644 m_Value(LHS), m_Value(RHS))))
645 return false;
646 LoadTy = L1->getType();
647 return (match(L1, m_Load(m_Specific(LHS))) &&
648 match(L2, m_Load(m_Specific(RHS)))) ||
649 (match(L1, m_Load(m_Specific(RHS))) &&
650 match(L2, m_Load(m_Specific(LHS))));
651 }
652
653 /// Combine loads to match the type of their uses' value after looking
654 /// through intervening bitcasts.
655 ///
656 /// The core idea here is that if the result of a load is used in an operation,
657 /// we should load the type most conducive to that operation. For example, when
658 /// loading an integer and converting that immediately to a pointer, we should
659 /// instead directly load a pointer.
660 ///
661 /// However, this routine must never change the width of a load or the number of
662 /// loads as that would introduce a semantic change. This combine is expected to
663 /// be a semantic no-op which just allows loads to more closely model the types
664 /// of their consuming operations.
665 ///
666 /// Currently, we also refuse to change the precise type used for an atomic load
667 /// or a volatile load. This is debatable, and might be reasonable to change
668 /// later. However, it is risky in case some backend or other part of LLVM is
669 /// relying on the exact type loaded to select appropriate atomic operations.
combineLoadToOperationType(InstCombinerImpl & IC,LoadInst & Load)670 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC,
671 LoadInst &Load) {
672 // FIXME: We could probably with some care handle both volatile and ordered
673 // atomic loads here but it isn't clear that this is important.
674 if (!Load.isUnordered())
675 return nullptr;
676
677 if (Load.use_empty())
678 return nullptr;
679
680 // swifterror values can't be bitcasted.
681 if (Load.getPointerOperand()->isSwiftError())
682 return nullptr;
683
684 // Fold away bit casts of the loaded value by loading the desired type.
685 // Note that we should not do this for pointer<->integer casts,
686 // because that would result in type punning.
687 if (Load.hasOneUse()) {
688 // Don't transform when the type is x86_amx, it makes the pass that lower
689 // x86_amx type happy.
690 Type *LoadTy = Load.getType();
691 if (auto *BC = dyn_cast<BitCastInst>(Load.user_back())) {
692 assert(!LoadTy->isX86_AMXTy() && "Load from x86_amx* should not happen!");
693 if (BC->getType()->isX86_AMXTy())
694 return nullptr;
695 }
696
697 if (auto *CastUser = dyn_cast<CastInst>(Load.user_back())) {
698 Type *DestTy = CastUser->getDestTy();
699 if (CastUser->isNoopCast(IC.getDataLayout()) &&
700 LoadTy->isPtrOrPtrVectorTy() == DestTy->isPtrOrPtrVectorTy() &&
701 (!Load.isAtomic() || isSupportedAtomicType(DestTy))) {
702 LoadInst *NewLoad = IC.combineLoadToNewType(Load, DestTy);
703 CastUser->replaceAllUsesWith(NewLoad);
704 IC.eraseInstFromFunction(*CastUser);
705 return &Load;
706 }
707 }
708 }
709
710 // FIXME: We should also canonicalize loads of vectors when their elements are
711 // cast to other types.
712 return nullptr;
713 }
714
unpackLoadToAggregate(InstCombinerImpl & IC,LoadInst & LI)715 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) {
716 // FIXME: We could probably with some care handle both volatile and atomic
717 // stores here but it isn't clear that this is important.
718 if (!LI.isSimple())
719 return nullptr;
720
721 Type *T = LI.getType();
722 if (!T->isAggregateType())
723 return nullptr;
724
725 StringRef Name = LI.getName();
726
727 if (auto *ST = dyn_cast<StructType>(T)) {
728 // If the struct only have one element, we unpack.
729 auto NumElements = ST->getNumElements();
730 if (NumElements == 1) {
731 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
732 ".unpack");
733 NewLoad->setAAMetadata(LI.getAAMetadata());
734 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
735 PoisonValue::get(T), NewLoad, 0, Name));
736 }
737
738 // We don't want to break loads with padding here as we'd loose
739 // the knowledge that padding exists for the rest of the pipeline.
740 const DataLayout &DL = IC.getDataLayout();
741 auto *SL = DL.getStructLayout(ST);
742 if (SL->hasPadding())
743 return nullptr;
744
745 const auto Align = LI.getAlign();
746 auto *Addr = LI.getPointerOperand();
747 auto *IdxType = Type::getInt32Ty(T->getContext());
748 auto *Zero = ConstantInt::get(IdxType, 0);
749
750 Value *V = PoisonValue::get(T);
751 for (unsigned i = 0; i < NumElements; i++) {
752 Value *Indices[2] = {
753 Zero,
754 ConstantInt::get(IdxType, i),
755 };
756 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, ArrayRef(Indices),
757 Name + ".elt");
758 auto *L = IC.Builder.CreateAlignedLoad(
759 ST->getElementType(i), Ptr,
760 commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
761 // Propagate AA metadata. It'll still be valid on the narrowed load.
762 L->setAAMetadata(LI.getAAMetadata());
763 V = IC.Builder.CreateInsertValue(V, L, i);
764 }
765
766 V->setName(Name);
767 return IC.replaceInstUsesWith(LI, V);
768 }
769
770 if (auto *AT = dyn_cast<ArrayType>(T)) {
771 auto *ET = AT->getElementType();
772 auto NumElements = AT->getNumElements();
773 if (NumElements == 1) {
774 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
775 NewLoad->setAAMetadata(LI.getAAMetadata());
776 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
777 PoisonValue::get(T), NewLoad, 0, Name));
778 }
779
780 // Bail out if the array is too large. Ideally we would like to optimize
781 // arrays of arbitrary size but this has a terrible impact on compile time.
782 // The threshold here is chosen arbitrarily, maybe needs a little bit of
783 // tuning.
784 if (NumElements > IC.MaxArraySizeForCombine)
785 return nullptr;
786
787 const DataLayout &DL = IC.getDataLayout();
788 auto EltSize = DL.getTypeAllocSize(ET);
789 const auto Align = LI.getAlign();
790
791 auto *Addr = LI.getPointerOperand();
792 auto *IdxType = Type::getInt64Ty(T->getContext());
793 auto *Zero = ConstantInt::get(IdxType, 0);
794
795 Value *V = PoisonValue::get(T);
796 uint64_t Offset = 0;
797 for (uint64_t i = 0; i < NumElements; i++) {
798 Value *Indices[2] = {
799 Zero,
800 ConstantInt::get(IdxType, i),
801 };
802 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, ArrayRef(Indices),
803 Name + ".elt");
804 auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
805 commonAlignment(Align, Offset),
806 Name + ".unpack");
807 L->setAAMetadata(LI.getAAMetadata());
808 V = IC.Builder.CreateInsertValue(V, L, i);
809 Offset += EltSize;
810 }
811
812 V->setName(Name);
813 return IC.replaceInstUsesWith(LI, V);
814 }
815
816 return nullptr;
817 }
818
819 // If we can determine that all possible objects pointed to by the provided
820 // pointer value are, not only dereferenceable, but also definitively less than
821 // or equal to the provided maximum size, then return true. Otherwise, return
822 // false (constant global values and allocas fall into this category).
823 //
824 // FIXME: This should probably live in ValueTracking (or similar).
isObjectSizeLessThanOrEq(Value * V,uint64_t MaxSize,const DataLayout & DL)825 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
826 const DataLayout &DL) {
827 SmallPtrSet<Value *, 4> Visited;
828 SmallVector<Value *, 4> Worklist(1, V);
829
830 do {
831 Value *P = Worklist.pop_back_val();
832 P = P->stripPointerCasts();
833
834 if (!Visited.insert(P).second)
835 continue;
836
837 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
838 Worklist.push_back(SI->getTrueValue());
839 Worklist.push_back(SI->getFalseValue());
840 continue;
841 }
842
843 if (PHINode *PN = dyn_cast<PHINode>(P)) {
844 append_range(Worklist, PN->incoming_values());
845 continue;
846 }
847
848 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
849 if (GA->isInterposable())
850 return false;
851 Worklist.push_back(GA->getAliasee());
852 continue;
853 }
854
855 // If we know how big this object is, and it is less than MaxSize, continue
856 // searching. Otherwise, return false.
857 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
858 if (!AI->getAllocatedType()->isSized())
859 return false;
860
861 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
862 if (!CS)
863 return false;
864
865 TypeSize TS = DL.getTypeAllocSize(AI->getAllocatedType());
866 if (TS.isScalable())
867 return false;
868 // Make sure that, even if the multiplication below would wrap as an
869 // uint64_t, we still do the right thing.
870 if ((CS->getValue().zext(128) * APInt(128, TS.getFixedValue()))
871 .ugt(MaxSize))
872 return false;
873 continue;
874 }
875
876 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
877 if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
878 return false;
879
880 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
881 if (InitSize > MaxSize)
882 return false;
883 continue;
884 }
885
886 return false;
887 } while (!Worklist.empty());
888
889 return true;
890 }
891
892 // If we're indexing into an object of a known size, and the outer index is
893 // not a constant, but having any value but zero would lead to undefined
894 // behavior, replace it with zero.
895 //
896 // For example, if we have:
897 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
898 // ...
899 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
900 // ... = load i32* %arrayidx, align 4
901 // Then we know that we can replace %x in the GEP with i64 0.
902 //
903 // FIXME: We could fold any GEP index to zero that would cause UB if it were
904 // not zero. Currently, we only handle the first such index. Also, we could
905 // also search through non-zero constant indices if we kept track of the
906 // offsets those indices implied.
canReplaceGEPIdxWithZero(InstCombinerImpl & IC,GetElementPtrInst * GEPI,Instruction * MemI,unsigned & Idx)907 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC,
908 GetElementPtrInst *GEPI, Instruction *MemI,
909 unsigned &Idx) {
910 if (GEPI->getNumOperands() < 2)
911 return false;
912
913 // Find the first non-zero index of a GEP. If all indices are zero, return
914 // one past the last index.
915 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
916 unsigned I = 1;
917 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
918 Value *V = GEPI->getOperand(I);
919 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
920 if (CI->isZero())
921 continue;
922
923 break;
924 }
925
926 return I;
927 };
928
929 // Skip through initial 'zero' indices, and find the corresponding pointer
930 // type. See if the next index is not a constant.
931 Idx = FirstNZIdx(GEPI);
932 if (Idx == GEPI->getNumOperands())
933 return false;
934 if (isa<Constant>(GEPI->getOperand(Idx)))
935 return false;
936
937 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
938 Type *SourceElementType = GEPI->getSourceElementType();
939 // Size information about scalable vectors is not available, so we cannot
940 // deduce whether indexing at n is undefined behaviour or not. Bail out.
941 if (isa<ScalableVectorType>(SourceElementType))
942 return false;
943
944 Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops);
945 if (!AllocTy || !AllocTy->isSized())
946 return false;
947 const DataLayout &DL = IC.getDataLayout();
948 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedValue();
949
950 // If there are more indices after the one we might replace with a zero, make
951 // sure they're all non-negative. If any of them are negative, the overall
952 // address being computed might be before the base address determined by the
953 // first non-zero index.
954 auto IsAllNonNegative = [&]() {
955 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
956 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
957 if (Known.isNonNegative())
958 continue;
959 return false;
960 }
961
962 return true;
963 };
964
965 // FIXME: If the GEP is not inbounds, and there are extra indices after the
966 // one we'll replace, those could cause the address computation to wrap
967 // (rendering the IsAllNonNegative() check below insufficient). We can do
968 // better, ignoring zero indices (and other indices we can prove small
969 // enough not to wrap).
970 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
971 return false;
972
973 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
974 // also known to be dereferenceable.
975 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
976 IsAllNonNegative();
977 }
978
979 // If we're indexing into an object with a variable index for the memory
980 // access, but the object has only one element, we can assume that the index
981 // will always be zero. If we replace the GEP, return it.
982 template <typename T>
replaceGEPIdxWithZero(InstCombinerImpl & IC,Value * Ptr,T & MemI)983 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr,
984 T &MemI) {
985 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
986 unsigned Idx;
987 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
988 Instruction *NewGEPI = GEPI->clone();
989 NewGEPI->setOperand(Idx,
990 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
991 NewGEPI->insertBefore(GEPI);
992 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
993 return NewGEPI;
994 }
995 }
996
997 return nullptr;
998 }
999
canSimplifyNullStoreOrGEP(StoreInst & SI)1000 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
1001 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
1002 return false;
1003
1004 auto *Ptr = SI.getPointerOperand();
1005 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
1006 Ptr = GEPI->getOperand(0);
1007 return (isa<ConstantPointerNull>(Ptr) &&
1008 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
1009 }
1010
canSimplifyNullLoadOrGEP(LoadInst & LI,Value * Op)1011 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
1012 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
1013 const Value *GEPI0 = GEPI->getOperand(0);
1014 if (isa<ConstantPointerNull>(GEPI0) &&
1015 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
1016 return true;
1017 }
1018 if (isa<UndefValue>(Op) ||
1019 (isa<ConstantPointerNull>(Op) &&
1020 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
1021 return true;
1022 return false;
1023 }
1024
visitLoadInst(LoadInst & LI)1025 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) {
1026 Value *Op = LI.getOperand(0);
1027
1028 // Try to canonicalize the loaded type.
1029 if (Instruction *Res = combineLoadToOperationType(*this, LI))
1030 return Res;
1031
1032 // Attempt to improve the alignment.
1033 Align KnownAlign = getOrEnforceKnownAlignment(
1034 Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT);
1035 if (KnownAlign > LI.getAlign())
1036 LI.setAlignment(KnownAlign);
1037
1038 // Replace GEP indices if possible.
1039 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
1040 Worklist.push(NewGEPI);
1041 return &LI;
1042 }
1043
1044 if (Instruction *Res = unpackLoadToAggregate(*this, LI))
1045 return Res;
1046
1047 // Do really simple store-to-load forwarding and load CSE, to catch cases
1048 // where there are several consecutive memory accesses to the same location,
1049 // separated by a few arithmetic operations.
1050 bool IsLoadCSE = false;
1051 if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) {
1052 if (IsLoadCSE)
1053 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
1054
1055 return replaceInstUsesWith(
1056 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
1057 LI.getName() + ".cast"));
1058 }
1059
1060 // None of the following transforms are legal for volatile/ordered atomic
1061 // loads. Most of them do apply for unordered atomics.
1062 if (!LI.isUnordered()) return nullptr;
1063
1064 // load(gep null, ...) -> unreachable
1065 // load null/undef -> unreachable
1066 // TODO: Consider a target hook for valid address spaces for this xforms.
1067 if (canSimplifyNullLoadOrGEP(LI, Op)) {
1068 // Insert a new store to null instruction before the load to indicate
1069 // that this code is not reachable. We do this instead of inserting
1070 // an unreachable instruction directly because we cannot modify the
1071 // CFG.
1072 StoreInst *SI = new StoreInst(PoisonValue::get(LI.getType()),
1073 Constant::getNullValue(Op->getType()), &LI);
1074 SI->setDebugLoc(LI.getDebugLoc());
1075 return replaceInstUsesWith(LI, PoisonValue::get(LI.getType()));
1076 }
1077
1078 if (Op->hasOneUse()) {
1079 // Change select and PHI nodes to select values instead of addresses: this
1080 // helps alias analysis out a lot, allows many others simplifications, and
1081 // exposes redundancy in the code.
1082 //
1083 // Note that we cannot do the transformation unless we know that the
1084 // introduced loads cannot trap! Something like this is valid as long as
1085 // the condition is always false: load (select bool %C, int* null, int* %G),
1086 // but it would not be valid if we transformed it to load from null
1087 // unconditionally.
1088 //
1089 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1090 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
1091 Align Alignment = LI.getAlign();
1092 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
1093 Alignment, DL, SI) &&
1094 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
1095 Alignment, DL, SI)) {
1096 LoadInst *V1 =
1097 Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1098 SI->getOperand(1)->getName() + ".val");
1099 LoadInst *V2 =
1100 Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1101 SI->getOperand(2)->getName() + ".val");
1102 assert(LI.isUnordered() && "implied by above");
1103 V1->setAlignment(Alignment);
1104 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1105 V2->setAlignment(Alignment);
1106 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1107 return SelectInst::Create(SI->getCondition(), V1, V2);
1108 }
1109
1110 // load (select (cond, null, P)) -> load P
1111 if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1112 !NullPointerIsDefined(SI->getFunction(),
1113 LI.getPointerAddressSpace()))
1114 return replaceOperand(LI, 0, SI->getOperand(2));
1115
1116 // load (select (cond, P, null)) -> load P
1117 if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1118 !NullPointerIsDefined(SI->getFunction(),
1119 LI.getPointerAddressSpace()))
1120 return replaceOperand(LI, 0, SI->getOperand(1));
1121 }
1122 }
1123 return nullptr;
1124 }
1125
1126 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1127 ///
1128 /// \returns underlying value that was "cast", or nullptr otherwise.
1129 ///
1130 /// For example, if we have:
1131 ///
1132 /// %E0 = extractelement <2 x double> %U, i32 0
1133 /// %V0 = insertvalue [2 x double] undef, double %E0, 0
1134 /// %E1 = extractelement <2 x double> %U, i32 1
1135 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1
1136 ///
1137 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1138 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1139 /// Note that %U may contain non-undef values where %V1 has undef.
likeBitCastFromVector(InstCombinerImpl & IC,Value * V)1140 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) {
1141 Value *U = nullptr;
1142 while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1143 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1144 if (!E)
1145 return nullptr;
1146 auto *W = E->getVectorOperand();
1147 if (!U)
1148 U = W;
1149 else if (U != W)
1150 return nullptr;
1151 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1152 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1153 return nullptr;
1154 V = IV->getAggregateOperand();
1155 }
1156 if (!match(V, m_Undef()) || !U)
1157 return nullptr;
1158
1159 auto *UT = cast<VectorType>(U->getType());
1160 auto *VT = V->getType();
1161 // Check that types UT and VT are bitwise isomorphic.
1162 const auto &DL = IC.getDataLayout();
1163 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1164 return nullptr;
1165 }
1166 if (auto *AT = dyn_cast<ArrayType>(VT)) {
1167 if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1168 return nullptr;
1169 } else {
1170 auto *ST = cast<StructType>(VT);
1171 if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1172 return nullptr;
1173 for (const auto *EltT : ST->elements()) {
1174 if (EltT != UT->getElementType())
1175 return nullptr;
1176 }
1177 }
1178 return U;
1179 }
1180
1181 /// Combine stores to match the type of value being stored.
1182 ///
1183 /// The core idea here is that the memory does not have any intrinsic type and
1184 /// where we can we should match the type of a store to the type of value being
1185 /// stored.
1186 ///
1187 /// However, this routine must never change the width of a store or the number of
1188 /// stores as that would introduce a semantic change. This combine is expected to
1189 /// be a semantic no-op which just allows stores to more closely model the types
1190 /// of their incoming values.
1191 ///
1192 /// Currently, we also refuse to change the precise type used for an atomic or
1193 /// volatile store. This is debatable, and might be reasonable to change later.
1194 /// However, it is risky in case some backend or other part of LLVM is relying
1195 /// on the exact type stored to select appropriate atomic operations.
1196 ///
1197 /// \returns true if the store was successfully combined away. This indicates
1198 /// the caller must erase the store instruction. We have to let the caller erase
1199 /// the store instruction as otherwise there is no way to signal whether it was
1200 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
combineStoreToValueType(InstCombinerImpl & IC,StoreInst & SI)1201 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) {
1202 // FIXME: We could probably with some care handle both volatile and ordered
1203 // atomic stores here but it isn't clear that this is important.
1204 if (!SI.isUnordered())
1205 return false;
1206
1207 // swifterror values can't be bitcasted.
1208 if (SI.getPointerOperand()->isSwiftError())
1209 return false;
1210
1211 Value *V = SI.getValueOperand();
1212
1213 // Fold away bit casts of the stored value by storing the original type.
1214 if (auto *BC = dyn_cast<BitCastInst>(V)) {
1215 assert(!BC->getType()->isX86_AMXTy() &&
1216 "store to x86_amx* should not happen!");
1217 V = BC->getOperand(0);
1218 // Don't transform when the type is x86_amx, it makes the pass that lower
1219 // x86_amx type happy.
1220 if (V->getType()->isX86_AMXTy())
1221 return false;
1222 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1223 combineStoreToNewValue(IC, SI, V);
1224 return true;
1225 }
1226 }
1227
1228 if (Value *U = likeBitCastFromVector(IC, V))
1229 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1230 combineStoreToNewValue(IC, SI, U);
1231 return true;
1232 }
1233
1234 // FIXME: We should also canonicalize stores of vectors when their elements
1235 // are cast to other types.
1236 return false;
1237 }
1238
unpackStoreToAggregate(InstCombinerImpl & IC,StoreInst & SI)1239 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) {
1240 // FIXME: We could probably with some care handle both volatile and atomic
1241 // stores here but it isn't clear that this is important.
1242 if (!SI.isSimple())
1243 return false;
1244
1245 Value *V = SI.getValueOperand();
1246 Type *T = V->getType();
1247
1248 if (!T->isAggregateType())
1249 return false;
1250
1251 if (auto *ST = dyn_cast<StructType>(T)) {
1252 // If the struct only have one element, we unpack.
1253 unsigned Count = ST->getNumElements();
1254 if (Count == 1) {
1255 V = IC.Builder.CreateExtractValue(V, 0);
1256 combineStoreToNewValue(IC, SI, V);
1257 return true;
1258 }
1259
1260 // We don't want to break loads with padding here as we'd loose
1261 // the knowledge that padding exists for the rest of the pipeline.
1262 const DataLayout &DL = IC.getDataLayout();
1263 auto *SL = DL.getStructLayout(ST);
1264 if (SL->hasPadding())
1265 return false;
1266
1267 const auto Align = SI.getAlign();
1268
1269 SmallString<16> EltName = V->getName();
1270 EltName += ".elt";
1271 auto *Addr = SI.getPointerOperand();
1272 SmallString<16> AddrName = Addr->getName();
1273 AddrName += ".repack";
1274
1275 auto *IdxType = Type::getInt32Ty(ST->getContext());
1276 auto *Zero = ConstantInt::get(IdxType, 0);
1277 for (unsigned i = 0; i < Count; i++) {
1278 Value *Indices[2] = {
1279 Zero,
1280 ConstantInt::get(IdxType, i),
1281 };
1282 auto *Ptr =
1283 IC.Builder.CreateInBoundsGEP(ST, Addr, ArrayRef(Indices), AddrName);
1284 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1285 auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
1286 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1287 NS->setAAMetadata(SI.getAAMetadata());
1288 }
1289
1290 return true;
1291 }
1292
1293 if (auto *AT = dyn_cast<ArrayType>(T)) {
1294 // If the array only have one element, we unpack.
1295 auto NumElements = AT->getNumElements();
1296 if (NumElements == 1) {
1297 V = IC.Builder.CreateExtractValue(V, 0);
1298 combineStoreToNewValue(IC, SI, V);
1299 return true;
1300 }
1301
1302 // Bail out if the array is too large. Ideally we would like to optimize
1303 // arrays of arbitrary size but this has a terrible impact on compile time.
1304 // The threshold here is chosen arbitrarily, maybe needs a little bit of
1305 // tuning.
1306 if (NumElements > IC.MaxArraySizeForCombine)
1307 return false;
1308
1309 const DataLayout &DL = IC.getDataLayout();
1310 auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1311 const auto Align = SI.getAlign();
1312
1313 SmallString<16> EltName = V->getName();
1314 EltName += ".elt";
1315 auto *Addr = SI.getPointerOperand();
1316 SmallString<16> AddrName = Addr->getName();
1317 AddrName += ".repack";
1318
1319 auto *IdxType = Type::getInt64Ty(T->getContext());
1320 auto *Zero = ConstantInt::get(IdxType, 0);
1321
1322 uint64_t Offset = 0;
1323 for (uint64_t i = 0; i < NumElements; i++) {
1324 Value *Indices[2] = {
1325 Zero,
1326 ConstantInt::get(IdxType, i),
1327 };
1328 auto *Ptr =
1329 IC.Builder.CreateInBoundsGEP(AT, Addr, ArrayRef(Indices), AddrName);
1330 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1331 auto EltAlign = commonAlignment(Align, Offset);
1332 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1333 NS->setAAMetadata(SI.getAAMetadata());
1334 Offset += EltSize;
1335 }
1336
1337 return true;
1338 }
1339
1340 return false;
1341 }
1342
1343 /// equivalentAddressValues - Test if A and B will obviously have the same
1344 /// value. This includes recognizing that %t0 and %t1 will have the same
1345 /// value in code like this:
1346 /// %t0 = getelementptr \@a, 0, 3
1347 /// store i32 0, i32* %t0
1348 /// %t1 = getelementptr \@a, 0, 3
1349 /// %t2 = load i32* %t1
1350 ///
equivalentAddressValues(Value * A,Value * B)1351 static bool equivalentAddressValues(Value *A, Value *B) {
1352 // Test if the values are trivially equivalent.
1353 if (A == B) return true;
1354
1355 // Test if the values come form identical arithmetic instructions.
1356 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1357 // its only used to compare two uses within the same basic block, which
1358 // means that they'll always either have the same value or one of them
1359 // will have an undefined value.
1360 if (isa<BinaryOperator>(A) ||
1361 isa<CastInst>(A) ||
1362 isa<PHINode>(A) ||
1363 isa<GetElementPtrInst>(A))
1364 if (Instruction *BI = dyn_cast<Instruction>(B))
1365 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1366 return true;
1367
1368 // Otherwise they may not be equivalent.
1369 return false;
1370 }
1371
1372 /// Converts store (bitcast (load (bitcast (select ...)))) to
1373 /// store (load (select ...)), where select is minmax:
1374 /// select ((cmp load V1, load V2), V1, V2).
removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl & IC,StoreInst & SI)1375 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC,
1376 StoreInst &SI) {
1377 // bitcast?
1378 if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1379 return false;
1380 // load? integer?
1381 Value *LoadAddr;
1382 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1383 return false;
1384 auto *LI = cast<LoadInst>(SI.getValueOperand());
1385 if (!LI->getType()->isIntegerTy())
1386 return false;
1387 Type *CmpLoadTy;
1388 if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
1389 return false;
1390
1391 // Make sure the type would actually change.
1392 // This condition can be hit with chains of bitcasts.
1393 if (LI->getType() == CmpLoadTy)
1394 return false;
1395
1396 // Make sure we're not changing the size of the load/store.
1397 const auto &DL = IC.getDataLayout();
1398 if (DL.getTypeStoreSizeInBits(LI->getType()) !=
1399 DL.getTypeStoreSizeInBits(CmpLoadTy))
1400 return false;
1401
1402 if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1403 auto *SI = dyn_cast<StoreInst>(U);
1404 return SI && SI->getPointerOperand() != LI &&
1405 InstCombiner::peekThroughBitcast(SI->getPointerOperand()) !=
1406 LoadAddr &&
1407 !SI->getPointerOperand()->isSwiftError();
1408 }))
1409 return false;
1410
1411 IC.Builder.SetInsertPoint(LI);
1412 LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
1413 // Replace all the stores with stores of the newly loaded value.
1414 for (auto *UI : LI->users()) {
1415 auto *USI = cast<StoreInst>(UI);
1416 IC.Builder.SetInsertPoint(USI);
1417 combineStoreToNewValue(IC, *USI, NewLI);
1418 }
1419 IC.replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
1420 IC.eraseInstFromFunction(*LI);
1421 return true;
1422 }
1423
visitStoreInst(StoreInst & SI)1424 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) {
1425 Value *Val = SI.getOperand(0);
1426 Value *Ptr = SI.getOperand(1);
1427
1428 // Try to canonicalize the stored type.
1429 if (combineStoreToValueType(*this, SI))
1430 return eraseInstFromFunction(SI);
1431
1432 // Attempt to improve the alignment.
1433 const Align KnownAlign = getOrEnforceKnownAlignment(
1434 Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT);
1435 if (KnownAlign > SI.getAlign())
1436 SI.setAlignment(KnownAlign);
1437
1438 // Try to canonicalize the stored type.
1439 if (unpackStoreToAggregate(*this, SI))
1440 return eraseInstFromFunction(SI);
1441
1442 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1443 return eraseInstFromFunction(SI);
1444
1445 // Replace GEP indices if possible.
1446 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1447 Worklist.push(NewGEPI);
1448 return &SI;
1449 }
1450
1451 // Don't hack volatile/ordered stores.
1452 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1453 if (!SI.isUnordered()) return nullptr;
1454
1455 // If the RHS is an alloca with a single use, zapify the store, making the
1456 // alloca dead.
1457 if (Ptr->hasOneUse()) {
1458 if (isa<AllocaInst>(Ptr))
1459 return eraseInstFromFunction(SI);
1460 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1461 if (isa<AllocaInst>(GEP->getOperand(0))) {
1462 if (GEP->getOperand(0)->hasOneUse())
1463 return eraseInstFromFunction(SI);
1464 }
1465 }
1466 }
1467
1468 // If we have a store to a location which is known constant, we can conclude
1469 // that the store must be storing the constant value (else the memory
1470 // wouldn't be constant), and this must be a noop.
1471 if (!isModSet(AA->getModRefInfoMask(Ptr)))
1472 return eraseInstFromFunction(SI);
1473
1474 // Do really simple DSE, to catch cases where there are several consecutive
1475 // stores to the same location, separated by a few arithmetic operations. This
1476 // situation often occurs with bitfield accesses.
1477 BasicBlock::iterator BBI(SI);
1478 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1479 --ScanInsts) {
1480 --BBI;
1481 // Don't count debug info directives, lest they affect codegen,
1482 // and we skip pointer-to-pointer bitcasts, which are NOPs.
1483 if (BBI->isDebugOrPseudoInst() ||
1484 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1485 ScanInsts++;
1486 continue;
1487 }
1488
1489 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1490 // Prev store isn't volatile, and stores to the same location?
1491 if (PrevSI->isUnordered() &&
1492 equivalentAddressValues(PrevSI->getOperand(1), SI.getOperand(1)) &&
1493 PrevSI->getValueOperand()->getType() ==
1494 SI.getValueOperand()->getType()) {
1495 ++NumDeadStore;
1496 // Manually add back the original store to the worklist now, so it will
1497 // be processed after the operands of the removed store, as this may
1498 // expose additional DSE opportunities.
1499 Worklist.push(&SI);
1500 eraseInstFromFunction(*PrevSI);
1501 return nullptr;
1502 }
1503 break;
1504 }
1505
1506 // If this is a load, we have to stop. However, if the loaded value is from
1507 // the pointer we're loading and is producing the pointer we're storing,
1508 // then *this* store is dead (X = load P; store X -> P).
1509 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1510 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1511 assert(SI.isUnordered() && "can't eliminate ordering operation");
1512 return eraseInstFromFunction(SI);
1513 }
1514
1515 // Otherwise, this is a load from some other location. Stores before it
1516 // may not be dead.
1517 break;
1518 }
1519
1520 // Don't skip over loads, throws or things that can modify memory.
1521 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1522 break;
1523 }
1524
1525 // store X, null -> turns into 'unreachable' in SimplifyCFG
1526 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1527 if (canSimplifyNullStoreOrGEP(SI)) {
1528 if (!isa<PoisonValue>(Val))
1529 return replaceOperand(SI, 0, PoisonValue::get(Val->getType()));
1530 return nullptr; // Do not modify these!
1531 }
1532
1533 // store undef, Ptr -> noop
1534 // FIXME: This is technically incorrect because it might overwrite a poison
1535 // value. Change to PoisonValue once #52930 is resolved.
1536 if (isa<UndefValue>(Val))
1537 return eraseInstFromFunction(SI);
1538
1539 return nullptr;
1540 }
1541
1542 /// Try to transform:
1543 /// if () { *P = v1; } else { *P = v2 }
1544 /// or:
1545 /// *P = v1; if () { *P = v2; }
1546 /// into a phi node with a store in the successor.
mergeStoreIntoSuccessor(StoreInst & SI)1547 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) {
1548 if (!SI.isUnordered())
1549 return false; // This code has not been audited for volatile/ordered case.
1550
1551 // Check if the successor block has exactly 2 incoming edges.
1552 BasicBlock *StoreBB = SI.getParent();
1553 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1554 if (!DestBB->hasNPredecessors(2))
1555 return false;
1556
1557 // Capture the other block (the block that doesn't contain our store).
1558 pred_iterator PredIter = pred_begin(DestBB);
1559 if (*PredIter == StoreBB)
1560 ++PredIter;
1561 BasicBlock *OtherBB = *PredIter;
1562
1563 // Bail out if all of the relevant blocks aren't distinct. This can happen,
1564 // for example, if SI is in an infinite loop.
1565 if (StoreBB == DestBB || OtherBB == DestBB)
1566 return false;
1567
1568 // Verify that the other block ends in a branch and is not otherwise empty.
1569 BasicBlock::iterator BBI(OtherBB->getTerminator());
1570 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1571 if (!OtherBr || BBI == OtherBB->begin())
1572 return false;
1573
1574 // If the other block ends in an unconditional branch, check for the 'if then
1575 // else' case. There is an instruction before the branch.
1576 StoreInst *OtherStore = nullptr;
1577 if (OtherBr->isUnconditional()) {
1578 --BBI;
1579 // Skip over debugging info and pseudo probes.
1580 while (BBI->isDebugOrPseudoInst() ||
1581 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1582 if (BBI==OtherBB->begin())
1583 return false;
1584 --BBI;
1585 }
1586 // If this isn't a store, isn't a store to the same location, or is not the
1587 // right kind of store, bail out.
1588 OtherStore = dyn_cast<StoreInst>(BBI);
1589 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1590 !SI.isSameOperationAs(OtherStore))
1591 return false;
1592 } else {
1593 // Otherwise, the other block ended with a conditional branch. If one of the
1594 // destinations is StoreBB, then we have the if/then case.
1595 if (OtherBr->getSuccessor(0) != StoreBB &&
1596 OtherBr->getSuccessor(1) != StoreBB)
1597 return false;
1598
1599 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1600 // if/then triangle. See if there is a store to the same ptr as SI that
1601 // lives in OtherBB.
1602 for (;; --BBI) {
1603 // Check to see if we find the matching store.
1604 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1605 if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1606 !SI.isSameOperationAs(OtherStore))
1607 return false;
1608 break;
1609 }
1610 // If we find something that may be using or overwriting the stored
1611 // value, or if we run out of instructions, we can't do the transform.
1612 if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1613 BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1614 return false;
1615 }
1616
1617 // In order to eliminate the store in OtherBr, we have to make sure nothing
1618 // reads or overwrites the stored value in StoreBB.
1619 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1620 // FIXME: This should really be AA driven.
1621 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1622 return false;
1623 }
1624 }
1625
1626 // Insert a PHI node now if we need it.
1627 Value *MergedVal = OtherStore->getOperand(0);
1628 // The debug locations of the original instructions might differ. Merge them.
1629 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1630 OtherStore->getDebugLoc());
1631 if (MergedVal != SI.getOperand(0)) {
1632 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1633 PN->addIncoming(SI.getOperand(0), SI.getParent());
1634 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1635 MergedVal = InsertNewInstBefore(PN, DestBB->front());
1636 PN->setDebugLoc(MergedLoc);
1637 }
1638
1639 // Advance to a place where it is safe to insert the new store and insert it.
1640 BBI = DestBB->getFirstInsertionPt();
1641 StoreInst *NewSI =
1642 new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(),
1643 SI.getOrdering(), SI.getSyncScopeID());
1644 InsertNewInstBefore(NewSI, *BBI);
1645 NewSI->setDebugLoc(MergedLoc);
1646 NewSI->mergeDIAssignID({&SI, OtherStore});
1647
1648 // If the two stores had AA tags, merge them.
1649 AAMDNodes AATags = SI.getAAMetadata();
1650 if (AATags)
1651 NewSI->setAAMetadata(AATags.merge(OtherStore->getAAMetadata()));
1652
1653 // Nuke the old stores.
1654 eraseInstFromFunction(SI);
1655 eraseInstFromFunction(*OtherStore);
1656 return true;
1657 }
1658