xref: /aosp_15_r20/external/skia/src/gpu/graphite/render/AnalyticRRectRenderStep.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2022 Google LLC
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/graphite/render/AnalyticRRectRenderStep.h"
9 
10 #include "include/core/SkM44.h"
11 #include "include/core/SkPaint.h"
12 #include "include/core/SkRRect.h"
13 #include "include/core/SkScalar.h"
14 #include "include/private/base/SkAssert.h"
15 #include "include/private/base/SkFloatingPoint.h"
16 #include "include/private/base/SkPoint_impl.h"
17 #include "src/base/SkEnumBitMask.h"
18 #include "src/base/SkVx.h"
19 #include "src/core/SkRRectPriv.h"
20 #include "src/core/SkSLTypeShared.h"
21 #include "src/gpu/BufferWriter.h"
22 #include "src/gpu/graphite/Attribute.h"
23 #include "src/gpu/graphite/BufferManager.h"
24 #include "src/gpu/graphite/DrawOrder.h"
25 #include "src/gpu/graphite/DrawParams.h"
26 #include "src/gpu/graphite/DrawTypes.h"
27 #include "src/gpu/graphite/DrawWriter.h"
28 #include "src/gpu/graphite/geom/EdgeAAQuad.h"
29 #include "src/gpu/graphite/geom/Geometry.h"
30 #include "src/gpu/graphite/geom/Rect.h"
31 #include "src/gpu/graphite/geom/Shape.h"
32 #include "src/gpu/graphite/geom/Transform_graphite.h"
33 #include "src/gpu/graphite/render/CommonDepthStencilSettings.h"
34 
35 #include <cstdint>
36 #include <string_view>
37 
38 // This RenderStep is flexible and can draw filled rectangles, filled quadrilaterals with per-edge
39 // AA, filled rounded rectangles with arbitrary corner radii, stroked rectangles with any join,
40 // stroked lines with any cap, stroked rounded rectangles with circular corners (each corner can be
41 // different or square), hairline rectangles, hairline lines, and hairline rounded rectangles with
42 // arbitrary corners.
43 //
44 // We combine all of these together to maximize batching across simple geometric draws and reduce
45 // the number pipeline specializations. Additionally, these primitives are the most common
46 // operations and help us avoid triggering MSAA.
47 //
48 // Each of these "primitives" is represented by a single instance. The instance attributes are
49 // flexible enough to describe any of the above shapes without relying on uniforms to define its
50 // operation. The attributes encode shape as follows:
51 //
52 // float4 xRadiiOrFlags - if any components is > 0, the instance represents a filled round rect
53 //    with elliptical corners and these values specify the X radii in top-left CW order.
54 //    Otherwise, if .x < -1, the instance represents a stroked or hairline [round] rect or line,
55 //    where .y differentiates hairline vs. stroke. If .y is negative, then it is a hairline [round]
56 //    rect and xRadiiOrFlags stores (-2 - X radii); if .y is zero, it is a regular stroked [round]
57 //    rect; if .y is positive, then it is a stroked *or* hairline line. For .y >= 0, .z holds the
58 //    stroke radius and .w stores the join limit (matching StrokeStyle's conventions).
59 //    Lastly, if -1 <= .x <= 0, it's a filled quadrilateral with per-edge AA defined by each by the
60 //    component: aa != 0.
61 // float4 radiiOrQuadXs - if in filled round rect or hairline [round] rect mode, these values
62 //    provide the Y radii in top-left CW order. If in stroked [round] rect mode, these values
63 //    provide the circular corner radii (same order). Otherwise, when in per-edge quad mode, these
64 //    values provide the X coordinates of the quadrilateral (same order).
65 // float4 ltrbOrQuadYs - if in filled round rect mode or stroked [round] rect mode, these values
66 //    define the LTRB edge coordinates of the rectangle surrounding the round rect (or the
67 //    rect itself when the radii are 0s). In stroked line mode, LTRB is treated as (x0,y0) and
68 //    (x1,y1) that defines the line. Otherwise, in per-edge quad mode, these values provide
69 //    the Y coordinates of the quadrilateral.
70 //
71 // From the other direction, shapes produce instance values like:
72 //  - filled rect:    [-1 -1 -1 -1]            [L R R L]             [T T B B]
73 //  - stroked rect:   [-2 0 stroke join]       [0 0 0 0]             [L T R B]
74 //  - hairline rect:  [-2 -2 -2 -2]            [0 0 0 0]             [L T R B]
75 //  - filled rrect:   [xRadii(tl,tr,br,bl)]    [yRadii(tl,tr,br,bl)] [L T R B]
76 //  - stroked rrect:  [-2 0 stroke join]       [radii(tl,tr,br,bl)]  [L T R B]
77 //  - hairline rrect: [-2-xRadii(tl,tr,br,bl)] [radii(tl,tr,br,bl)]  [L T R B]
78 //  - filled line:    N/A, discarded higher in the stack
79 //  - stroked line:   [-2 1 stroke cap]        [0 0 0 0]             [x0,y0,x1,y1]
80 //  - hairline line:  [-2 1 0 1]               [0 0 0 0]             [x0,y0,x1,y1]
81 //  - per-edge quad:  [aa(t,r,b,l) ? -1 : 0]   [xs(tl,tr,br,bl)]     [ys(tl,tr,br,bl)]
82 //
83 // This encoding relies on the fact that a valid SkRRect with all x radii equal to 0 must have
84 // y radii equal to 0 (so it's a rectangle and we can treat it as a quadrilateral with
85 // all edges AA'ed). This avoids other encodings' inability to represent a quad with all edges
86 // anti-aliased (e.g. checking for negatives in xRadiiOrFlags to turn on per-edge mode).
87 //
88 // From this encoding, data can be unpacked for each corner, which are equivalent under
89 // rotational symmetry. A corner can have an outer curve, be mitered, or be beveled. It can
90 // have an inner curve, an inner miter, or fill the interior. Per-edge quads are always mitered
91 // and fill the interior, but the vertices are placed such that the edge coverage ramps can
92 // collapse to 0 area on non-AA edges.
93 //
94 // The vertices that describe each corner are placed so that edges, miters, and bevels calculate
95 // coverage by interpolating a varying and then clamping in the fragment shader. Triangles that
96 // cover the inner and outer curves calculate distance to the curve within the fragment shader.
97 //
98 // See https://docs.google.com/presentation/d/1MCPstNsSlDBhR8CrsJo0r-cZNbu-sEJEvU9W94GOJoY/edit?usp=sharing
99 // for diagrams and explanation of how the geometry is defined.
100 //
101 // AnalyticRRectRenderStep uses the common technique of approximating distance to the level set by
102 // one expansion of the Taylor's series for the level set's equation. Given a level set function
103 // C(x,y), this amounts to calculating C(px,py)/|∇C(px,py)|. For the straight edges the level set
104 // is linear and calculated in the vertex shader and then interpolated exactly over the rectangle.
105 // This provides distances to all four exterior edges within the fragment shader and allows it to
106 // reconstruct a relative position per elliptical corner. Unfortunately this requires the fragment
107 // shader to calculate the length of the gradient for straight edges instead of interpolating
108 // exact device-space distance.
109 //
110 // All four corner radii are potentially evaluated by the fragment shader although each corner's
111 // coverage is only calculated when the pixel is within the bounding box of its quadrant. For fills
112 // and simple strokes it's theoretically valid to have each pixel calculate a single corner's
113 // coverage that was controlled via the vertex shader. However, testing all four corners is
114 // necessary in order to correctly handle self-intersecting stroke interiors. Similarly, all four
115 // edges must be evaluated in order to handle extremely thin shapes; whereas often you could get
116 // away with tracking a single edge distance per pixel.
117 //
118 // Analytic derivatives are used so that a single pipeline can be used regardless of HW derivative
119 // support or for geometry that would prove difficult for forward differencing. The device-space
120 // gradient for ellipses is calculated per-pixel by transforming a per-pixel local gradient vector
121 // with the Jacobian of the inverse local-to-device transform:
122 //
123 // (px,py) is the projected point of (u,v) transformed by a 3x3 matrix, M:
124 //                [x(u,v) / w(u,v)]       [x]   [m00 m01 m02] [u]
125 //      (px,py) = [y(u,v) / w(u,v)] where [y] = [m10 m11 m12]X[v] = M*(u,v,1)
126 //                                        [w]   [m20 m21 m22] [1]
127 //
128 // C(px,py) can be defined in terms of a local Cl(u,v) as C(px,py) = Cl(p^-1(px,py)), where p^-1 =
129 //
130 //               [x'(px,py) / w'(px,py)]       [x']   [m00' m01' * m02'] [px]
131 //      (u,v) =  [y'(px,py) / w'(px,py)] where [y'] = [m10' m11' * m12']X[py] = M^-1*(px,py,0,1)
132 //                                             [w']   [m20' m21' * m22'] [ 1]
133 //
134 // Note that if the 3x3 M was arrived by dropping the 3rd row and column from a 4x4 since we assume
135 // a local 3rd coordinate of 0, M^-1 is not equal to the 4x4 inverse with dropped rows and columns.
136 //
137 // Using the chain rule, then ∇C(px,py)
138 //   =  ∇Cl(u,v)X[1/w'(px,py)     0       -x'(px,py)/w'(px,py)^2] [m00' m01']
139 //               [    0       1/w'(px,py) -y'(px,py)/w'(px,py)^2]X[m10' m11']
140 //                                                                [m20' m21']
141 //
142 //   = 1/w'(px,py)*∇Cl(u,v)X[1 0 -x'(px,py)/w'(px,py)] [m00' m01']
143 //                          [0 1 -y'(px,py)/w'(px,py)]X[m10' m11']
144 //                                                     [m20' m21']
145 //
146 //   = w(u,v)*∇Cl(u,v)X[1 0 0 -u] [m00' m01']
147 //                     [0 1 0 -v]X[m10' m11']
148 //                                [m20' m21']
149 //
150 //   = w(u,v)*∇Cl(u,v)X[m00'-m20'u m01'-m21'u]
151 //                     [m10'-m20'v m11'-m21'v]
152 //
153 // The vertex shader calculates the rightmost 2x2 matrix and interpolates it across the shape since
154 // each component is linear in (u,v). ∇Cl(u,v) is evaluated per pixel in the fragment shader and
155 // depends on which corner and edge being evaluated. w(u,v) is the device-space W coordinate, so
156 // its reciprocal is provided in sk_FragCoord.w.
157 namespace skgpu::graphite {
158 
159 using AAFlags = EdgeAAQuad::Flags;
160 
load_x_radii(const SkRRect & rrect)161 static skvx::float4 load_x_radii(const SkRRect& rrect) {
162     return skvx::float4{rrect.radii(SkRRect::kUpperLeft_Corner).fX,
163                         rrect.radii(SkRRect::kUpperRight_Corner).fX,
164                         rrect.radii(SkRRect::kLowerRight_Corner).fX,
165                         rrect.radii(SkRRect::kLowerLeft_Corner).fX};
166 }
load_y_radii(const SkRRect & rrect)167 static skvx::float4 load_y_radii(const SkRRect& rrect) {
168     return skvx::float4{rrect.radii(SkRRect::kUpperLeft_Corner).fY,
169                         rrect.radii(SkRRect::kUpperRight_Corner).fY,
170                         rrect.radii(SkRRect::kLowerRight_Corner).fY,
171                         rrect.radii(SkRRect::kLowerLeft_Corner).fY};
172 }
173 
opposite_insets_intersect(const SkRRect & rrect,float strokeRadius,float aaRadius)174 static bool opposite_insets_intersect(const SkRRect& rrect, float strokeRadius, float aaRadius) {
175     // One AA inset per side
176     const float maxInset = strokeRadius + 2.f * aaRadius;
177     return // Horizontal insets would intersect opposite corner's curve
178            maxInset >= rrect.width() - rrect.radii(SkRRect::kLowerLeft_Corner).fX   ||
179            maxInset >= rrect.width() - rrect.radii(SkRRect::kLowerRight_Corner).fX  ||
180            maxInset >= rrect.width() - rrect.radii(SkRRect::kUpperLeft_Corner).fX   ||
181            maxInset >= rrect.width() - rrect.radii(SkRRect::kUpperRight_Corner).fX  ||
182            // Vertical insets would intersect opposite corner's curve
183            maxInset >= rrect.height() - rrect.radii(SkRRect::kLowerLeft_Corner).fY  ||
184            maxInset >= rrect.height() - rrect.radii(SkRRect::kLowerRight_Corner).fY ||
185            maxInset >= rrect.height() - rrect.radii(SkRRect::kUpperLeft_Corner).fY  ||
186            maxInset >= rrect.height() - rrect.radii(SkRRect::kUpperRight_Corner).fY;
187 }
188 
opposite_insets_intersect(const Rect & rect,float strokeRadius,float aaRadius)189 static bool opposite_insets_intersect(const Rect& rect, float strokeRadius, float aaRadius) {
190     return any(rect.size() <= 2.f * (strokeRadius + aaRadius));
191 }
192 
opposite_insets_intersect(const Geometry & geometry,float strokeRadius,float aaRadius)193 static bool opposite_insets_intersect(const Geometry& geometry,
194                                       float strokeRadius,
195                                       float aaRadius) {
196     if (geometry.isEdgeAAQuad()) {
197         SkASSERT(strokeRadius == 0.f);
198         const EdgeAAQuad& quad = geometry.edgeAAQuad();
199         if (quad.edgeFlags() == AAFlags::kNone) {
200             // If all edges are non-AA, there won't be any insetting. This allows completely non-AA
201             // quads to use the fill triangles for simpler fragment shader work.
202             return false;
203         } else if (quad.isRect() && quad.edgeFlags() == AAFlags::kAll) {
204             return opposite_insets_intersect(quad.bounds(), 0.f, aaRadius);
205         } else {
206             // Quads with mixed AA edges are tiles where non-AA edges must seam perfectly together.
207             // If we were to inset along just the axis with AA at a corner, two adjacent quads could
208             // arrive at slightly different inset coordinates and then we wouldn't have a perfect
209             // mesh. Forcing insets to snap to the center means all non-AA edges are formed solely
210             // by the original quad coordinates and should seam perfectly assuming perfect input.
211             // The only downside to this is the fill triangles cannot be used since they would
212             // partially extend into the coverage ramp from adjacent AA edges.
213             return true;
214         }
215     } else {
216         const Shape& shape = geometry.shape();
217         if (shape.isLine()) {
218             return strokeRadius <= aaRadius;
219         } else if (shape.isRect()) {
220             return opposite_insets_intersect(shape.rect(), strokeRadius, aaRadius);
221         } else {
222             SkASSERT(shape.isRRect());
223             return opposite_insets_intersect(shape.rrect(), strokeRadius, aaRadius);
224         }
225     }
226 }
227 
is_clockwise(const EdgeAAQuad & quad)228 static bool is_clockwise(const EdgeAAQuad& quad) {
229     if (quad.isRect()) {
230         return true; // by construction, these are always locally clockwise
231     }
232 
233     // This assumes that each corner has a consistent winding, which is the case for convex inputs,
234     // which is an assumption of the per-edge AA API. Check the sign of cross product between the
235     // first two edges.
236     const skvx::float4& xs = quad.xs();
237     const skvx::float4& ys = quad.ys();
238 
239     float winding = (xs[0] - xs[3])*(ys[1] - ys[0]) - (ys[0] - ys[3])*(xs[1] - xs[0]);
240     if (winding == 0.f) {
241         // The input possibly forms a triangle with duplicate vertices, so check the opposite corner
242         winding = (xs[2] - xs[1])*(ys[3] - ys[2]) - (ys[2] - ys[1])*(xs[3] - xs[2]);
243     }
244 
245     // At this point if winding is < 0, the quad's vertices are CCW. If it's still 0, the vertices
246     // form a line, in which case the vertex shader constructs a correct CW winding. Otherwise,
247     // the quad or triangle vertices produce a positive winding and are CW.
248     return winding >= 0.f;
249 }
250 
quad_center(const EdgeAAQuad & quad)251 static skvx::float2 quad_center(const EdgeAAQuad& quad) {
252     // The center of the bounding box is *not* a good center to use. Take the average of the
253     // four points instead (which is slightly biased if they form a triangle, but still okay).
254     return skvx::float2(dot(quad.xs(), skvx::float4(0.25f)),
255                         dot(quad.ys(), skvx::float4(0.25f)));
256 }
257 
258 // Represents the per-vertex attributes used in each instance.
259 struct Vertex {
260     SkV2 fPosition;
261     SkV2 fNormal;
262     float fNormalScale;
263     float fCenterWeight;
264 };
265 
266 // Allowed values for the center weight instance value (selected at record time based on style
267 // and transform), and are defined such that when (insance-weight > vertex-weight) is true, the
268 // vertex should be snapped to the center instead of its regular calculation.
269 static constexpr float kSolidInterior = 1.f;
270 static constexpr float kStrokeInterior = 0.f;
271 static constexpr float kFilledStrokeInterior = -1.f;
272 
273 // Special value for local AA radius to signal when the self-intersections of a stroke interior
274 // need extra calculations in the vertex shader.
275 static constexpr float kComplexAAInsets = -1.f;
276 
277 static constexpr int kCornerVertexCount = 9; // sk_VertexID is divided by this in SkSL
278 static constexpr int kVertexCount = 4 * kCornerVertexCount;
279 static constexpr int kIndexCount = 69;
280 
write_index_buffer(VertexWriter writer)281 static void write_index_buffer(VertexWriter writer) {
282     static constexpr uint16_t kTL = 0 * kCornerVertexCount;
283     static constexpr uint16_t kTR = 1 * kCornerVertexCount;
284     static constexpr uint16_t kBR = 2 * kCornerVertexCount;
285     static constexpr uint16_t kBL = 3 * kCornerVertexCount;
286 
287     static const uint16_t kIndices[kIndexCount] = {
288         // Exterior AA ramp outset
289         kTL+0,kTL+4,kTL+1,kTL+5,kTL+2,kTL+3,kTL+5,
290         kTR+0,kTR+4,kTR+1,kTR+5,kTR+2,kTR+3,kTR+5,
291         kBR+0,kBR+4,kBR+1,kBR+5,kBR+2,kBR+3,kBR+5,
292         kBL+0,kBL+4,kBL+1,kBL+5,kBL+2,kBL+3,kBL+5,
293         kTL+0,kTL+4, // close and jump to next strip
294         // Outer to inner edges
295         kTL+4,kTL+6,kTL+5,kTL+7,
296         kTR+4,kTR+6,kTR+5,kTR+7,
297         kBR+4,kBR+6,kBR+5,kBR+7,
298         kBL+4,kBL+6,kBL+5,kBL+7,
299         kTL+4,kTL+6, // close and jump to next strip
300         // Fill triangles
301         kTL+6,kTL+8,kTL+7, kTL+7,kTR+8,
302         kTR+6,kTR+8,kTR+7, kTR+7,kBR+8,
303         kBR+6,kBR+8,kBR+7, kBR+7,kBL+8,
304         kBL+6,kBL+8,kBL+7, kBL+7,kTL+8,
305         kTL+6 // close
306     };
307 
308     if (writer) {
309         writer << kIndices;
310     } // otherwise static buffer creation failed, so do nothing; Context initialization will fail.
311 }
312 
write_vertex_buffer(VertexWriter writer)313 static void write_vertex_buffer(VertexWriter writer) {
314     // Allowed values for the normal scale attribute. +1 signals a device-space outset along the
315     // normal away from the outer edge of the stroke. 0 signals no outset, but placed on the outer
316     // edge of the stroke. -1 signals a local inset along the normal from the inner edge.
317     static constexpr float kOutset = 1.0;
318     static constexpr float kInset  = -1.0;
319 
320     static constexpr float kCenter = 1.f; // "true" as a float
321 
322     // Zero, but named this way to help call out non-zero parameters.
323     static constexpr float _______ = 0.f;
324 
325     static constexpr float kHR2 = 0.5f * SK_FloatSqrt2; // "half root 2"
326 
327     // This template is repeated 4 times in the vertex buffer, for each of the four corners.
328     // The vertex ID is used to lookup per-corner instance properties such as corner radii or
329     // positions, but otherwise this vertex data produces a consistent clockwise mesh from
330     // TL -> TR -> BR -> BL.
331     static constexpr Vertex kCornerTemplate[kCornerVertexCount] = {
332         // Device-space AA outsets from outer curve
333         { {1.0f, 0.0f}, {1.0f, 0.0f}, kOutset, _______ },
334         { {1.0f, 0.0f}, {kHR2, kHR2}, kOutset, _______ },
335         { {0.0f, 1.0f}, {kHR2, kHR2}, kOutset, _______ },
336         { {0.0f, 1.0f}, {0.0f, 1.0f}, kOutset, _______ },
337 
338         // Outer anchors (no local or device-space normal outset)
339         { {1.0f, 0.0f}, {kHR2, kHR2}, _______, _______ },
340         { {0.0f, 1.0f}, {kHR2, kHR2}, _______, _______ },
341 
342         // Inner curve (with additional AA inset in the common case)
343         { {1.0f, 0.0f}, {1.0f, 0.0f}, kInset, _______ },
344         { {0.0f, 1.0f}, {0.0f, 1.0f}, kInset, _______ },
345 
346         // Center filling vertices (equal to inner AA insets unless 'center' triggers a fill).
347         // TODO: On backends that support "cull" distances (and with SkSL support), these vertices
348         // and their corresponding triangles can be completely removed. The inset vertices can
349         // set their cull distance value to cause all filling triangles to be discarded or not
350         // depending on the instance's style.
351         { {1.0f, 0.0f}, {1.0f, 0.0f}, kInset,  kCenter },
352     };
353 
354     if (writer) {
355         writer << kCornerTemplate  // TL
356                << kCornerTemplate  // TR
357                << kCornerTemplate  // BR
358                << kCornerTemplate; // BL
359     } // otherwise static buffer creation failed, so do nothing; Context initialization will fail.
360 }
361 
AnalyticRRectRenderStep(StaticBufferManager * bufferManager)362 AnalyticRRectRenderStep::AnalyticRRectRenderStep(StaticBufferManager* bufferManager)
363         : RenderStep("AnalyticRRectRenderStep",
364                      "",
365                      Flags::kPerformsShading | Flags::kEmitsCoverage | Flags::kOutsetBoundsForAA |
366                      Flags::kUseNonAAInnerFill,
367                      /*uniforms=*/{},
368                      PrimitiveType::kTriangleStrip,
369                      kDirectDepthGreaterPass,
370                      /*vertexAttrs=*/{
371                             {"position", VertexAttribType::kFloat2, SkSLType::kFloat2},
372                             {"normal", VertexAttribType::kFloat2, SkSLType::kFloat2},
373                             // TODO: These values are all +1/0/-1, or +1/0, so could be packed
374                             // much more densely than as three floats.
375                             {"normalScale", VertexAttribType::kFloat, SkSLType::kFloat},
376                             {"centerWeight", VertexAttribType::kFloat, SkSLType::kFloat}
377                      },
378                      /*instanceAttrs=*/
379                             {{"xRadiiOrFlags", VertexAttribType::kFloat4, SkSLType::kFloat4},
380                              {"radiiOrQuadXs", VertexAttribType::kFloat4, SkSLType::kFloat4},
381                              {"ltrbOrQuadYs", VertexAttribType::kFloat4, SkSLType::kFloat4},
382                              // XY stores center of rrect in local coords. Z and W store values to
383                              // control interior fill behavior. Z can be -1, 0, or 1:
384                              //   -1: A stroked interior where AA insets overlap, but isn't solid.
385                              //    0: A stroked interior with no complications.
386                              //    1: A solid interior (fill or sufficiently large stroke width).
387                              // W specifies the size of the AA inset if it's >= 0, or signals that
388                              // the inner curves intersect in a complex manner (rare).
389                              {"center", VertexAttribType::kFloat4, SkSLType::kFloat4},
390 
391                              // TODO: pack depth and ssbo index into one 32-bit attribute, if we can
392                              // go without needing both render step and paint ssbo index attributes.
393                              {"depth", VertexAttribType::kFloat, SkSLType::kFloat},
394                              {"ssboIndices", VertexAttribType::kUInt2, SkSLType::kUInt2},
395 
396                              {"mat0", VertexAttribType::kFloat3, SkSLType::kFloat3},
397                              {"mat1", VertexAttribType::kFloat3, SkSLType::kFloat3},
398                              {"mat2", VertexAttribType::kFloat3, SkSLType::kFloat3}},
399                      /*varyings=*/{
400                              // TODO: If the inverse transform is part of the draw's SSBO, we can
401                              // reconstruct the Jacobian in the fragment shader using the existing
402                              // local coordinates varying
403                              {"jacobian", SkSLType::kFloat4}, // float2x2
404                              // Distance to LTRB edges of unstroked shape. Depending on
405                              // 'perPixelControl' these will either be local or device-space values.
406                              {"edgeDistances", SkSLType::kFloat4}, // distance to LTRB edges
407                              // TODO: These are constant for all fragments for a given instance,
408                              // could we store them in the draw's SSBO?
409                              {"xRadii", SkSLType::kFloat4},
410                              {"yRadii", SkSLType::kFloat4},
411                              // Matches the StrokeStyle struct (X is radius, Y < 0 is round join,
412                              // Y = 0 is bevel, Y > 0 is miter join).
413                              // TODO: These could easily be considered part of the draw's uniforms.
414                              {"strokeParams", SkSLType::kFloat2},
415                              // 'perPixelControl' is a tightly packed description of how to
416                              // evaluate the possible edges that influence coverage in a pixel.
417                              // The decision points and encoded values are spread across X and Y
418                              // so that they are consistent regardless of whether or not MSAA is
419                              // used and does not require centroid sampling.
420                              //
421                              // The signs of values are used to determine the type of coverage to
422                              // calculate in the fragment shader and depending on the state, extra
423                              // varying state is encoded in the fields:
424                              //  - A positive X value overrides all per-pixel coverage calculations
425                              //    and sets the pixel to full coverage. Y is ignored in this case.
426                              //  - A zero X value represents a solid interior shape.
427                              //  - X much less than 0 represents bidirectional coverage for a
428                              //    stroke, using a sufficiently negative value to avoid
429                              //    extrapolation from fill triangles. For actual shapes with
430                              //    bidirectional coverage, the fill triangles are zero area.
431                              //
432                              //  - Y much greater than 0 takes precedence over the latter two X
433                              //    rules and signals that 'edgeDistances' holds device-space values
434                              //    and does not require additional per-pixel calculations. The
435                              //    coverage scale is encoded as (1+scale*w) and the bias is
436                              //    reconstructed from that. X is always 0 for non-fill triangles
437                              //    since device-space edge distance is only used for solid interiors
438                              //  - Otherwise, any negative Y value represents an additional
439                              //    reduction in coverage due to a device-space outset. It is clamped
440                              //    below 0 to avoid adding coverage from extrapolation.
441                              {"perPixelControl", SkSLType::kFloat2},
442                      }) {
443     // Initialize the static buffers we'll use when recording draw calls.
444     // NOTE: Each instance of this RenderStep gets its own copy of the data. Since there should only
445     // ever be one AnalyticRRectRenderStep at a time, this shouldn't be an issue.
446     write_vertex_buffer(bufferManager->getVertexWriter(sizeof(Vertex) * kVertexCount,
447                                                        &fVertexBuffer));
448     write_index_buffer(bufferManager->getIndexWriter(sizeof(uint16_t) * kIndexCount,
449                                                      &fIndexBuffer));
450 }
451 
~AnalyticRRectRenderStep()452 AnalyticRRectRenderStep::~AnalyticRRectRenderStep() {}
453 
vertexSkSL() const454 std::string AnalyticRRectRenderStep::vertexSkSL() const {
455     // Returns the body of a vertex function, which must define a float4 devPosition variable and
456     // must write to an already-defined float2 stepLocalCoords variable.
457     return "float4 devPosition = analytic_rrect_vertex_fn("
458                    // Vertex Attributes
459                    "position, normal, normalScale, centerWeight, "
460                    // Instance Attributes
461                    "xRadiiOrFlags, radiiOrQuadXs, ltrbOrQuadYs, center, depth, "
462                    "float3x3(mat0, mat1, mat2), "
463                    // Varyings
464                    "jacobian, edgeDistances, xRadii, yRadii, strokeParams, perPixelControl, "
465                    // Render Step
466                    "stepLocalCoords);\n";
467 }
468 
fragmentCoverageSkSL() const469 const char* AnalyticRRectRenderStep::fragmentCoverageSkSL() const {
470     // The returned SkSL must write its coverage into a 'half4 outputCoverage' variable (defined in
471     // the calling code) with the actual coverage splatted out into all four channels.
472     return "outputCoverage = analytic_rrect_coverage_fn(sk_FragCoord, "
473                                                        "jacobian, "
474                                                        "edgeDistances, "
475                                                        "xRadii, "
476                                                        "yRadii, "
477                                                        "strokeParams, "
478                                                        "perPixelControl);";
479 }
480 
writeVertices(DrawWriter * writer,const DrawParams & params,skvx::uint2 ssboIndices) const481 void AnalyticRRectRenderStep::writeVertices(DrawWriter* writer,
482                                             const DrawParams& params,
483                                             skvx::uint2 ssboIndices) const {
484     SkASSERT(params.geometry().isShape() || params.geometry().isEdgeAAQuad());
485 
486     DrawWriter::Instances instance{*writer, fVertexBuffer, fIndexBuffer, kIndexCount};
487     auto vw = instance.append(1);
488 
489     // The bounds of a rect is the rect, and the bounds of a rrect is tight (== SkRRect::getRect()).
490     Rect bounds = params.geometry().bounds();
491 
492     // aaRadius will be set to a negative value to signal a complex self-intersection that has to
493     // be calculated in the vertex shader.
494     float aaRadius = params.transform().localAARadius(bounds);
495     float strokeInset = 0.f;
496     float centerWeight = kSolidInterior;
497 
498     if (params.isStroke()) {
499          // EdgeAAQuads are not stroked so we know it's a Shape, but we support rects, rrects, and
500          // lines that all need to be converted to the same form.
501         const Shape& shape = params.geometry().shape();
502 
503         SkASSERT(params.strokeStyle().halfWidth() >= 0.f);
504         SkASSERT(shape.isRect() || shape.isLine() || params.strokeStyle().halfWidth() == 0.f ||
505                  (shape.isRRect() && SkRRectPriv::AllCornersCircular(shape.rrect())));
506 
507         float strokeRadius = params.strokeStyle().halfWidth();
508 
509         skvx::float2 size = shape.isLine() ? skvx::float2(length(shape.p1() - shape.p0()), 0.f)
510                                            : bounds.size(); // rect or [r]rect
511 
512         skvx::float2 innerGap = size - 2.f * params.strokeStyle().halfWidth();
513         if (any(innerGap <= 0.f) && strokeRadius > 0.f) {
514             // AA inset intersections are measured from the *outset* and remain marked as "solid"
515             strokeInset = -strokeRadius;
516         } else {
517             // This will be upgraded to kFilledStrokeInterior if insets intersect
518             centerWeight = kStrokeInterior;
519             strokeInset = strokeRadius;
520         }
521 
522         skvx::float4 xRadii = shape.isRRect() ? load_x_radii(shape.rrect()) : skvx::float4(0.f);
523         if (strokeRadius > 0.f || shape.isLine()) {
524             // Regular strokes only need to upload 4 corner radii; hairline lines can be uploaded in
525             // the same manner since it has no real corner radii.
526             float joinStyle = params.strokeStyle().joinLimit();
527             float lineFlag = shape.isLine() ? 1.f : 0.f;
528             auto empty = size == 0.f;
529 
530             // Points and lines produce caps instead of joins. However, the capped geometry is
531             // visually equivalent to a joined, stroked [r]rect of the paired join style.
532             if (shape.isLine() || all(empty)) {
533                 // However, butt-cap points are defined not to produce any geometry, so that combo
534                 // should have been rejected earlier.
535                 SkASSERT(shape.isLine() || params.strokeStyle().cap() != SkPaint::kButt_Cap);
536                 switch(params.strokeStyle().cap()) {
537                     case SkPaint::kRound_Cap:  joinStyle = -1.f; break; // round cap == round join
538                     case SkPaint::kButt_Cap:   joinStyle =  0.f; break; // butt cap == bevel join
539                     case SkPaint::kSquare_Cap: joinStyle =  1.f; break; // square cap == miter join
540                 }
541             } else if (params.strokeStyle().isMiterJoin()) {
542                 // Normal corners are 90-degrees so become beveled if the miter limit is < sqrt(2).
543                 // If the [r]rect has a width or height of 0, the corners are actually 180-degrees,
544                 // so the must always be beveled (or, equivalently, butt-capped).
545                 if (params.strokeStyle().miterLimit() < SK_ScalarSqrt2 || any(empty)) {
546                     joinStyle = 0.f; // == bevel (or butt if width or height are zero)
547                 } else {
548                     // Discard actual miter limit because a 90-degree corner never exceeds it.
549                     joinStyle = 1.f;
550                 }
551             } // else no join style correction needed for non-empty geometry or round joins
552 
553             // Write a negative value outside [-1, 0] to signal a stroked shape, the line flag, then
554             // the style params, followed by corner radii and coords.
555             vw << -2.f << lineFlag << strokeRadius << joinStyle << xRadii
556                << (shape.isLine() ? shape.line() : bounds.ltrb());
557         } else {
558             // Write -2 - cornerRadii to encode the X radii in such a way to trigger stroking but
559             // guarantee the 2nd field is non-zero to signal hairline. Then we upload Y radii as
560             // well to allow for elliptical hairlines.
561             skvx::float4 yRadii = shape.isRRect() ? load_y_radii(shape.rrect()) : skvx::float4(0.f);
562             vw << (-2.f - xRadii) << yRadii << bounds.ltrb();
563         }
564     } else {
565         // Empty fills should not have been recorded at all.
566         SkASSERT(!bounds.isEmptyNegativeOrNaN());
567 
568         if (params.geometry().isEdgeAAQuad()) {
569             // NOTE: If quad.isRect() && quad.edgeFlags() == kAll, the written data is identical to
570             // Shape.isRect() case below.
571             const EdgeAAQuad& quad = params.geometry().edgeAAQuad();
572 
573             // If all edges are non-AA, set localAARadius to 0 so that the fill triangles cover the
574             // entire shape. Otherwise leave it as-is for the full AA rect case; in the event it's
575             // mixed-AA or a quad, it'll be converted to complex insets down below.
576             if (quad.edgeFlags() == EdgeAAQuad::Flags::kNone) {
577                 aaRadius = 0.f;
578             }
579 
580             // -1 for AA on, 0 for AA off
581             auto edgeSigns = skvx::float4{quad.edgeFlags() & AAFlags::kLeft   ? -1.f : 0.f,
582                                           quad.edgeFlags() & AAFlags::kTop    ? -1.f : 0.f,
583                                           quad.edgeFlags() & AAFlags::kRight  ? -1.f : 0.f,
584                                           quad.edgeFlags() & AAFlags::kBottom ? -1.f : 0.f};
585 
586             // The vertex shader expects points to be in clockwise order. EdgeAAQuad is the only
587             // shape that *might* have counter-clockwise input.
588             if (is_clockwise(quad)) {
589                 vw << edgeSigns << quad.xs() << quad.ys();
590             } else {
591                 vw << skvx::shuffle<2,1,0,3>(edgeSigns)  // swap left and right AA bits
592                    << skvx::shuffle<1,0,3,2>(quad.xs())  // swap TL with TR, and BL with BR
593                    << skvx::shuffle<1,0,3,2>(quad.ys()); //   ""
594             }
595         } else {
596             const Shape& shape = params.geometry().shape();
597             // Filled lines are empty by definition, so they shouldn't have been recorded
598             SkASSERT(!shape.isLine());
599 
600             if (shape.isRect() || (shape.isRRect() && shape.rrect().isRect())) {
601                 // Rectangles (or rectangles embedded in an SkRRect) are converted to the
602                 // quadrilateral case, but with all edges anti-aliased (== -1).
603                 skvx::float4 ltrb = bounds.ltrb();
604                 vw << /*edge flags*/ skvx::float4(-1.f)
605                    << /*xs*/ skvx::shuffle<0,2,2,0>(ltrb)
606                    << /*ys*/ skvx::shuffle<1,1,3,3>(ltrb);
607             } else {
608                 // A filled rounded rectangle, so make sure at least one corner radii > 0 or the
609                 // shader won't detect it as a rounded rect.
610                 SkASSERT(any(load_x_radii(shape.rrect()) > 0.f));
611 
612                 vw << load_x_radii(shape.rrect()) << load_y_radii(shape.rrect()) << bounds.ltrb();
613             }
614         }
615     }
616 
617     if (opposite_insets_intersect(params.geometry(), strokeInset, aaRadius)) {
618         aaRadius = kComplexAAInsets;
619         if (centerWeight == kStrokeInterior) {
620             centerWeight = kFilledStrokeInterior;
621         }
622     }
623 
624     // All instance types share the remaining instance attribute definitions
625     const SkM44& m = params.transform().matrix();
626     auto center = params.geometry().isEdgeAAQuad() ? quad_center(params.geometry().edgeAAQuad())
627                                                    : bounds.center();
628     vw << center << centerWeight << aaRadius
629        << params.order().depthAsFloat()
630        << ssboIndices
631        << m.rc(0,0) << m.rc(1,0) << m.rc(3,0)  // mat0
632        << m.rc(0,1) << m.rc(1,1) << m.rc(3,1)  // mat1
633        << m.rc(0,3) << m.rc(1,3) << m.rc(3,3); // mat2
634 }
635 
writeUniformsAndTextures(const DrawParams &,PipelineDataGatherer *) const636 void AnalyticRRectRenderStep::writeUniformsAndTextures(const DrawParams&,
637                                                        PipelineDataGatherer*) const {
638     // All data is uploaded as instance attributes, so no uniforms are needed.
639 }
640 
641 }  // namespace skgpu::graphite
642