xref: /aosp_15_r20/external/ComputeLibrary/src/core/CL/kernels/CLComparisonKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/CL/kernels/CLComparisonKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/ICLTensor.h"
28 #include "src/core/CL/CLValidate.h"
29 #include "src/core/helpers/AutoConfiguration.h"
30 #include "src/core/helpers/WindowHelpers.h"
31 #include "support/StringSupport.h"
32 
33 #include <map>
34 
35 namespace arm_compute
36 {
37 namespace
38 {
39 // Create supported comparisons map
40 const std::map<ComparisonOperation, std::string> supported_comparison_ops =
41 {
42     { ComparisonOperation::Equal, "EQUAL" },
43     { ComparisonOperation::NotEqual, "NOTEQUAL" },
44     { ComparisonOperation::Greater, "GREATER" },
45     { ComparisonOperation::GreaterEqual, "GREATEREQUAL" },
46     { ComparisonOperation::Less, "LESS" },
47     { ComparisonOperation::LessEqual, "LESSEQUAL" },
48 };
49 
calculate_num_elems_processed_per_iteration(const ITensorInfo & input)50 int calculate_num_elems_processed_per_iteration(const ITensorInfo &input)
51 {
52     return 16 / input.element_size();
53 }
54 
validate_arguments(const ITensorInfo & input1,const ITensorInfo & input2,const ITensorInfo & output,ComparisonOperation operation)55 Status validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output, ComparisonOperation operation)
56 {
57     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&input1);
58     ARM_COMPUTE_RETURN_ERROR_ON(input1.data_type() == DataType::UNKNOWN);
59     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &input2);
60     ARM_COMPUTE_RETURN_ERROR_ON(supported_comparison_ops.count(operation) == 0);
61 
62     const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape());
63     ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
64 
65     // Validate in case of configured output
66     if(output.total_size() > 0)
67     {
68         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output, 1, DataType::U8);
69         ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0),
70                                         "Wrong shape for output");
71     }
72 
73     return Status{};
74 }
75 
validate_and_configure_window(ITensorInfo & input1,ITensorInfo & input2,ITensorInfo & output)76 std::pair<Status, Window> validate_and_configure_window(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output)
77 {
78     const TensorShape &out_shape                         = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape());
79     const unsigned int num_elems_processed_per_iteration = calculate_num_elems_processed_per_iteration(input1);
80 
81     // Auto initialize output if not initialized
82     auto_init_if_empty(output, out_shape, 1, DataType::U8, QuantizationInfo());
83 
84     Window win        = calculate_max_window(out_shape, Steps(num_elems_processed_per_iteration));
85     Window win_input1 = win.broadcast_if_dimension_le_one(input1);
86     Window win_input2 = win.broadcast_if_dimension_le_one(input2);
87 
88     AccessWindowHorizontal input1_access(&input1, 0, num_elems_processed_per_iteration);
89     AccessWindowHorizontal input2_access(&input2, 0, num_elems_processed_per_iteration);
90     AccessWindowHorizontal output_access(&output, 0, num_elems_processed_per_iteration);
91 
92     bool window_changed = update_window_and_padding(win_input1, input1_access)
93                           || update_window_and_padding(win_input2, input2_access)
94                           || update_window_and_padding(win, output_access);
95 
96     Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
97     return std::make_pair(err, win);
98 }
99 } // namespace
100 
CLComparisonKernel()101 CLComparisonKernel::CLComparisonKernel()
102     : _input1(nullptr), _input2(nullptr), _output(nullptr)
103 {
104     _type = CLKernelType::ELEMENTWISE;
105 }
106 
configure(const ICLTensor * input1,const ICLTensor * input2,ICLTensor * output,ComparisonOperation operation)107 void CLComparisonKernel::configure(const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, ComparisonOperation operation)
108 {
109     configure(CLKernelLibrary::get().get_compile_context(), input1, input2, output, operation);
110 }
111 
configure(const CLCompileContext & compile_context,const ICLTensor * input1,const ICLTensor * input2,ICLTensor * output,ComparisonOperation operation)112 void CLComparisonKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, ComparisonOperation operation)
113 {
114     ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
115     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info(), operation));
116 
117     // Configure kernel window
118     auto win_config = validate_and_configure_window(*input1->info(), *input2->info(), *output->info());
119     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
120 
121     _input1 = input1;
122     _input2 = input2;
123     _output = output;
124 
125     const std::string &operation_name = supported_comparison_ops.at(operation);
126     std::string        kernel_name    = "compare_" + lower_string(operation_name);
127 
128     // Set kernel build options
129     std::set<std::string> build_opts;
130     build_opts.emplace("-DDATA_TYPE=" + get_cl_type_from_data_type(input1->info()->data_type()));
131     build_opts.emplace("-DVEC_SIZE=" + support::cpp11::to_string(calculate_num_elems_processed_per_iteration(*input1->info())));
132     build_opts.emplace("-DOP=" + operation_name);
133     build_opts.emplace("-DOP_NAME=" + lower_string(operation_name));
134     if(is_data_type_quantized(input1->info()->data_type()))
135     {
136         const UniformQuantizationInfo iq1_info = input1->info()->quantization_info().uniform();
137         const UniformQuantizationInfo iq2_info = input2->info()->quantization_info().uniform();
138 
139         build_opts.emplace("-DOFFSET_IN1=" + support::cpp11::to_string(iq1_info.offset));
140         build_opts.emplace("-DOFFSET_IN2=" + support::cpp11::to_string(iq2_info.offset));
141         build_opts.emplace("-DSCALE_IN1=" + float_to_string_with_full_precision(iq1_info.scale));
142         build_opts.emplace("-DSCALE_IN2=" + float_to_string_with_full_precision(iq2_info.scale));
143         kernel_name += "_quantized";
144     }
145 
146     // Create kernel
147     _kernel = create_kernel(compile_context, kernel_name, build_opts);
148 
149     ICLKernel::configure_internal(win_config.second);
150 
151     // Set config_id for enabling LWS tuning
152     _config_id = kernel_name;
153     _config_id += "_";
154     _config_id += lower_string(string_from_data_type(input1->info()->data_type()));
155     _config_id += "_";
156     _config_id += support::cpp11::to_string(output->info()->dimension(0));
157     _config_id += "_";
158     _config_id += support::cpp11::to_string(output->info()->dimension(1));
159     _config_id += lower_string(string_from_data_layout(input1->info()->data_layout()));
160 }
161 
validate(const ITensorInfo * input1,const ITensorInfo * input2,const ITensorInfo * output,ComparisonOperation operation)162 Status CLComparisonKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ComparisonOperation operation)
163 {
164     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
165 
166     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output, operation));
167     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(*input1->clone(), *input2->clone(), *output->clone()).first);
168 
169     return Status{};
170 }
171 
run(const Window & window,cl::CommandQueue & queue)172 void CLComparisonKernel::run(const Window &window, cl::CommandQueue &queue)
173 {
174     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
175     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
176 
177     const TensorShape &in_shape1 = _input1->info()->tensor_shape();
178     const TensorShape &in_shape2 = _input2->info()->tensor_shape();
179     const TensorShape &out_shape = _output->info()->tensor_shape();
180 
181     bool       can_collapse = true;
182     const bool is_vector    = in_shape1.num_dimensions() == 1 || in_shape2.num_dimensions() == 1;
183     if(std::min(in_shape1.total_size(), in_shape2.total_size()) > 1 && !is_vector)
184     {
185         can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ);
186         for(size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); d++)
187         {
188             can_collapse = (in_shape1[d] == in_shape2[d]);
189         }
190     }
191 
192     bool   has_collapsed = false;
193     Window collapsed     = can_collapse ? window.collapse_if_possible(ICLKernel::window(), Window::DimZ, &has_collapsed) : window;
194 
195     const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1;
196     const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2;
197 
198     Window slice        = collapsed.first_slice_window_3D();
199     Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed);
200     Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed);
201 
202     do
203     {
204         unsigned int idx = 0;
205 
206         add_3D_tensor_argument(idx, _input1, slice_input1);
207         add_3D_tensor_argument(idx, _input2, slice_input2);
208         add_3D_tensor_argument(idx, _output, slice);
209 
210         enqueue(queue, *this, slice, lws_hint());
211 
212         ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input1));
213         ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input2));
214     }
215     while(collapsed.slide_window_slice_3D(slice));
216 }
217 
border_size() const218 BorderSize CLComparisonKernel::border_size() const
219 {
220     const int num_elems_processed_per_iteration = calculate_num_elems_processed_per_iteration(*_input1->info());
221 
222     const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0));
223     const unsigned int border        = std::min<unsigned int>(num_elems_processed_per_iteration - 1U, replicateSize);
224     return BorderSize{ 0, border, 0, 0 };
225 }
226 } // namespace arm_compute
227