1# SPDX-License-Identifier: GPL-2.0
2# Select 32 or 64 bit
3config 64BIT
4	bool "64-bit kernel" if "$(ARCH)" = "x86"
5	default "$(ARCH)" != "i386"
6	help
7	  Say yes to build a 64-bit kernel - formerly known as x86_64
8	  Say no to build a 32-bit kernel - formerly known as i386
9
10config X86_32
11	def_bool y
12	depends on !64BIT
13	# Options that are inherently 32-bit kernel only:
14	select ARCH_WANT_IPC_PARSE_VERSION
15	select CLKSRC_I8253
16	select CLONE_BACKWARDS
17	select GENERIC_VDSO_32
18	select HAVE_DEBUG_STACKOVERFLOW
19	select KMAP_LOCAL
20	select MODULES_USE_ELF_REL
21	select OLD_SIGACTION
22	select ARCH_SPLIT_ARG64
23
24config X86_64
25	def_bool y
26	depends on 64BIT
27	# Options that are inherently 64-bit kernel only:
28	select ARCH_HAS_GIGANTIC_PAGE
29	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
30	select ARCH_SUPPORTS_PER_VMA_LOCK
31	select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE
32	select HAVE_ARCH_SOFT_DIRTY
33	select MODULES_USE_ELF_RELA
34	select NEED_DMA_MAP_STATE
35	select SWIOTLB
36	select ARCH_HAS_ELFCORE_COMPAT
37	select ZONE_DMA32
38	select EXECMEM if DYNAMIC_FTRACE
39
40config FORCE_DYNAMIC_FTRACE
41	def_bool y
42	depends on X86_32
43	depends on FUNCTION_TRACER
44	select DYNAMIC_FTRACE
45	help
46	  We keep the static function tracing (!DYNAMIC_FTRACE) around
47	  in order to test the non static function tracing in the
48	  generic code, as other architectures still use it. But we
49	  only need to keep it around for x86_64. No need to keep it
50	  for x86_32. For x86_32, force DYNAMIC_FTRACE.
51#
52# Arch settings
53#
54# ( Note that options that are marked 'if X86_64' could in principle be
55#   ported to 32-bit as well. )
56#
57config X86
58	def_bool y
59	#
60	# Note: keep this list sorted alphabetically
61	#
62	select ACPI_LEGACY_TABLES_LOOKUP	if ACPI
63	select ACPI_SYSTEM_POWER_STATES_SUPPORT	if ACPI
64	select ACPI_HOTPLUG_CPU			if ACPI_PROCESSOR && HOTPLUG_CPU
65	select ARCH_32BIT_OFF_T			if X86_32
66	select ARCH_CLOCKSOURCE_INIT
67	select ARCH_CONFIGURES_CPU_MITIGATIONS
68	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
69	select ARCH_ENABLE_HUGEPAGE_MIGRATION if X86_64 && HUGETLB_PAGE && MIGRATION
70	select ARCH_ENABLE_MEMORY_HOTPLUG if X86_64
71	select ARCH_ENABLE_MEMORY_HOTREMOVE if MEMORY_HOTPLUG
72	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if (PGTABLE_LEVELS > 2) && (X86_64 || X86_PAE)
73	select ARCH_ENABLE_THP_MIGRATION if X86_64 && TRANSPARENT_HUGEPAGE
74	select ARCH_HAS_ACPI_TABLE_UPGRADE	if ACPI
75	select ARCH_HAS_CACHE_LINE_SIZE
76	select ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
77	select ARCH_HAS_CPU_FINALIZE_INIT
78	select ARCH_HAS_CPU_PASID		if IOMMU_SVA
79	select ARCH_HAS_CRC32
80	select ARCH_HAS_CRC_T10DIF		if X86_64
81	select ARCH_HAS_CURRENT_STACK_POINTER
82	select ARCH_HAS_DEBUG_VIRTUAL
83	select ARCH_HAS_DEBUG_VM_PGTABLE	if !X86_PAE
84	select ARCH_HAS_DEVMEM_IS_ALLOWED
85	select ARCH_HAS_DMA_OPS			if GART_IOMMU || XEN
86	select ARCH_HAS_EARLY_DEBUG		if KGDB
87	select ARCH_HAS_ELF_RANDOMIZE
88	select ARCH_HAS_FAST_MULTIPLIER
89	select ARCH_HAS_FORTIFY_SOURCE
90	select ARCH_HAS_GCOV_PROFILE_ALL
91	select ARCH_HAS_KCOV			if X86_64
92	select ARCH_HAS_KERNEL_FPU_SUPPORT
93	select ARCH_HAS_MEM_ENCRYPT
94	select ARCH_HAS_MEMBARRIER_SYNC_CORE
95	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
96	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
97	select ARCH_HAS_PMEM_API		if X86_64
98	select ARCH_HAS_PREEMPT_LAZY
99	select ARCH_HAS_PTE_DEVMAP		if X86_64
100	select ARCH_HAS_PTE_SPECIAL
101	select ARCH_HAS_HW_PTE_YOUNG
102	select ARCH_HAS_NONLEAF_PMD_YOUNG	if PGTABLE_LEVELS > 2
103	select ARCH_HAS_UACCESS_FLUSHCACHE	if X86_64
104	select ARCH_HAS_COPY_MC			if X86_64
105	select ARCH_HAS_SET_MEMORY
106	select ARCH_HAS_SET_DIRECT_MAP
107	select ARCH_HAS_STRICT_KERNEL_RWX
108	select ARCH_HAS_STRICT_MODULE_RWX
109	select ARCH_HAS_SYNC_CORE_BEFORE_USERMODE
110	select ARCH_HAS_SYSCALL_WRAPPER
111	select ARCH_HAS_UBSAN
112	select ARCH_HAS_DEBUG_WX
113	select ARCH_HAS_ZONE_DMA_SET if EXPERT
114	select ARCH_HAVE_NMI_SAFE_CMPXCHG
115	select ARCH_HAVE_EXTRA_ELF_NOTES
116	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
117	select ARCH_MIGHT_HAVE_ACPI_PDC		if ACPI
118	select ARCH_MIGHT_HAVE_PC_PARPORT
119	select ARCH_MIGHT_HAVE_PC_SERIO
120	select ARCH_STACKWALK
121	select ARCH_SUPPORTS_ACPI
122	select ARCH_SUPPORTS_ATOMIC_RMW
123	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
124	select ARCH_SUPPORTS_PAGE_TABLE_CHECK	if X86_64
125	select ARCH_SUPPORTS_NUMA_BALANCING	if X86_64
126	select ARCH_SUPPORTS_KMAP_LOCAL_FORCE_MAP	if NR_CPUS <= 4096
127	select ARCH_SUPPORTS_CFI_CLANG		if X86_64
128	select ARCH_USES_CFI_TRAPS		if X86_64 && CFI_CLANG
129	select ARCH_SUPPORTS_LTO_CLANG
130	select ARCH_SUPPORTS_LTO_CLANG_THIN
131	select ARCH_SUPPORTS_RT
132	select ARCH_SUPPORTS_AUTOFDO_CLANG
133	select ARCH_SUPPORTS_PROPELLER_CLANG    if X86_64
134	select ARCH_USE_BUILTIN_BSWAP
135	select ARCH_USE_CMPXCHG_LOCKREF		if X86_CMPXCHG64
136	select ARCH_USE_MEMTEST
137	select ARCH_USE_QUEUED_RWLOCKS
138	select ARCH_USE_QUEUED_SPINLOCKS
139	select ARCH_USE_SYM_ANNOTATIONS
140	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
141	select ARCH_WANT_DEFAULT_BPF_JIT	if X86_64
142	select ARCH_WANTS_DYNAMIC_TASK_STRUCT
143	select ARCH_WANTS_NO_INSTR
144	select ARCH_WANT_GENERAL_HUGETLB
145	select ARCH_WANT_HUGE_PMD_SHARE
146	select ARCH_WANT_LD_ORPHAN_WARN
147	select ARCH_WANT_OPTIMIZE_DAX_VMEMMAP	if X86_64
148	select ARCH_WANT_OPTIMIZE_HUGETLB_VMEMMAP	if X86_64
149	select ARCH_WANTS_THP_SWAP		if X86_64
150	select ARCH_HAS_PARANOID_L1D_FLUSH
151	select BUILDTIME_TABLE_SORT
152	select CLKEVT_I8253
153	select CLOCKSOURCE_WATCHDOG
154	# Word-size accesses may read uninitialized data past the trailing \0
155	# in strings and cause false KMSAN reports.
156	select DCACHE_WORD_ACCESS		if !KMSAN
157	select DYNAMIC_SIGFRAME
158	select EDAC_ATOMIC_SCRUB
159	select EDAC_SUPPORT
160	select GENERIC_CLOCKEVENTS_BROADCAST	if X86_64 || (X86_32 && X86_LOCAL_APIC)
161	select GENERIC_CLOCKEVENTS_BROADCAST_IDLE	if GENERIC_CLOCKEVENTS_BROADCAST
162	select GENERIC_CLOCKEVENTS_MIN_ADJUST
163	select GENERIC_CMOS_UPDATE
164	select GENERIC_CPU_AUTOPROBE
165	select GENERIC_CPU_DEVICES
166	select GENERIC_CPU_VULNERABILITIES
167	select GENERIC_EARLY_IOREMAP
168	select GENERIC_ENTRY
169	select GENERIC_IOMAP
170	select GENERIC_IRQ_EFFECTIVE_AFF_MASK	if SMP
171	select GENERIC_IRQ_MATRIX_ALLOCATOR	if X86_LOCAL_APIC
172	select GENERIC_IRQ_MIGRATION		if SMP
173	select GENERIC_IRQ_PROBE
174	select GENERIC_IRQ_RESERVATION_MODE
175	select GENERIC_IRQ_SHOW
176	select GENERIC_PENDING_IRQ		if SMP
177	select GENERIC_PTDUMP
178	select GENERIC_SMP_IDLE_THREAD
179	select GENERIC_TIME_VSYSCALL
180	select GENERIC_GETTIMEOFDAY
181	select GENERIC_VDSO_TIME_NS
182	select GENERIC_VDSO_OVERFLOW_PROTECT
183	select GUP_GET_PXX_LOW_HIGH		if X86_PAE
184	select HARDIRQS_SW_RESEND
185	select HARDLOCKUP_CHECK_TIMESTAMP	if X86_64
186	select HAS_IOPORT
187	select HAVE_ACPI_APEI			if ACPI
188	select HAVE_ACPI_APEI_NMI		if ACPI
189	select HAVE_ALIGNED_STRUCT_PAGE
190	select HAVE_ARCH_AUDITSYSCALL
191	select HAVE_ARCH_HUGE_VMAP		if X86_64 || X86_PAE
192	select HAVE_ARCH_HUGE_VMALLOC		if X86_64
193	select HAVE_ARCH_JUMP_LABEL
194	select HAVE_ARCH_JUMP_LABEL_RELATIVE
195	select HAVE_ARCH_KASAN			if X86_64
196	select HAVE_ARCH_KASAN_VMALLOC		if X86_64
197	select HAVE_ARCH_KFENCE
198	select HAVE_ARCH_KMSAN			if X86_64
199	select HAVE_ARCH_KGDB
200	select HAVE_ARCH_MMAP_RND_BITS		if MMU
201	select HAVE_ARCH_MMAP_RND_COMPAT_BITS	if MMU && COMPAT
202	select HAVE_ARCH_COMPAT_MMAP_BASES	if MMU && COMPAT
203	select HAVE_ARCH_PREL32_RELOCATIONS
204	select HAVE_ARCH_SECCOMP_FILTER
205	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
206	select HAVE_ARCH_STACKLEAK
207	select HAVE_ARCH_TRACEHOOK
208	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
209	select HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD if X86_64
210	select HAVE_ARCH_USERFAULTFD_WP         if X86_64 && USERFAULTFD
211	select HAVE_ARCH_USERFAULTFD_MINOR	if X86_64 && USERFAULTFD
212	select HAVE_ARCH_VMAP_STACK		if X86_64
213	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
214	select HAVE_ARCH_WITHIN_STACK_FRAMES
215	select HAVE_ASM_MODVERSIONS
216	select HAVE_CMPXCHG_DOUBLE
217	select HAVE_CMPXCHG_LOCAL
218	select HAVE_CONTEXT_TRACKING_USER		if X86_64
219	select HAVE_CONTEXT_TRACKING_USER_OFFSTACK	if HAVE_CONTEXT_TRACKING_USER
220	select HAVE_C_RECORDMCOUNT
221	select HAVE_OBJTOOL_MCOUNT		if HAVE_OBJTOOL
222	select HAVE_OBJTOOL_NOP_MCOUNT		if HAVE_OBJTOOL_MCOUNT
223	select HAVE_BUILDTIME_MCOUNT_SORT
224	select HAVE_DEBUG_KMEMLEAK
225	select HAVE_DMA_CONTIGUOUS
226	select HAVE_DYNAMIC_FTRACE
227	select HAVE_DYNAMIC_FTRACE_WITH_REGS
228	select HAVE_DYNAMIC_FTRACE_WITH_ARGS	if X86_64
229	select HAVE_FTRACE_REGS_HAVING_PT_REGS	if X86_64
230	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
231	select HAVE_SAMPLE_FTRACE_DIRECT	if X86_64
232	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI	if X86_64
233	select HAVE_EBPF_JIT
234	select HAVE_EFFICIENT_UNALIGNED_ACCESS
235	select HAVE_EISA			if X86_32
236	select HAVE_EXIT_THREAD
237	select HAVE_GUP_FAST
238	select HAVE_FENTRY			if X86_64 || DYNAMIC_FTRACE
239	select HAVE_FTRACE_GRAPH_FUNC		if HAVE_FUNCTION_GRAPH_TRACER
240	select HAVE_FTRACE_MCOUNT_RECORD
241	select HAVE_FUNCTION_GRAPH_FREGS	if HAVE_FUNCTION_GRAPH_TRACER
242	select HAVE_FUNCTION_GRAPH_TRACER	if X86_32 || (X86_64 && DYNAMIC_FTRACE)
243	select HAVE_FUNCTION_TRACER
244	select HAVE_GCC_PLUGINS
245	select HAVE_HW_BREAKPOINT
246	select HAVE_IOREMAP_PROT
247	select HAVE_IRQ_EXIT_ON_IRQ_STACK	if X86_64
248	select HAVE_IRQ_TIME_ACCOUNTING
249	select HAVE_JUMP_LABEL_HACK		if HAVE_OBJTOOL
250	select HAVE_KERNEL_BZIP2
251	select HAVE_KERNEL_GZIP
252	select HAVE_KERNEL_LZ4
253	select HAVE_KERNEL_LZMA
254	select HAVE_KERNEL_LZO
255	select HAVE_KERNEL_XZ
256	select HAVE_KERNEL_ZSTD
257	select HAVE_KPROBES
258	select HAVE_KPROBES_ON_FTRACE
259	select HAVE_FUNCTION_ERROR_INJECTION
260	select HAVE_KRETPROBES
261	select HAVE_RETHOOK
262	select HAVE_LIVEPATCH			if X86_64
263	select HAVE_MIXED_BREAKPOINTS_REGS
264	select HAVE_MOD_ARCH_SPECIFIC
265	select HAVE_MOVE_PMD
266	select HAVE_MOVE_PUD
267	select HAVE_NOINSTR_HACK		if HAVE_OBJTOOL
268	select HAVE_NMI
269	select HAVE_NOINSTR_VALIDATION		if HAVE_OBJTOOL
270	select HAVE_OBJTOOL			if X86_64
271	select HAVE_OPTPROBES
272	select HAVE_PAGE_SIZE_4KB
273	select HAVE_PCSPKR_PLATFORM
274	select HAVE_PERF_EVENTS
275	select HAVE_PERF_EVENTS_NMI
276	select HAVE_HARDLOCKUP_DETECTOR_PERF	if PERF_EVENTS && HAVE_PERF_EVENTS_NMI
277	select HAVE_PCI
278	select HAVE_PERF_REGS
279	select HAVE_PERF_USER_STACK_DUMP
280	select MMU_GATHER_RCU_TABLE_FREE	if PARAVIRT
281	select MMU_GATHER_MERGE_VMAS
282	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
283	select HAVE_REGS_AND_STACK_ACCESS_API
284	select HAVE_RELIABLE_STACKTRACE		if UNWINDER_ORC || STACK_VALIDATION
285	select HAVE_FUNCTION_ARG_ACCESS_API
286	select HAVE_SETUP_PER_CPU_AREA
287	select HAVE_SOFTIRQ_ON_OWN_STACK
288	select HAVE_STACKPROTECTOR		if CC_HAS_SANE_STACKPROTECTOR
289	select HAVE_STACK_VALIDATION		if HAVE_OBJTOOL
290	select HAVE_STATIC_CALL
291	select HAVE_STATIC_CALL_INLINE		if HAVE_OBJTOOL
292	select HAVE_PREEMPT_DYNAMIC_CALL
293	select HAVE_RSEQ
294	select HAVE_RUST			if X86_64
295	select HAVE_SYSCALL_TRACEPOINTS
296	select HAVE_UACCESS_VALIDATION		if HAVE_OBJTOOL
297	select HAVE_UNSTABLE_SCHED_CLOCK
298	select HAVE_USER_RETURN_NOTIFIER
299	select HAVE_GENERIC_VDSO
300	select VDSO_GETRANDOM			if X86_64
301	select HOTPLUG_PARALLEL			if SMP && X86_64
302	select HOTPLUG_SMT			if SMP
303	select HOTPLUG_SPLIT_STARTUP		if SMP && X86_32
304	select IRQ_FORCED_THREADING
305	select LOCK_MM_AND_FIND_VMA
306	select NEED_PER_CPU_EMBED_FIRST_CHUNK
307	select NEED_PER_CPU_PAGE_FIRST_CHUNK
308	select NEED_SG_DMA_LENGTH
309	select NUMA_MEMBLKS			if NUMA
310	select PCI_DOMAINS			if PCI
311	select PCI_LOCKLESS_CONFIG		if PCI
312	select PERF_EVENTS
313	select RTC_LIB
314	select RTC_MC146818_LIB
315	select SPARSE_IRQ
316	select SYSCTL_EXCEPTION_TRACE
317	select THREAD_INFO_IN_TASK
318	select TRACE_IRQFLAGS_SUPPORT
319	select TRACE_IRQFLAGS_NMI_SUPPORT
320	select USER_STACKTRACE_SUPPORT
321	select HAVE_ARCH_KCSAN			if X86_64
322	select PROC_PID_ARCH_STATUS		if PROC_FS
323	select HAVE_ARCH_NODE_DEV_GROUP		if X86_SGX
324	select FUNCTION_ALIGNMENT_16B		if X86_64 || X86_ALIGNMENT_16
325	select FUNCTION_ALIGNMENT_4B
326	imply IMA_SECURE_AND_OR_TRUSTED_BOOT    if EFI
327	select HAVE_DYNAMIC_FTRACE_NO_PATCHABLE
328	select ARCH_SUPPORTS_PT_RECLAIM		if X86_64
329
330config INSTRUCTION_DECODER
331	def_bool y
332	depends on KPROBES || PERF_EVENTS || UPROBES
333
334config OUTPUT_FORMAT
335	string
336	default "elf32-i386" if X86_32
337	default "elf64-x86-64" if X86_64
338
339config LOCKDEP_SUPPORT
340	def_bool y
341
342config STACKTRACE_SUPPORT
343	def_bool y
344
345config MMU
346	def_bool y
347
348config ARCH_MMAP_RND_BITS_MIN
349	default 28 if 64BIT
350	default 8
351
352config ARCH_MMAP_RND_BITS_MAX
353	default 32 if 64BIT
354	default 16
355
356config ARCH_MMAP_RND_COMPAT_BITS_MIN
357	default 8
358
359config ARCH_MMAP_RND_COMPAT_BITS_MAX
360	default 16
361
362config SBUS
363	bool
364
365config GENERIC_ISA_DMA
366	def_bool y
367	depends on ISA_DMA_API
368
369config GENERIC_CSUM
370	bool
371	default y if KMSAN || KASAN
372
373config GENERIC_BUG
374	def_bool y
375	depends on BUG
376	select GENERIC_BUG_RELATIVE_POINTERS if X86_64
377
378config GENERIC_BUG_RELATIVE_POINTERS
379	bool
380
381config ARCH_MAY_HAVE_PC_FDC
382	def_bool y
383	depends on ISA_DMA_API
384
385config GENERIC_CALIBRATE_DELAY
386	def_bool y
387
388config ARCH_HAS_CPU_RELAX
389	def_bool y
390
391config ARCH_HIBERNATION_POSSIBLE
392	def_bool y
393
394config ARCH_SUSPEND_POSSIBLE
395	def_bool y
396
397config AUDIT_ARCH
398	def_bool y if X86_64
399
400config KASAN_SHADOW_OFFSET
401	hex
402	depends on KASAN
403	default 0xdffffc0000000000
404
405config HAVE_INTEL_TXT
406	def_bool y
407	depends on INTEL_IOMMU && ACPI
408
409config X86_64_SMP
410	def_bool y
411	depends on X86_64 && SMP
412
413config ARCH_SUPPORTS_UPROBES
414	def_bool y
415
416config FIX_EARLYCON_MEM
417	def_bool y
418
419config DYNAMIC_PHYSICAL_MASK
420	bool
421
422config PGTABLE_LEVELS
423	int
424	default 5 if X86_5LEVEL
425	default 4 if X86_64
426	default 3 if X86_PAE
427	default 2
428
429config CC_HAS_SANE_STACKPROTECTOR
430	bool
431	default $(success,$(srctree)/scripts/gcc-x86_64-has-stack-protector.sh $(CC) $(CLANG_FLAGS)) if 64BIT
432	default $(success,$(srctree)/scripts/gcc-x86_32-has-stack-protector.sh $(CC) $(CLANG_FLAGS))
433	help
434	  We have to make sure stack protector is unconditionally disabled if
435	  the compiler produces broken code or if it does not let us control
436	  the segment on 32-bit kernels.
437
438menu "Processor type and features"
439
440config SMP
441	bool "Symmetric multi-processing support"
442	help
443	  This enables support for systems with more than one CPU. If you have
444	  a system with only one CPU, say N. If you have a system with more
445	  than one CPU, say Y.
446
447	  If you say N here, the kernel will run on uni- and multiprocessor
448	  machines, but will use only one CPU of a multiprocessor machine. If
449	  you say Y here, the kernel will run on many, but not all,
450	  uniprocessor machines. On a uniprocessor machine, the kernel
451	  will run faster if you say N here.
452
453	  Note that if you say Y here and choose architecture "586" or
454	  "Pentium" under "Processor family", the kernel will not work on 486
455	  architectures. Similarly, multiprocessor kernels for the "PPro"
456	  architecture may not work on all Pentium based boards.
457
458	  People using multiprocessor machines who say Y here should also say
459	  Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
460	  Management" code will be disabled if you say Y here.
461
462	  See also <file:Documentation/arch/x86/i386/IO-APIC.rst>,
463	  <file:Documentation/admin-guide/lockup-watchdogs.rst> and the SMP-HOWTO available at
464	  <http://www.tldp.org/docs.html#howto>.
465
466	  If you don't know what to do here, say N.
467
468config X86_X2APIC
469	bool "Support x2apic"
470	depends on X86_LOCAL_APIC && X86_64 && (IRQ_REMAP || HYPERVISOR_GUEST)
471	help
472	  This enables x2apic support on CPUs that have this feature.
473
474	  This allows 32-bit apic IDs (so it can support very large systems),
475	  and accesses the local apic via MSRs not via mmio.
476
477	  Some Intel systems circa 2022 and later are locked into x2APIC mode
478	  and can not fall back to the legacy APIC modes if SGX or TDX are
479	  enabled in the BIOS. They will boot with very reduced functionality
480	  without enabling this option.
481
482	  If you don't know what to do here, say N.
483
484config X86_POSTED_MSI
485	bool "Enable MSI and MSI-x delivery by posted interrupts"
486	depends on X86_64 && IRQ_REMAP
487	help
488	  This enables MSIs that are under interrupt remapping to be delivered as
489	  posted interrupts to the host kernel. Interrupt throughput can
490	  potentially be improved by coalescing CPU notifications during high
491	  frequency bursts.
492
493	  If you don't know what to do here, say N.
494
495config X86_MPPARSE
496	bool "Enable MPS table" if ACPI
497	default y
498	depends on X86_LOCAL_APIC
499	help
500	  For old smp systems that do not have proper acpi support. Newer systems
501	  (esp with 64bit cpus) with acpi support, MADT and DSDT will override it
502
503config X86_CPU_RESCTRL
504	bool "x86 CPU resource control support"
505	depends on X86 && (CPU_SUP_INTEL || CPU_SUP_AMD)
506	select KERNFS
507	select PROC_CPU_RESCTRL		if PROC_FS
508	help
509	  Enable x86 CPU resource control support.
510
511	  Provide support for the allocation and monitoring of system resources
512	  usage by the CPU.
513
514	  Intel calls this Intel Resource Director Technology
515	  (Intel(R) RDT). More information about RDT can be found in the
516	  Intel x86 Architecture Software Developer Manual.
517
518	  AMD calls this AMD Platform Quality of Service (AMD QoS).
519	  More information about AMD QoS can be found in the AMD64 Technology
520	  Platform Quality of Service Extensions manual.
521
522	  Say N if unsure.
523
524config X86_FRED
525	bool "Flexible Return and Event Delivery"
526	depends on X86_64
527	help
528	  When enabled, try to use Flexible Return and Event Delivery
529	  instead of the legacy SYSCALL/SYSENTER/IDT architecture for
530	  ring transitions and exception/interrupt handling if the
531	  system supports it.
532
533config X86_BIGSMP
534	bool "Support for big SMP systems with more than 8 CPUs"
535	depends on SMP && X86_32
536	help
537	  This option is needed for the systems that have more than 8 CPUs.
538
539config X86_EXTENDED_PLATFORM
540	bool "Support for extended (non-PC) x86 platforms"
541	default y
542	help
543	  If you disable this option then the kernel will only support
544	  standard PC platforms. (which covers the vast majority of
545	  systems out there.)
546
547	  If you enable this option then you'll be able to select support
548	  for the following non-PC x86 platforms, depending on the value of
549	  CONFIG_64BIT.
550
551	  32-bit platforms (CONFIG_64BIT=n):
552		Goldfish (Android emulator)
553		AMD Elan
554		RDC R-321x SoC
555		SGI 320/540 (Visual Workstation)
556		STA2X11-based (e.g. Northville)
557		Moorestown MID devices
558
559	  64-bit platforms (CONFIG_64BIT=y):
560		Numascale NumaChip
561		ScaleMP vSMP
562		SGI Ultraviolet
563
564	  If you have one of these systems, or if you want to build a
565	  generic distribution kernel, say Y here - otherwise say N.
566
567# This is an alphabetically sorted list of 64 bit extended platforms
568# Please maintain the alphabetic order if and when there are additions
569config X86_NUMACHIP
570	bool "Numascale NumaChip"
571	depends on X86_64
572	depends on X86_EXTENDED_PLATFORM
573	depends on NUMA
574	depends on SMP
575	depends on X86_X2APIC
576	depends on PCI_MMCONFIG
577	help
578	  Adds support for Numascale NumaChip large-SMP systems. Needed to
579	  enable more than ~168 cores.
580	  If you don't have one of these, you should say N here.
581
582config X86_VSMP
583	bool "ScaleMP vSMP"
584	select HYPERVISOR_GUEST
585	select PARAVIRT
586	depends on X86_64 && PCI
587	depends on X86_EXTENDED_PLATFORM
588	depends on SMP
589	help
590	  Support for ScaleMP vSMP systems.  Say 'Y' here if this kernel is
591	  supposed to run on these EM64T-based machines.  Only choose this option
592	  if you have one of these machines.
593
594config X86_UV
595	bool "SGI Ultraviolet"
596	depends on X86_64
597	depends on X86_EXTENDED_PLATFORM
598	depends on NUMA
599	depends on EFI
600	depends on KEXEC_CORE
601	depends on X86_X2APIC
602	depends on PCI
603	help
604	  This option is needed in order to support SGI Ultraviolet systems.
605	  If you don't have one of these, you should say N here.
606
607# Following is an alphabetically sorted list of 32 bit extended platforms
608# Please maintain the alphabetic order if and when there are additions
609
610config X86_GOLDFISH
611	bool "Goldfish (Virtual Platform)"
612	depends on X86_EXTENDED_PLATFORM
613	help
614	  Enable support for the Goldfish virtual platform used primarily
615	  for Android development. Unless you are building for the Android
616	  Goldfish emulator say N here.
617
618config X86_INTEL_CE
619	bool "CE4100 TV platform"
620	depends on PCI
621	depends on PCI_GODIRECT
622	depends on X86_IO_APIC
623	depends on X86_32
624	depends on X86_EXTENDED_PLATFORM
625	select X86_REBOOTFIXUPS
626	select OF
627	select OF_EARLY_FLATTREE
628	help
629	  Select for the Intel CE media processor (CE4100) SOC.
630	  This option compiles in support for the CE4100 SOC for settop
631	  boxes and media devices.
632
633config X86_INTEL_MID
634	bool "Intel MID platform support"
635	depends on X86_EXTENDED_PLATFORM
636	depends on X86_PLATFORM_DEVICES
637	depends on PCI
638	depends on X86_64 || (PCI_GOANY && X86_32)
639	depends on X86_IO_APIC
640	select I2C
641	select DW_APB_TIMER
642	select INTEL_SCU_PCI
643	help
644	  Select to build a kernel capable of supporting Intel MID (Mobile
645	  Internet Device) platform systems which do not have the PCI legacy
646	  interfaces. If you are building for a PC class system say N here.
647
648	  Intel MID platforms are based on an Intel processor and chipset which
649	  consume less power than most of the x86 derivatives.
650
651config X86_INTEL_QUARK
652	bool "Intel Quark platform support"
653	depends on X86_32
654	depends on X86_EXTENDED_PLATFORM
655	depends on X86_PLATFORM_DEVICES
656	depends on X86_TSC
657	depends on PCI
658	depends on PCI_GOANY
659	depends on X86_IO_APIC
660	select IOSF_MBI
661	select INTEL_IMR
662	select COMMON_CLK
663	help
664	  Select to include support for Quark X1000 SoC.
665	  Say Y here if you have a Quark based system such as the Arduino
666	  compatible Intel Galileo.
667
668config X86_INTEL_LPSS
669	bool "Intel Low Power Subsystem Support"
670	depends on X86 && ACPI && PCI
671	select COMMON_CLK
672	select PINCTRL
673	select IOSF_MBI
674	help
675	  Select to build support for Intel Low Power Subsystem such as
676	  found on Intel Lynxpoint PCH. Selecting this option enables
677	  things like clock tree (common clock framework) and pincontrol
678	  which are needed by the LPSS peripheral drivers.
679
680config X86_AMD_PLATFORM_DEVICE
681	bool "AMD ACPI2Platform devices support"
682	depends on ACPI
683	select COMMON_CLK
684	select PINCTRL
685	help
686	  Select to interpret AMD specific ACPI device to platform device
687	  such as I2C, UART, GPIO found on AMD Carrizo and later chipsets.
688	  I2C and UART depend on COMMON_CLK to set clock. GPIO driver is
689	  implemented under PINCTRL subsystem.
690
691config IOSF_MBI
692	tristate "Intel SoC IOSF Sideband support for SoC platforms"
693	depends on PCI
694	help
695	  This option enables sideband register access support for Intel SoC
696	  platforms. On these platforms the IOSF sideband is used in lieu of
697	  MSR's for some register accesses, mostly but not limited to thermal
698	  and power. Drivers may query the availability of this device to
699	  determine if they need the sideband in order to work on these
700	  platforms. The sideband is available on the following SoC products.
701	  This list is not meant to be exclusive.
702	   - BayTrail
703	   - Braswell
704	   - Quark
705
706	  You should say Y if you are running a kernel on one of these SoC's.
707
708config IOSF_MBI_DEBUG
709	bool "Enable IOSF sideband access through debugfs"
710	depends on IOSF_MBI && DEBUG_FS
711	help
712	  Select this option to expose the IOSF sideband access registers (MCR,
713	  MDR, MCRX) through debugfs to write and read register information from
714	  different units on the SoC. This is most useful for obtaining device
715	  state information for debug and analysis. As this is a general access
716	  mechanism, users of this option would have specific knowledge of the
717	  device they want to access.
718
719	  If you don't require the option or are in doubt, say N.
720
721config X86_RDC321X
722	bool "RDC R-321x SoC"
723	depends on X86_32
724	depends on X86_EXTENDED_PLATFORM
725	select M486
726	select X86_REBOOTFIXUPS
727	help
728	  This option is needed for RDC R-321x system-on-chip, also known
729	  as R-8610-(G).
730	  If you don't have one of these chips, you should say N here.
731
732config X86_32_NON_STANDARD
733	bool "Support non-standard 32-bit SMP architectures"
734	depends on X86_32 && SMP
735	depends on X86_EXTENDED_PLATFORM
736	help
737	  This option compiles in the bigsmp and STA2X11 default
738	  subarchitectures.  It is intended for a generic binary
739	  kernel. If you select them all, kernel will probe it one by
740	  one and will fallback to default.
741
742# Alphabetically sorted list of Non standard 32 bit platforms
743
744config X86_SUPPORTS_MEMORY_FAILURE
745	def_bool y
746	# MCE code calls memory_failure():
747	depends on X86_MCE
748	# On 32-bit this adds too big of NODES_SHIFT and we run out of page flags:
749	# On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH:
750	depends on X86_64 || !SPARSEMEM
751	select ARCH_SUPPORTS_MEMORY_FAILURE
752
753config STA2X11
754	bool "STA2X11 Companion Chip Support"
755	depends on X86_32_NON_STANDARD && PCI
756	select SWIOTLB
757	select MFD_STA2X11
758	select GPIOLIB
759	help
760	  This adds support for boards based on the STA2X11 IO-Hub,
761	  a.k.a. "ConneXt". The chip is used in place of the standard
762	  PC chipset, so all "standard" peripherals are missing. If this
763	  option is selected the kernel will still be able to boot on
764	  standard PC machines.
765
766config X86_32_IRIS
767	tristate "Eurobraille/Iris poweroff module"
768	depends on X86_32
769	help
770	  The Iris machines from EuroBraille do not have APM or ACPI support
771	  to shut themselves down properly.  A special I/O sequence is
772	  needed to do so, which is what this module does at
773	  kernel shutdown.
774
775	  This is only for Iris machines from EuroBraille.
776
777	  If unused, say N.
778
779config SCHED_OMIT_FRAME_POINTER
780	def_bool y
781	prompt "Single-depth WCHAN output"
782	depends on X86
783	help
784	  Calculate simpler /proc/<PID>/wchan values. If this option
785	  is disabled then wchan values will recurse back to the
786	  caller function. This provides more accurate wchan values,
787	  at the expense of slightly more scheduling overhead.
788
789	  If in doubt, say "Y".
790
791menuconfig HYPERVISOR_GUEST
792	bool "Linux guest support"
793	help
794	  Say Y here to enable options for running Linux under various hyper-
795	  visors. This option enables basic hypervisor detection and platform
796	  setup.
797
798	  If you say N, all options in this submenu will be skipped and
799	  disabled, and Linux guest support won't be built in.
800
801if HYPERVISOR_GUEST
802
803config PARAVIRT
804	bool "Enable paravirtualization code"
805	depends on HAVE_STATIC_CALL
806	help
807	  This changes the kernel so it can modify itself when it is run
808	  under a hypervisor, potentially improving performance significantly
809	  over full virtualization.  However, when run without a hypervisor
810	  the kernel is theoretically slower and slightly larger.
811
812config PARAVIRT_XXL
813	bool
814
815config PARAVIRT_DEBUG
816	bool "paravirt-ops debugging"
817	depends on PARAVIRT && DEBUG_KERNEL
818	help
819	  Enable to debug paravirt_ops internals.  Specifically, BUG if
820	  a paravirt_op is missing when it is called.
821
822config PARAVIRT_SPINLOCKS
823	bool "Paravirtualization layer for spinlocks"
824	depends on PARAVIRT && SMP
825	help
826	  Paravirtualized spinlocks allow a pvops backend to replace the
827	  spinlock implementation with something virtualization-friendly
828	  (for example, block the virtual CPU rather than spinning).
829
830	  It has a minimal impact on native kernels and gives a nice performance
831	  benefit on paravirtualized KVM / Xen kernels.
832
833	  If you are unsure how to answer this question, answer Y.
834
835config X86_HV_CALLBACK_VECTOR
836	def_bool n
837
838source "arch/x86/xen/Kconfig"
839
840config KVM_GUEST
841	bool "KVM Guest support (including kvmclock)"
842	depends on PARAVIRT
843	select PARAVIRT_CLOCK
844	select ARCH_CPUIDLE_HALTPOLL
845	select X86_HV_CALLBACK_VECTOR
846	default y
847	help
848	  This option enables various optimizations for running under the KVM
849	  hypervisor. It includes a paravirtualized clock, so that instead
850	  of relying on a PIT (or probably other) emulation by the
851	  underlying device model, the host provides the guest with
852	  timing infrastructure such as time of day, and system time
853
854config ARCH_CPUIDLE_HALTPOLL
855	def_bool n
856	prompt "Disable host haltpoll when loading haltpoll driver"
857	help
858	  If virtualized under KVM, disable host haltpoll.
859
860config PVH
861	bool "Support for running PVH guests"
862	help
863	  This option enables the PVH entry point for guest virtual machines
864	  as specified in the x86/HVM direct boot ABI.
865
866config PARAVIRT_TIME_ACCOUNTING
867	bool "Paravirtual steal time accounting"
868	depends on PARAVIRT
869	help
870	  Select this option to enable fine granularity task steal time
871	  accounting. Time spent executing other tasks in parallel with
872	  the current vCPU is discounted from the vCPU power. To account for
873	  that, there can be a small performance impact.
874
875	  If in doubt, say N here.
876
877config PARAVIRT_CLOCK
878	bool
879
880config JAILHOUSE_GUEST
881	bool "Jailhouse non-root cell support"
882	depends on X86_64 && PCI
883	select X86_PM_TIMER
884	help
885	  This option allows to run Linux as guest in a Jailhouse non-root
886	  cell. You can leave this option disabled if you only want to start
887	  Jailhouse and run Linux afterwards in the root cell.
888
889config ACRN_GUEST
890	bool "ACRN Guest support"
891	depends on X86_64
892	select X86_HV_CALLBACK_VECTOR
893	help
894	  This option allows to run Linux as guest in the ACRN hypervisor. ACRN is
895	  a flexible, lightweight reference open-source hypervisor, built with
896	  real-time and safety-criticality in mind. It is built for embedded
897	  IOT with small footprint and real-time features. More details can be
898	  found in https://projectacrn.org/.
899
900config INTEL_TDX_GUEST
901	bool "Intel TDX (Trust Domain Extensions) - Guest Support"
902	depends on X86_64 && CPU_SUP_INTEL
903	depends on X86_X2APIC
904	depends on EFI_STUB
905	depends on PARAVIRT
906	select ARCH_HAS_CC_PLATFORM
907	select X86_MEM_ENCRYPT
908	select X86_MCE
909	select UNACCEPTED_MEMORY
910	help
911	  Support running as a guest under Intel TDX.  Without this support,
912	  the guest kernel can not boot or run under TDX.
913	  TDX includes memory encryption and integrity capabilities
914	  which protect the confidentiality and integrity of guest
915	  memory contents and CPU state. TDX guests are protected from
916	  some attacks from the VMM.
917
918endif # HYPERVISOR_GUEST
919
920source "arch/x86/Kconfig.cpu"
921
922config HPET_TIMER
923	def_bool X86_64
924	prompt "HPET Timer Support" if X86_32
925	help
926	  Use the IA-PC HPET (High Precision Event Timer) to manage
927	  time in preference to the PIT and RTC, if a HPET is
928	  present.
929	  HPET is the next generation timer replacing legacy 8254s.
930	  The HPET provides a stable time base on SMP
931	  systems, unlike the TSC, but it is more expensive to access,
932	  as it is off-chip.  The interface used is documented
933	  in the HPET spec, revision 1.
934
935	  You can safely choose Y here.  However, HPET will only be
936	  activated if the platform and the BIOS support this feature.
937	  Otherwise the 8254 will be used for timing services.
938
939	  Choose N to continue using the legacy 8254 timer.
940
941config HPET_EMULATE_RTC
942	def_bool y
943	depends on HPET_TIMER && (RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
944
945# Mark as expert because too many people got it wrong.
946# The code disables itself when not needed.
947config DMI
948	default y
949	select DMI_SCAN_MACHINE_NON_EFI_FALLBACK
950	bool "Enable DMI scanning" if EXPERT
951	help
952	  Enabled scanning of DMI to identify machine quirks. Say Y
953	  here unless you have verified that your setup is not
954	  affected by entries in the DMI blacklist. Required by PNP
955	  BIOS code.
956
957config GART_IOMMU
958	bool "Old AMD GART IOMMU support"
959	select IOMMU_HELPER
960	select SWIOTLB
961	depends on X86_64 && PCI && AMD_NB
962	help
963	  Provides a driver for older AMD Athlon64/Opteron/Turion/Sempron
964	  GART based hardware IOMMUs.
965
966	  The GART supports full DMA access for devices with 32-bit access
967	  limitations, on systems with more than 3 GB. This is usually needed
968	  for USB, sound, many IDE/SATA chipsets and some other devices.
969
970	  Newer systems typically have a modern AMD IOMMU, supported via
971	  the CONFIG_AMD_IOMMU=y config option.
972
973	  In normal configurations this driver is only active when needed:
974	  there's more than 3 GB of memory and the system contains a
975	  32-bit limited device.
976
977	  If unsure, say Y.
978
979config BOOT_VESA_SUPPORT
980	bool
981	help
982	  If true, at least one selected framebuffer driver can take advantage
983	  of VESA video modes set at an early boot stage via the vga= parameter.
984
985config MAXSMP
986	bool "Enable Maximum number of SMP Processors and NUMA Nodes"
987	depends on X86_64 && SMP && DEBUG_KERNEL
988	select CPUMASK_OFFSTACK
989	help
990	  Enable maximum number of CPUS and NUMA Nodes for this architecture.
991	  If unsure, say N.
992
993#
994# The maximum number of CPUs supported:
995#
996# The main config value is NR_CPUS, which defaults to NR_CPUS_DEFAULT,
997# and which can be configured interactively in the
998# [NR_CPUS_RANGE_BEGIN ... NR_CPUS_RANGE_END] range.
999#
1000# The ranges are different on 32-bit and 64-bit kernels, depending on
1001# hardware capabilities and scalability features of the kernel.
1002#
1003# ( If MAXSMP is enabled we just use the highest possible value and disable
1004#   interactive configuration. )
1005#
1006
1007config NR_CPUS_RANGE_BEGIN
1008	int
1009	default NR_CPUS_RANGE_END if MAXSMP
1010	default    1 if !SMP
1011	default    2
1012
1013config NR_CPUS_RANGE_END
1014	int
1015	depends on X86_32
1016	default   64 if  SMP &&  X86_BIGSMP
1017	default    8 if  SMP && !X86_BIGSMP
1018	default    1 if !SMP
1019
1020config NR_CPUS_RANGE_END
1021	int
1022	depends on X86_64
1023	default 8192 if  SMP && CPUMASK_OFFSTACK
1024	default  512 if  SMP && !CPUMASK_OFFSTACK
1025	default    1 if !SMP
1026
1027config NR_CPUS_DEFAULT
1028	int
1029	depends on X86_32
1030	default   32 if  X86_BIGSMP
1031	default    8 if  SMP
1032	default    1 if !SMP
1033
1034config NR_CPUS_DEFAULT
1035	int
1036	depends on X86_64
1037	default 8192 if  MAXSMP
1038	default   64 if  SMP
1039	default    1 if !SMP
1040
1041config NR_CPUS
1042	int "Maximum number of CPUs" if SMP && !MAXSMP
1043	range NR_CPUS_RANGE_BEGIN NR_CPUS_RANGE_END
1044	default NR_CPUS_DEFAULT
1045	help
1046	  This allows you to specify the maximum number of CPUs which this
1047	  kernel will support.  If CPUMASK_OFFSTACK is enabled, the maximum
1048	  supported value is 8192, otherwise the maximum value is 512.  The
1049	  minimum value which makes sense is 2.
1050
1051	  This is purely to save memory: each supported CPU adds about 8KB
1052	  to the kernel image.
1053
1054config SCHED_CLUSTER
1055	bool "Cluster scheduler support"
1056	depends on SMP
1057	default y
1058	help
1059	  Cluster scheduler support improves the CPU scheduler's decision
1060	  making when dealing with machines that have clusters of CPUs.
1061	  Cluster usually means a couple of CPUs which are placed closely
1062	  by sharing mid-level caches, last-level cache tags or internal
1063	  busses.
1064
1065config SCHED_SMT
1066	def_bool y if SMP
1067
1068config SCHED_MC
1069	def_bool y
1070	prompt "Multi-core scheduler support"
1071	depends on SMP
1072	help
1073	  Multi-core scheduler support improves the CPU scheduler's decision
1074	  making when dealing with multi-core CPU chips at a cost of slightly
1075	  increased overhead in some places. If unsure say N here.
1076
1077config SCHED_MC_PRIO
1078	bool "CPU core priorities scheduler support"
1079	depends on SCHED_MC
1080	select X86_INTEL_PSTATE if CPU_SUP_INTEL
1081	select X86_AMD_PSTATE if CPU_SUP_AMD && ACPI
1082	select CPU_FREQ
1083	default y
1084	help
1085	  Intel Turbo Boost Max Technology 3.0 enabled CPUs have a
1086	  core ordering determined at manufacturing time, which allows
1087	  certain cores to reach higher turbo frequencies (when running
1088	  single threaded workloads) than others.
1089
1090	  Enabling this kernel feature teaches the scheduler about
1091	  the TBM3 (aka ITMT) priority order of the CPU cores and adjusts the
1092	  scheduler's CPU selection logic accordingly, so that higher
1093	  overall system performance can be achieved.
1094
1095	  This feature will have no effect on CPUs without this feature.
1096
1097	  If unsure say Y here.
1098
1099config UP_LATE_INIT
1100	def_bool y
1101	depends on !SMP && X86_LOCAL_APIC
1102
1103config X86_UP_APIC
1104	bool "Local APIC support on uniprocessors" if !PCI_MSI
1105	default PCI_MSI
1106	depends on X86_32 && !SMP && !X86_32_NON_STANDARD
1107	help
1108	  A local APIC (Advanced Programmable Interrupt Controller) is an
1109	  integrated interrupt controller in the CPU. If you have a single-CPU
1110	  system which has a processor with a local APIC, you can say Y here to
1111	  enable and use it. If you say Y here even though your machine doesn't
1112	  have a local APIC, then the kernel will still run with no slowdown at
1113	  all. The local APIC supports CPU-generated self-interrupts (timer,
1114	  performance counters), and the NMI watchdog which detects hard
1115	  lockups.
1116
1117config X86_UP_IOAPIC
1118	bool "IO-APIC support on uniprocessors"
1119	depends on X86_UP_APIC
1120	help
1121	  An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
1122	  SMP-capable replacement for PC-style interrupt controllers. Most
1123	  SMP systems and many recent uniprocessor systems have one.
1124
1125	  If you have a single-CPU system with an IO-APIC, you can say Y here
1126	  to use it. If you say Y here even though your machine doesn't have
1127	  an IO-APIC, then the kernel will still run with no slowdown at all.
1128
1129config X86_LOCAL_APIC
1130	def_bool y
1131	depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC || PCI_MSI
1132	select IRQ_DOMAIN_HIERARCHY
1133
1134config ACPI_MADT_WAKEUP
1135	def_bool y
1136	depends on X86_64
1137	depends on ACPI
1138	depends on SMP
1139	depends on X86_LOCAL_APIC
1140
1141config X86_IO_APIC
1142	def_bool y
1143	depends on X86_LOCAL_APIC || X86_UP_IOAPIC
1144
1145config X86_REROUTE_FOR_BROKEN_BOOT_IRQS
1146	bool "Reroute for broken boot IRQs"
1147	depends on X86_IO_APIC
1148	help
1149	  This option enables a workaround that fixes a source of
1150	  spurious interrupts. This is recommended when threaded
1151	  interrupt handling is used on systems where the generation of
1152	  superfluous "boot interrupts" cannot be disabled.
1153
1154	  Some chipsets generate a legacy INTx "boot IRQ" when the IRQ
1155	  entry in the chipset's IO-APIC is masked (as, e.g. the RT
1156	  kernel does during interrupt handling). On chipsets where this
1157	  boot IRQ generation cannot be disabled, this workaround keeps
1158	  the original IRQ line masked so that only the equivalent "boot
1159	  IRQ" is delivered to the CPUs. The workaround also tells the
1160	  kernel to set up the IRQ handler on the boot IRQ line. In this
1161	  way only one interrupt is delivered to the kernel. Otherwise
1162	  the spurious second interrupt may cause the kernel to bring
1163	  down (vital) interrupt lines.
1164
1165	  Only affects "broken" chipsets. Interrupt sharing may be
1166	  increased on these systems.
1167
1168config X86_MCE
1169	bool "Machine Check / overheating reporting"
1170	select GENERIC_ALLOCATOR
1171	default y
1172	help
1173	  Machine Check support allows the processor to notify the
1174	  kernel if it detects a problem (e.g. overheating, data corruption).
1175	  The action the kernel takes depends on the severity of the problem,
1176	  ranging from warning messages to halting the machine.
1177
1178config X86_MCELOG_LEGACY
1179	bool "Support for deprecated /dev/mcelog character device"
1180	depends on X86_MCE
1181	help
1182	  Enable support for /dev/mcelog which is needed by the old mcelog
1183	  userspace logging daemon. Consider switching to the new generation
1184	  rasdaemon solution.
1185
1186config X86_MCE_INTEL
1187	def_bool y
1188	prompt "Intel MCE features"
1189	depends on X86_MCE && X86_LOCAL_APIC
1190	help
1191	  Additional support for intel specific MCE features such as
1192	  the thermal monitor.
1193
1194config X86_MCE_AMD
1195	def_bool y
1196	prompt "AMD MCE features"
1197	depends on X86_MCE && X86_LOCAL_APIC
1198	help
1199	  Additional support for AMD specific MCE features such as
1200	  the DRAM Error Threshold.
1201
1202config X86_ANCIENT_MCE
1203	bool "Support for old Pentium 5 / WinChip machine checks"
1204	depends on X86_32 && X86_MCE
1205	help
1206	  Include support for machine check handling on old Pentium 5 or WinChip
1207	  systems. These typically need to be enabled explicitly on the command
1208	  line.
1209
1210config X86_MCE_THRESHOLD
1211	depends on X86_MCE_AMD || X86_MCE_INTEL
1212	def_bool y
1213
1214config X86_MCE_INJECT
1215	depends on X86_MCE && X86_LOCAL_APIC && DEBUG_FS
1216	tristate "Machine check injector support"
1217	help
1218	  Provide support for injecting machine checks for testing purposes.
1219	  If you don't know what a machine check is and you don't do kernel
1220	  QA it is safe to say n.
1221
1222source "arch/x86/events/Kconfig"
1223
1224config X86_LEGACY_VM86
1225	bool "Legacy VM86 support"
1226	depends on X86_32
1227	help
1228	  This option allows user programs to put the CPU into V8086
1229	  mode, which is an 80286-era approximation of 16-bit real mode.
1230
1231	  Some very old versions of X and/or vbetool require this option
1232	  for user mode setting.  Similarly, DOSEMU will use it if
1233	  available to accelerate real mode DOS programs.  However, any
1234	  recent version of DOSEMU, X, or vbetool should be fully
1235	  functional even without kernel VM86 support, as they will all
1236	  fall back to software emulation. Nevertheless, if you are using
1237	  a 16-bit DOS program where 16-bit performance matters, vm86
1238	  mode might be faster than emulation and you might want to
1239	  enable this option.
1240
1241	  Note that any app that works on a 64-bit kernel is unlikely to
1242	  need this option, as 64-bit kernels don't, and can't, support
1243	  V8086 mode. This option is also unrelated to 16-bit protected
1244	  mode and is not needed to run most 16-bit programs under Wine.
1245
1246	  Enabling this option increases the complexity of the kernel
1247	  and slows down exception handling a tiny bit.
1248
1249	  If unsure, say N here.
1250
1251config VM86
1252	bool
1253	default X86_LEGACY_VM86
1254
1255config X86_16BIT
1256	bool "Enable support for 16-bit segments" if EXPERT
1257	default y
1258	depends on MODIFY_LDT_SYSCALL
1259	help
1260	  This option is required by programs like Wine to run 16-bit
1261	  protected mode legacy code on x86 processors.  Disabling
1262	  this option saves about 300 bytes on i386, or around 6K text
1263	  plus 16K runtime memory on x86-64,
1264
1265config X86_ESPFIX32
1266	def_bool y
1267	depends on X86_16BIT && X86_32
1268
1269config X86_ESPFIX64
1270	def_bool y
1271	depends on X86_16BIT && X86_64
1272
1273config X86_VSYSCALL_EMULATION
1274	bool "Enable vsyscall emulation" if EXPERT
1275	default y
1276	depends on X86_64
1277	help
1278	  This enables emulation of the legacy vsyscall page.  Disabling
1279	  it is roughly equivalent to booting with vsyscall=none, except
1280	  that it will also disable the helpful warning if a program
1281	  tries to use a vsyscall.  With this option set to N, offending
1282	  programs will just segfault, citing addresses of the form
1283	  0xffffffffff600?00.
1284
1285	  This option is required by many programs built before 2013, and
1286	  care should be used even with newer programs if set to N.
1287
1288	  Disabling this option saves about 7K of kernel size and
1289	  possibly 4K of additional runtime pagetable memory.
1290
1291config X86_IOPL_IOPERM
1292	bool "IOPERM and IOPL Emulation"
1293	default y
1294	help
1295	  This enables the ioperm() and iopl() syscalls which are necessary
1296	  for legacy applications.
1297
1298	  Legacy IOPL support is an overbroad mechanism which allows user
1299	  space aside of accessing all 65536 I/O ports also to disable
1300	  interrupts. To gain this access the caller needs CAP_SYS_RAWIO
1301	  capabilities and permission from potentially active security
1302	  modules.
1303
1304	  The emulation restricts the functionality of the syscall to
1305	  only allowing the full range I/O port access, but prevents the
1306	  ability to disable interrupts from user space which would be
1307	  granted if the hardware IOPL mechanism would be used.
1308
1309config TOSHIBA
1310	tristate "Toshiba Laptop support"
1311	depends on X86_32
1312	help
1313	  This adds a driver to safely access the System Management Mode of
1314	  the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
1315	  not work on models with a Phoenix BIOS. The System Management Mode
1316	  is used to set the BIOS and power saving options on Toshiba portables.
1317
1318	  For information on utilities to make use of this driver see the
1319	  Toshiba Linux utilities web site at:
1320	  <http://www.buzzard.org.uk/toshiba/>.
1321
1322	  Say Y if you intend to run this kernel on a Toshiba portable.
1323	  Say N otherwise.
1324
1325config X86_REBOOTFIXUPS
1326	bool "Enable X86 board specific fixups for reboot"
1327	depends on X86_32
1328	help
1329	  This enables chipset and/or board specific fixups to be done
1330	  in order to get reboot to work correctly. This is only needed on
1331	  some combinations of hardware and BIOS. The symptom, for which
1332	  this config is intended, is when reboot ends with a stalled/hung
1333	  system.
1334
1335	  Currently, the only fixup is for the Geode machines using
1336	  CS5530A and CS5536 chipsets and the RDC R-321x SoC.
1337
1338	  Say Y if you want to enable the fixup. Currently, it's safe to
1339	  enable this option even if you don't need it.
1340	  Say N otherwise.
1341
1342config MICROCODE
1343	def_bool y
1344	depends on CPU_SUP_AMD || CPU_SUP_INTEL
1345	select CRYPTO_LIB_SHA256 if CPU_SUP_AMD
1346
1347config MICROCODE_INITRD32
1348	def_bool y
1349	depends on MICROCODE && X86_32 && BLK_DEV_INITRD
1350
1351config MICROCODE_LATE_LOADING
1352	bool "Late microcode loading (DANGEROUS)"
1353	default n
1354	depends on MICROCODE && SMP
1355	help
1356	  Loading microcode late, when the system is up and executing instructions
1357	  is a tricky business and should be avoided if possible. Just the sequence
1358	  of synchronizing all cores and SMT threads is one fragile dance which does
1359	  not guarantee that cores might not softlock after the loading. Therefore,
1360	  use this at your own risk. Late loading taints the kernel unless the
1361	  microcode header indicates that it is safe for late loading via the
1362	  minimal revision check. This minimal revision check can be enforced on
1363	  the kernel command line with "microcode.minrev=Y".
1364
1365config MICROCODE_LATE_FORCE_MINREV
1366	bool "Enforce late microcode loading minimal revision check"
1367	default n
1368	depends on MICROCODE_LATE_LOADING
1369	help
1370	  To prevent that users load microcode late which modifies already
1371	  in use features, newer microcode patches have a minimum revision field
1372	  in the microcode header, which tells the kernel which minimum
1373	  revision must be active in the CPU to safely load that new microcode
1374	  late into the running system. If disabled the check will not
1375	  be enforced but the kernel will be tainted when the minimal
1376	  revision check fails.
1377
1378	  This minimal revision check can also be controlled via the
1379	  "microcode.minrev" parameter on the kernel command line.
1380
1381	  If unsure say Y.
1382
1383config X86_MSR
1384	tristate "/dev/cpu/*/msr - Model-specific register support"
1385	help
1386	  This device gives privileged processes access to the x86
1387	  Model-Specific Registers (MSRs).  It is a character device with
1388	  major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
1389	  MSR accesses are directed to a specific CPU on multi-processor
1390	  systems.
1391
1392config X86_CPUID
1393	tristate "/dev/cpu/*/cpuid - CPU information support"
1394	help
1395	  This device gives processes access to the x86 CPUID instruction to
1396	  be executed on a specific processor.  It is a character device
1397	  with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
1398	  /dev/cpu/31/cpuid.
1399
1400choice
1401	prompt "High Memory Support"
1402	default HIGHMEM4G
1403	depends on X86_32
1404
1405config NOHIGHMEM
1406	bool "off"
1407	help
1408	  Linux can use up to 64 Gigabytes of physical memory on x86 systems.
1409	  However, the address space of 32-bit x86 processors is only 4
1410	  Gigabytes large. That means that, if you have a large amount of
1411	  physical memory, not all of it can be "permanently mapped" by the
1412	  kernel. The physical memory that's not permanently mapped is called
1413	  "high memory".
1414
1415	  If you are compiling a kernel which will never run on a machine with
1416	  more than 1 Gigabyte total physical RAM, answer "off" here (default
1417	  choice and suitable for most users). This will result in a "3GB/1GB"
1418	  split: 3GB are mapped so that each process sees a 3GB virtual memory
1419	  space and the remaining part of the 4GB virtual memory space is used
1420	  by the kernel to permanently map as much physical memory as
1421	  possible.
1422
1423	  If the machine has between 1 and 4 Gigabytes physical RAM, then
1424	  answer "4GB" here.
1425
1426	  If more than 4 Gigabytes is used then answer "64GB" here. This
1427	  selection turns Intel PAE (Physical Address Extension) mode on.
1428	  PAE implements 3-level paging on IA32 processors. PAE is fully
1429	  supported by Linux, PAE mode is implemented on all recent Intel
1430	  processors (Pentium Pro and better). NOTE: If you say "64GB" here,
1431	  then the kernel will not boot on CPUs that don't support PAE!
1432
1433	  The actual amount of total physical memory will either be
1434	  auto detected or can be forced by using a kernel command line option
1435	  such as "mem=256M". (Try "man bootparam" or see the documentation of
1436	  your boot loader (lilo or loadlin) about how to pass options to the
1437	  kernel at boot time.)
1438
1439	  If unsure, say "off".
1440
1441config HIGHMEM4G
1442	bool "4GB"
1443	help
1444	  Select this if you have a 32-bit processor and between 1 and 4
1445	  gigabytes of physical RAM.
1446
1447config HIGHMEM64G
1448	bool "64GB"
1449	depends on X86_HAVE_PAE
1450	select X86_PAE
1451	help
1452	  Select this if you have a 32-bit processor and more than 4
1453	  gigabytes of physical RAM.
1454
1455endchoice
1456
1457choice
1458	prompt "Memory split" if EXPERT
1459	default VMSPLIT_3G
1460	depends on X86_32
1461	help
1462	  Select the desired split between kernel and user memory.
1463
1464	  If the address range available to the kernel is less than the
1465	  physical memory installed, the remaining memory will be available
1466	  as "high memory". Accessing high memory is a little more costly
1467	  than low memory, as it needs to be mapped into the kernel first.
1468	  Note that increasing the kernel address space limits the range
1469	  available to user programs, making the address space there
1470	  tighter.  Selecting anything other than the default 3G/1G split
1471	  will also likely make your kernel incompatible with binary-only
1472	  kernel modules.
1473
1474	  If you are not absolutely sure what you are doing, leave this
1475	  option alone!
1476
1477	config VMSPLIT_3G
1478		bool "3G/1G user/kernel split"
1479	config VMSPLIT_3G_OPT
1480		depends on !X86_PAE
1481		bool "3G/1G user/kernel split (for full 1G low memory)"
1482	config VMSPLIT_2G
1483		bool "2G/2G user/kernel split"
1484	config VMSPLIT_2G_OPT
1485		depends on !X86_PAE
1486		bool "2G/2G user/kernel split (for full 2G low memory)"
1487	config VMSPLIT_1G
1488		bool "1G/3G user/kernel split"
1489endchoice
1490
1491config PAGE_OFFSET
1492	hex
1493	default 0xB0000000 if VMSPLIT_3G_OPT
1494	default 0x80000000 if VMSPLIT_2G
1495	default 0x78000000 if VMSPLIT_2G_OPT
1496	default 0x40000000 if VMSPLIT_1G
1497	default 0xC0000000
1498	depends on X86_32
1499
1500config HIGHMEM
1501	def_bool y
1502	depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)
1503
1504config X86_PAE
1505	bool "PAE (Physical Address Extension) Support"
1506	depends on X86_32 && X86_HAVE_PAE
1507	select PHYS_ADDR_T_64BIT
1508	select SWIOTLB
1509	help
1510	  PAE is required for NX support, and furthermore enables
1511	  larger swapspace support for non-overcommit purposes. It
1512	  has the cost of more pagetable lookup overhead, and also
1513	  consumes more pagetable space per process.
1514
1515config X86_5LEVEL
1516	bool "Enable 5-level page tables support"
1517	default y
1518	select DYNAMIC_MEMORY_LAYOUT
1519	select SPARSEMEM_VMEMMAP
1520	depends on X86_64
1521	help
1522	  5-level paging enables access to larger address space:
1523	  up to 128 PiB of virtual address space and 4 PiB of
1524	  physical address space.
1525
1526	  It will be supported by future Intel CPUs.
1527
1528	  A kernel with the option enabled can be booted on machines that
1529	  support 4- or 5-level paging.
1530
1531	  See Documentation/arch/x86/x86_64/5level-paging.rst for more
1532	  information.
1533
1534	  Say N if unsure.
1535
1536config X86_DIRECT_GBPAGES
1537	def_bool y
1538	depends on X86_64
1539	help
1540	  Certain kernel features effectively disable kernel
1541	  linear 1 GB mappings (even if the CPU otherwise
1542	  supports them), so don't confuse the user by printing
1543	  that we have them enabled.
1544
1545config X86_CPA_STATISTICS
1546	bool "Enable statistic for Change Page Attribute"
1547	depends on DEBUG_FS
1548	help
1549	  Expose statistics about the Change Page Attribute mechanism, which
1550	  helps to determine the effectiveness of preserving large and huge
1551	  page mappings when mapping protections are changed.
1552
1553config X86_MEM_ENCRYPT
1554	select ARCH_HAS_FORCE_DMA_UNENCRYPTED
1555	select DYNAMIC_PHYSICAL_MASK
1556	def_bool n
1557
1558config AMD_MEM_ENCRYPT
1559	bool "AMD Secure Memory Encryption (SME) support"
1560	depends on X86_64 && CPU_SUP_AMD
1561	depends on EFI_STUB
1562	select DMA_COHERENT_POOL
1563	select ARCH_USE_MEMREMAP_PROT
1564	select INSTRUCTION_DECODER
1565	select ARCH_HAS_CC_PLATFORM
1566	select X86_MEM_ENCRYPT
1567	select UNACCEPTED_MEMORY
1568	select CRYPTO_LIB_AESGCM
1569	help
1570	  Say yes to enable support for the encryption of system memory.
1571	  This requires an AMD processor that supports Secure Memory
1572	  Encryption (SME).
1573
1574# Common NUMA Features
1575config NUMA
1576	bool "NUMA Memory Allocation and Scheduler Support"
1577	depends on SMP
1578	depends on X86_64 || (X86_32 && HIGHMEM64G && X86_BIGSMP)
1579	default y if X86_BIGSMP
1580	select USE_PERCPU_NUMA_NODE_ID
1581	select OF_NUMA if OF
1582	help
1583	  Enable NUMA (Non-Uniform Memory Access) support.
1584
1585	  The kernel will try to allocate memory used by a CPU on the
1586	  local memory controller of the CPU and add some more
1587	  NUMA awareness to the kernel.
1588
1589	  For 64-bit this is recommended if the system is Intel Core i7
1590	  (or later), AMD Opteron, or EM64T NUMA.
1591
1592	  For 32-bit this is only needed if you boot a 32-bit
1593	  kernel on a 64-bit NUMA platform.
1594
1595	  Otherwise, you should say N.
1596
1597config AMD_NUMA
1598	def_bool y
1599	prompt "Old style AMD Opteron NUMA detection"
1600	depends on X86_64 && NUMA && PCI
1601	help
1602	  Enable AMD NUMA node topology detection.  You should say Y here if
1603	  you have a multi processor AMD system. This uses an old method to
1604	  read the NUMA configuration directly from the builtin Northbridge
1605	  of Opteron. It is recommended to use X86_64_ACPI_NUMA instead,
1606	  which also takes priority if both are compiled in.
1607
1608config X86_64_ACPI_NUMA
1609	def_bool y
1610	prompt "ACPI NUMA detection"
1611	depends on X86_64 && NUMA && ACPI && PCI
1612	select ACPI_NUMA
1613	help
1614	  Enable ACPI SRAT based node topology detection.
1615
1616config NODES_SHIFT
1617	int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP
1618	range 1 10
1619	default "10" if MAXSMP
1620	default "6" if X86_64
1621	default "3"
1622	depends on NUMA
1623	help
1624	  Specify the maximum number of NUMA Nodes available on the target
1625	  system.  Increases memory reserved to accommodate various tables.
1626
1627config ARCH_FLATMEM_ENABLE
1628	def_bool y
1629	depends on X86_32 && !NUMA
1630
1631config ARCH_SPARSEMEM_ENABLE
1632	def_bool y
1633	depends on X86_64 || NUMA || X86_32 || X86_32_NON_STANDARD
1634	select SPARSEMEM_STATIC if X86_32
1635	select SPARSEMEM_VMEMMAP_ENABLE if X86_64
1636
1637config ARCH_SPARSEMEM_DEFAULT
1638	def_bool X86_64 || (NUMA && X86_32)
1639
1640config ARCH_SELECT_MEMORY_MODEL
1641	def_bool y
1642	depends on ARCH_SPARSEMEM_ENABLE && ARCH_FLATMEM_ENABLE
1643
1644config ARCH_MEMORY_PROBE
1645	bool "Enable sysfs memory/probe interface"
1646	depends on MEMORY_HOTPLUG
1647	help
1648	  This option enables a sysfs memory/probe interface for testing.
1649	  See Documentation/admin-guide/mm/memory-hotplug.rst for more information.
1650	  If you are unsure how to answer this question, answer N.
1651
1652config ARCH_PROC_KCORE_TEXT
1653	def_bool y
1654	depends on X86_64 && PROC_KCORE
1655
1656config ILLEGAL_POINTER_VALUE
1657	hex
1658	default 0 if X86_32
1659	default 0xdead000000000000 if X86_64
1660
1661config X86_PMEM_LEGACY_DEVICE
1662	bool
1663
1664config X86_PMEM_LEGACY
1665	tristate "Support non-standard NVDIMMs and ADR protected memory"
1666	depends on PHYS_ADDR_T_64BIT
1667	depends on BLK_DEV
1668	select X86_PMEM_LEGACY_DEVICE
1669	select NUMA_KEEP_MEMINFO if NUMA
1670	select LIBNVDIMM
1671	help
1672	  Treat memory marked using the non-standard e820 type of 12 as used
1673	  by the Intel Sandy Bridge-EP reference BIOS as protected memory.
1674	  The kernel will offer these regions to the 'pmem' driver so
1675	  they can be used for persistent storage.
1676
1677	  Say Y if unsure.
1678
1679config HIGHPTE
1680	bool "Allocate 3rd-level pagetables from highmem"
1681	depends on HIGHMEM
1682	help
1683	  The VM uses one page table entry for each page of physical memory.
1684	  For systems with a lot of RAM, this can be wasteful of precious
1685	  low memory.  Setting this option will put user-space page table
1686	  entries in high memory.
1687
1688config X86_CHECK_BIOS_CORRUPTION
1689	bool "Check for low memory corruption"
1690	help
1691	  Periodically check for memory corruption in low memory, which
1692	  is suspected to be caused by BIOS.  Even when enabled in the
1693	  configuration, it is disabled at runtime.  Enable it by
1694	  setting "memory_corruption_check=1" on the kernel command
1695	  line.  By default it scans the low 64k of memory every 60
1696	  seconds; see the memory_corruption_check_size and
1697	  memory_corruption_check_period parameters in
1698	  Documentation/admin-guide/kernel-parameters.rst to adjust this.
1699
1700	  When enabled with the default parameters, this option has
1701	  almost no overhead, as it reserves a relatively small amount
1702	  of memory and scans it infrequently.  It both detects corruption
1703	  and prevents it from affecting the running system.
1704
1705	  It is, however, intended as a diagnostic tool; if repeatable
1706	  BIOS-originated corruption always affects the same memory,
1707	  you can use memmap= to prevent the kernel from using that
1708	  memory.
1709
1710config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
1711	bool "Set the default setting of memory_corruption_check"
1712	depends on X86_CHECK_BIOS_CORRUPTION
1713	default y
1714	help
1715	  Set whether the default state of memory_corruption_check is
1716	  on or off.
1717
1718config MATH_EMULATION
1719	bool
1720	depends on MODIFY_LDT_SYSCALL
1721	prompt "Math emulation" if X86_32 && (M486SX || MELAN)
1722	help
1723	  Linux can emulate a math coprocessor (used for floating point
1724	  operations) if you don't have one. 486DX and Pentium processors have
1725	  a math coprocessor built in, 486SX and 386 do not, unless you added
1726	  a 487DX or 387, respectively. (The messages during boot time can
1727	  give you some hints here ["man dmesg"].) Everyone needs either a
1728	  coprocessor or this emulation.
1729
1730	  If you don't have a math coprocessor, you need to say Y here; if you
1731	  say Y here even though you have a coprocessor, the coprocessor will
1732	  be used nevertheless. (This behavior can be changed with the kernel
1733	  command line option "no387", which comes handy if your coprocessor
1734	  is broken. Try "man bootparam" or see the documentation of your boot
1735	  loader (lilo or loadlin) about how to pass options to the kernel at
1736	  boot time.) This means that it is a good idea to say Y here if you
1737	  intend to use this kernel on different machines.
1738
1739	  More information about the internals of the Linux math coprocessor
1740	  emulation can be found in <file:arch/x86/math-emu/README>.
1741
1742	  If you are not sure, say Y; apart from resulting in a 66 KB bigger
1743	  kernel, it won't hurt.
1744
1745config MTRR
1746	def_bool y
1747	prompt "MTRR (Memory Type Range Register) support" if EXPERT
1748	help
1749	  On Intel P6 family processors (Pentium Pro, Pentium II and later)
1750	  the Memory Type Range Registers (MTRRs) may be used to control
1751	  processor access to memory ranges. This is most useful if you have
1752	  a video (VGA) card on a PCI or AGP bus. Enabling write-combining
1753	  allows bus write transfers to be combined into a larger transfer
1754	  before bursting over the PCI/AGP bus. This can increase performance
1755	  of image write operations 2.5 times or more. Saying Y here creates a
1756	  /proc/mtrr file which may be used to manipulate your processor's
1757	  MTRRs. Typically the X server should use this.
1758
1759	  This code has a reasonably generic interface so that similar
1760	  control registers on other processors can be easily supported
1761	  as well:
1762
1763	  The Cyrix 6x86, 6x86MX and M II processors have Address Range
1764	  Registers (ARRs) which provide a similar functionality to MTRRs. For
1765	  these, the ARRs are used to emulate the MTRRs.
1766	  The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
1767	  MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
1768	  write-combining. All of these processors are supported by this code
1769	  and it makes sense to say Y here if you have one of them.
1770
1771	  Saying Y here also fixes a problem with buggy SMP BIOSes which only
1772	  set the MTRRs for the boot CPU and not for the secondary CPUs. This
1773	  can lead to all sorts of problems, so it's good to say Y here.
1774
1775	  You can safely say Y even if your machine doesn't have MTRRs, you'll
1776	  just add about 9 KB to your kernel.
1777
1778	  See <file:Documentation/arch/x86/mtrr.rst> for more information.
1779
1780config MTRR_SANITIZER
1781	def_bool y
1782	prompt "MTRR cleanup support"
1783	depends on MTRR
1784	help
1785	  Convert MTRR layout from continuous to discrete, so X drivers can
1786	  add writeback entries.
1787
1788	  Can be disabled with disable_mtrr_cleanup on the kernel command line.
1789	  The largest mtrr entry size for a continuous block can be set with
1790	  mtrr_chunk_size.
1791
1792	  If unsure, say Y.
1793
1794config MTRR_SANITIZER_ENABLE_DEFAULT
1795	int "MTRR cleanup enable value (0-1)"
1796	range 0 1
1797	default "0"
1798	depends on MTRR_SANITIZER
1799	help
1800	  Enable mtrr cleanup default value
1801
1802config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT
1803	int "MTRR cleanup spare reg num (0-7)"
1804	range 0 7
1805	default "1"
1806	depends on MTRR_SANITIZER
1807	help
1808	  mtrr cleanup spare entries default, it can be changed via
1809	  mtrr_spare_reg_nr=N on the kernel command line.
1810
1811config X86_PAT
1812	def_bool y
1813	prompt "x86 PAT support" if EXPERT
1814	depends on MTRR
1815	select ARCH_USES_PG_ARCH_2
1816	help
1817	  Use PAT attributes to setup page level cache control.
1818
1819	  PATs are the modern equivalents of MTRRs and are much more
1820	  flexible than MTRRs.
1821
1822	  Say N here if you see bootup problems (boot crash, boot hang,
1823	  spontaneous reboots) or a non-working video driver.
1824
1825	  If unsure, say Y.
1826
1827config X86_UMIP
1828	def_bool y
1829	prompt "User Mode Instruction Prevention" if EXPERT
1830	help
1831	  User Mode Instruction Prevention (UMIP) is a security feature in
1832	  some x86 processors. If enabled, a general protection fault is
1833	  issued if the SGDT, SLDT, SIDT, SMSW or STR instructions are
1834	  executed in user mode. These instructions unnecessarily expose
1835	  information about the hardware state.
1836
1837	  The vast majority of applications do not use these instructions.
1838	  For the very few that do, software emulation is provided in
1839	  specific cases in protected and virtual-8086 modes. Emulated
1840	  results are dummy.
1841
1842config CC_HAS_IBT
1843	# GCC >= 9 and binutils >= 2.29
1844	# Retpoline check to work around https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93654
1845	# Clang/LLVM >= 14
1846	# https://github.com/llvm/llvm-project/commit/e0b89df2e0f0130881bf6c39bf31d7f6aac00e0f
1847	# https://github.com/llvm/llvm-project/commit/dfcf69770bc522b9e411c66454934a37c1f35332
1848	def_bool ((CC_IS_GCC && $(cc-option, -fcf-protection=branch -mindirect-branch-register)) || \
1849		  (CC_IS_CLANG && CLANG_VERSION >= 140000)) && \
1850		  $(as-instr,endbr64)
1851
1852config X86_CET
1853	def_bool n
1854	help
1855	  CET features configured (Shadow stack or IBT)
1856
1857config X86_KERNEL_IBT
1858	prompt "Indirect Branch Tracking"
1859	def_bool y
1860	depends on X86_64 && CC_HAS_IBT && HAVE_OBJTOOL
1861	# https://github.com/llvm/llvm-project/commit/9d7001eba9c4cb311e03cd8cdc231f9e579f2d0f
1862	depends on !LD_IS_LLD || LLD_VERSION >= 140000
1863	select OBJTOOL
1864	select X86_CET
1865	help
1866	  Build the kernel with support for Indirect Branch Tracking, a
1867	  hardware support course-grain forward-edge Control Flow Integrity
1868	  protection. It enforces that all indirect calls must land on
1869	  an ENDBR instruction, as such, the compiler will instrument the
1870	  code with them to make this happen.
1871
1872	  In addition to building the kernel with IBT, seal all functions that
1873	  are not indirect call targets, avoiding them ever becoming one.
1874
1875	  This requires LTO like objtool runs and will slow down the build. It
1876	  does significantly reduce the number of ENDBR instructions in the
1877	  kernel image.
1878
1879config X86_INTEL_MEMORY_PROTECTION_KEYS
1880	prompt "Memory Protection Keys"
1881	def_bool y
1882	# Note: only available in 64-bit mode
1883	depends on X86_64 && (CPU_SUP_INTEL || CPU_SUP_AMD)
1884	select ARCH_USES_HIGH_VMA_FLAGS
1885	select ARCH_HAS_PKEYS
1886	help
1887	  Memory Protection Keys provides a mechanism for enforcing
1888	  page-based protections, but without requiring modification of the
1889	  page tables when an application changes protection domains.
1890
1891	  For details, see Documentation/core-api/protection-keys.rst
1892
1893	  If unsure, say y.
1894
1895config ARCH_PKEY_BITS
1896	int
1897	default 4
1898
1899choice
1900	prompt "TSX enable mode"
1901	depends on CPU_SUP_INTEL
1902	default X86_INTEL_TSX_MODE_OFF
1903	help
1904	  Intel's TSX (Transactional Synchronization Extensions) feature
1905	  allows to optimize locking protocols through lock elision which
1906	  can lead to a noticeable performance boost.
1907
1908	  On the other hand it has been shown that TSX can be exploited
1909	  to form side channel attacks (e.g. TAA) and chances are there
1910	  will be more of those attacks discovered in the future.
1911
1912	  Therefore TSX is not enabled by default (aka tsx=off). An admin
1913	  might override this decision by tsx=on the command line parameter.
1914	  Even with TSX enabled, the kernel will attempt to enable the best
1915	  possible TAA mitigation setting depending on the microcode available
1916	  for the particular machine.
1917
1918	  This option allows to set the default tsx mode between tsx=on, =off
1919	  and =auto. See Documentation/admin-guide/kernel-parameters.txt for more
1920	  details.
1921
1922	  Say off if not sure, auto if TSX is in use but it should be used on safe
1923	  platforms or on if TSX is in use and the security aspect of tsx is not
1924	  relevant.
1925
1926config X86_INTEL_TSX_MODE_OFF
1927	bool "off"
1928	help
1929	  TSX is disabled if possible - equals to tsx=off command line parameter.
1930
1931config X86_INTEL_TSX_MODE_ON
1932	bool "on"
1933	help
1934	  TSX is always enabled on TSX capable HW - equals the tsx=on command
1935	  line parameter.
1936
1937config X86_INTEL_TSX_MODE_AUTO
1938	bool "auto"
1939	help
1940	  TSX is enabled on TSX capable HW that is believed to be safe against
1941	  side channel attacks- equals the tsx=auto command line parameter.
1942endchoice
1943
1944config X86_SGX
1945	bool "Software Guard eXtensions (SGX)"
1946	depends on X86_64 && CPU_SUP_INTEL && X86_X2APIC
1947	depends on CRYPTO=y
1948	depends on CRYPTO_SHA256=y
1949	select MMU_NOTIFIER
1950	select NUMA_KEEP_MEMINFO if NUMA
1951	select XARRAY_MULTI
1952	help
1953	  Intel(R) Software Guard eXtensions (SGX) is a set of CPU instructions
1954	  that can be used by applications to set aside private regions of code
1955	  and data, referred to as enclaves. An enclave's private memory can
1956	  only be accessed by code running within the enclave. Accesses from
1957	  outside the enclave, including other enclaves, are disallowed by
1958	  hardware.
1959
1960	  If unsure, say N.
1961
1962config X86_USER_SHADOW_STACK
1963	bool "X86 userspace shadow stack"
1964	depends on AS_WRUSS
1965	depends on X86_64
1966	select ARCH_USES_HIGH_VMA_FLAGS
1967	select ARCH_HAS_USER_SHADOW_STACK
1968	select X86_CET
1969	help
1970	  Shadow stack protection is a hardware feature that detects function
1971	  return address corruption.  This helps mitigate ROP attacks.
1972	  Applications must be enabled to use it, and old userspace does not
1973	  get protection "for free".
1974
1975	  CPUs supporting shadow stacks were first released in 2020.
1976
1977	  See Documentation/arch/x86/shstk.rst for more information.
1978
1979	  If unsure, say N.
1980
1981config INTEL_TDX_HOST
1982	bool "Intel Trust Domain Extensions (TDX) host support"
1983	depends on CPU_SUP_INTEL
1984	depends on X86_64
1985	depends on KVM_INTEL
1986	depends on X86_X2APIC
1987	select ARCH_KEEP_MEMBLOCK
1988	depends on CONTIG_ALLOC
1989	depends on !KEXEC_CORE
1990	depends on X86_MCE
1991	help
1992	  Intel Trust Domain Extensions (TDX) protects guest VMs from malicious
1993	  host and certain physical attacks.  This option enables necessary TDX
1994	  support in the host kernel to run confidential VMs.
1995
1996	  If unsure, say N.
1997
1998config EFI
1999	bool "EFI runtime service support"
2000	depends on ACPI
2001	select UCS2_STRING
2002	select EFI_RUNTIME_WRAPPERS
2003	select ARCH_USE_MEMREMAP_PROT
2004	select EFI_RUNTIME_MAP if KEXEC_CORE
2005	help
2006	  This enables the kernel to use EFI runtime services that are
2007	  available (such as the EFI variable services).
2008
2009	  This option is only useful on systems that have EFI firmware.
2010	  In addition, you should use the latest ELILO loader available
2011	  at <http://elilo.sourceforge.net> in order to take advantage
2012	  of EFI runtime services. However, even with this option, the
2013	  resultant kernel should continue to boot on existing non-EFI
2014	  platforms.
2015
2016config EFI_STUB
2017	bool "EFI stub support"
2018	depends on EFI
2019	select RELOCATABLE
2020	help
2021	  This kernel feature allows a bzImage to be loaded directly
2022	  by EFI firmware without the use of a bootloader.
2023
2024	  See Documentation/admin-guide/efi-stub.rst for more information.
2025
2026config EFI_HANDOVER_PROTOCOL
2027	bool "EFI handover protocol (DEPRECATED)"
2028	depends on EFI_STUB
2029	default y
2030	help
2031	  Select this in order to include support for the deprecated EFI
2032	  handover protocol, which defines alternative entry points into the
2033	  EFI stub.  This is a practice that has no basis in the UEFI
2034	  specification, and requires a priori knowledge on the part of the
2035	  bootloader about Linux/x86 specific ways of passing the command line
2036	  and initrd, and where in memory those assets may be loaded.
2037
2038	  If in doubt, say Y. Even though the corresponding support is not
2039	  present in upstream GRUB or other bootloaders, most distros build
2040	  GRUB with numerous downstream patches applied, and may rely on the
2041	  handover protocol as as result.
2042
2043config EFI_MIXED
2044	bool "EFI mixed-mode support"
2045	depends on EFI_STUB && X86_64
2046	help
2047	  Enabling this feature allows a 64-bit kernel to be booted
2048	  on a 32-bit firmware, provided that your CPU supports 64-bit
2049	  mode.
2050
2051	  Note that it is not possible to boot a mixed-mode enabled
2052	  kernel via the EFI boot stub - a bootloader that supports
2053	  the EFI handover protocol must be used.
2054
2055	  If unsure, say N.
2056
2057config EFI_RUNTIME_MAP
2058	bool "Export EFI runtime maps to sysfs" if EXPERT
2059	depends on EFI
2060	help
2061	  Export EFI runtime memory regions to /sys/firmware/efi/runtime-map.
2062	  That memory map is required by the 2nd kernel to set up EFI virtual
2063	  mappings after kexec, but can also be used for debugging purposes.
2064
2065	  See also Documentation/ABI/testing/sysfs-firmware-efi-runtime-map.
2066
2067source "kernel/Kconfig.hz"
2068
2069config ARCH_SUPPORTS_KEXEC
2070	def_bool y
2071
2072config ARCH_SUPPORTS_KEXEC_FILE
2073	def_bool X86_64
2074
2075config ARCH_SELECTS_KEXEC_FILE
2076	def_bool y
2077	depends on KEXEC_FILE
2078	select HAVE_IMA_KEXEC if IMA
2079
2080config ARCH_SUPPORTS_KEXEC_PURGATORY
2081	def_bool y
2082
2083config ARCH_SUPPORTS_KEXEC_SIG
2084	def_bool y
2085
2086config ARCH_SUPPORTS_KEXEC_SIG_FORCE
2087	def_bool y
2088
2089config ARCH_SUPPORTS_KEXEC_BZIMAGE_VERIFY_SIG
2090	def_bool y
2091
2092config ARCH_SUPPORTS_KEXEC_JUMP
2093	def_bool y
2094
2095config ARCH_SUPPORTS_CRASH_DUMP
2096	def_bool X86_64 || (X86_32 && HIGHMEM)
2097
2098config ARCH_DEFAULT_CRASH_DUMP
2099	def_bool y
2100
2101config ARCH_SUPPORTS_CRASH_HOTPLUG
2102	def_bool y
2103
2104config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
2105	def_bool CRASH_RESERVE
2106
2107config PHYSICAL_START
2108	hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP)
2109	default "0x1000000"
2110	help
2111	  This gives the physical address where the kernel is loaded.
2112
2113	  If the kernel is not relocatable (CONFIG_RELOCATABLE=n) then bzImage
2114	  will decompress itself to above physical address and run from there.
2115	  Otherwise, bzImage will run from the address where it has been loaded
2116	  by the boot loader. The only exception is if it is loaded below the
2117	  above physical address, in which case it will relocate itself there.
2118
2119	  In normal kdump cases one does not have to set/change this option
2120	  as now bzImage can be compiled as a completely relocatable image
2121	  (CONFIG_RELOCATABLE=y) and be used to load and run from a different
2122	  address. This option is mainly useful for the folks who don't want
2123	  to use a bzImage for capturing the crash dump and want to use a
2124	  vmlinux instead. vmlinux is not relocatable hence a kernel needs
2125	  to be specifically compiled to run from a specific memory area
2126	  (normally a reserved region) and this option comes handy.
2127
2128	  So if you are using bzImage for capturing the crash dump,
2129	  leave the value here unchanged to 0x1000000 and set
2130	  CONFIG_RELOCATABLE=y.  Otherwise if you plan to use vmlinux
2131	  for capturing the crash dump change this value to start of
2132	  the reserved region.  In other words, it can be set based on
2133	  the "X" value as specified in the "crashkernel=YM@XM"
2134	  command line boot parameter passed to the panic-ed
2135	  kernel. Please take a look at Documentation/admin-guide/kdump/kdump.rst
2136	  for more details about crash dumps.
2137
2138	  Usage of bzImage for capturing the crash dump is recommended as
2139	  one does not have to build two kernels. Same kernel can be used
2140	  as production kernel and capture kernel. Above option should have
2141	  gone away after relocatable bzImage support is introduced. But it
2142	  is present because there are users out there who continue to use
2143	  vmlinux for dump capture. This option should go away down the
2144	  line.
2145
2146	  Don't change this unless you know what you are doing.
2147
2148config RELOCATABLE
2149	bool "Build a relocatable kernel"
2150	default y
2151	help
2152	  This builds a kernel image that retains relocation information
2153	  so it can be loaded someplace besides the default 1MB.
2154	  The relocations tend to make the kernel binary about 10% larger,
2155	  but are discarded at runtime.
2156
2157	  One use is for the kexec on panic case where the recovery kernel
2158	  must live at a different physical address than the primary
2159	  kernel.
2160
2161	  Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
2162	  it has been loaded at and the compile time physical address
2163	  (CONFIG_PHYSICAL_START) is used as the minimum location.
2164
2165config RANDOMIZE_BASE
2166	bool "Randomize the address of the kernel image (KASLR)"
2167	depends on RELOCATABLE
2168	default y
2169	help
2170	  In support of Kernel Address Space Layout Randomization (KASLR),
2171	  this randomizes the physical address at which the kernel image
2172	  is decompressed and the virtual address where the kernel
2173	  image is mapped, as a security feature that deters exploit
2174	  attempts relying on knowledge of the location of kernel
2175	  code internals.
2176
2177	  On 64-bit, the kernel physical and virtual addresses are
2178	  randomized separately. The physical address will be anywhere
2179	  between 16MB and the top of physical memory (up to 64TB). The
2180	  virtual address will be randomized from 16MB up to 1GB (9 bits
2181	  of entropy). Note that this also reduces the memory space
2182	  available to kernel modules from 1.5GB to 1GB.
2183
2184	  On 32-bit, the kernel physical and virtual addresses are
2185	  randomized together. They will be randomized from 16MB up to
2186	  512MB (8 bits of entropy).
2187
2188	  Entropy is generated using the RDRAND instruction if it is
2189	  supported. If RDTSC is supported, its value is mixed into
2190	  the entropy pool as well. If neither RDRAND nor RDTSC are
2191	  supported, then entropy is read from the i8254 timer. The
2192	  usable entropy is limited by the kernel being built using
2193	  2GB addressing, and that PHYSICAL_ALIGN must be at a
2194	  minimum of 2MB. As a result, only 10 bits of entropy are
2195	  theoretically possible, but the implementations are further
2196	  limited due to memory layouts.
2197
2198	  If unsure, say Y.
2199
2200# Relocation on x86 needs some additional build support
2201config X86_NEED_RELOCS
2202	def_bool y
2203	depends on RANDOMIZE_BASE || (X86_32 && RELOCATABLE)
2204
2205config PHYSICAL_ALIGN
2206	hex "Alignment value to which kernel should be aligned"
2207	default "0x200000"
2208	range 0x2000 0x1000000 if X86_32
2209	range 0x200000 0x1000000 if X86_64
2210	help
2211	  This value puts the alignment restrictions on physical address
2212	  where kernel is loaded and run from. Kernel is compiled for an
2213	  address which meets above alignment restriction.
2214
2215	  If bootloader loads the kernel at a non-aligned address and
2216	  CONFIG_RELOCATABLE is set, kernel will move itself to nearest
2217	  address aligned to above value and run from there.
2218
2219	  If bootloader loads the kernel at a non-aligned address and
2220	  CONFIG_RELOCATABLE is not set, kernel will ignore the run time
2221	  load address and decompress itself to the address it has been
2222	  compiled for and run from there. The address for which kernel is
2223	  compiled already meets above alignment restrictions. Hence the
2224	  end result is that kernel runs from a physical address meeting
2225	  above alignment restrictions.
2226
2227	  On 32-bit this value must be a multiple of 0x2000. On 64-bit
2228	  this value must be a multiple of 0x200000.
2229
2230	  Don't change this unless you know what you are doing.
2231
2232config DYNAMIC_MEMORY_LAYOUT
2233	bool
2234	help
2235	  This option makes base addresses of vmalloc and vmemmap as well as
2236	  __PAGE_OFFSET movable during boot.
2237
2238config RANDOMIZE_MEMORY
2239	bool "Randomize the kernel memory sections"
2240	depends on X86_64
2241	depends on RANDOMIZE_BASE
2242	select DYNAMIC_MEMORY_LAYOUT
2243	default RANDOMIZE_BASE
2244	help
2245	  Randomizes the base virtual address of kernel memory sections
2246	  (physical memory mapping, vmalloc & vmemmap). This security feature
2247	  makes exploits relying on predictable memory locations less reliable.
2248
2249	  The order of allocations remains unchanged. Entropy is generated in
2250	  the same way as RANDOMIZE_BASE. Current implementation in the optimal
2251	  configuration have in average 30,000 different possible virtual
2252	  addresses for each memory section.
2253
2254	  If unsure, say Y.
2255
2256config RANDOMIZE_MEMORY_PHYSICAL_PADDING
2257	hex "Physical memory mapping padding" if EXPERT
2258	depends on RANDOMIZE_MEMORY
2259	default "0xa" if MEMORY_HOTPLUG
2260	default "0x0"
2261	range 0x1 0x40 if MEMORY_HOTPLUG
2262	range 0x0 0x40
2263	help
2264	  Define the padding in terabytes added to the existing physical
2265	  memory size during kernel memory randomization. It is useful
2266	  for memory hotplug support but reduces the entropy available for
2267	  address randomization.
2268
2269	  If unsure, leave at the default value.
2270
2271config ADDRESS_MASKING
2272	bool "Linear Address Masking support"
2273	depends on X86_64
2274	depends on COMPILE_TEST || !CPU_MITIGATIONS # wait for LASS
2275	help
2276	  Linear Address Masking (LAM) modifies the checking that is applied
2277	  to 64-bit linear addresses, allowing software to use of the
2278	  untranslated address bits for metadata.
2279
2280	  The capability can be used for efficient address sanitizers (ASAN)
2281	  implementation and for optimizations in JITs.
2282
2283config HOTPLUG_CPU
2284	def_bool y
2285	depends on SMP
2286
2287config COMPAT_VDSO
2288	def_bool n
2289	prompt "Disable the 32-bit vDSO (needed for glibc 2.3.3)"
2290	depends on COMPAT_32
2291	help
2292	  Certain buggy versions of glibc will crash if they are
2293	  presented with a 32-bit vDSO that is not mapped at the address
2294	  indicated in its segment table.
2295
2296	  The bug was introduced by f866314b89d56845f55e6f365e18b31ec978ec3a
2297	  and fixed by 3b3ddb4f7db98ec9e912ccdf54d35df4aa30e04a and
2298	  49ad572a70b8aeb91e57483a11dd1b77e31c4468.  Glibc 2.3.3 is
2299	  the only released version with the bug, but OpenSUSE 9
2300	  contains a buggy "glibc 2.3.2".
2301
2302	  The symptom of the bug is that everything crashes on startup, saying:
2303	  dl_main: Assertion `(void *) ph->p_vaddr == _rtld_local._dl_sysinfo_dso' failed!
2304
2305	  Saying Y here changes the default value of the vdso32 boot
2306	  option from 1 to 0, which turns off the 32-bit vDSO entirely.
2307	  This works around the glibc bug but hurts performance.
2308
2309	  If unsure, say N: if you are compiling your own kernel, you
2310	  are unlikely to be using a buggy version of glibc.
2311
2312choice
2313	prompt "vsyscall table for legacy applications"
2314	depends on X86_64
2315	default LEGACY_VSYSCALL_XONLY
2316	help
2317	  Legacy user code that does not know how to find the vDSO expects
2318	  to be able to issue three syscalls by calling fixed addresses in
2319	  kernel space. Since this location is not randomized with ASLR,
2320	  it can be used to assist security vulnerability exploitation.
2321
2322	  This setting can be changed at boot time via the kernel command
2323	  line parameter vsyscall=[emulate|xonly|none].  Emulate mode
2324	  is deprecated and can only be enabled using the kernel command
2325	  line.
2326
2327	  On a system with recent enough glibc (2.14 or newer) and no
2328	  static binaries, you can say None without a performance penalty
2329	  to improve security.
2330
2331	  If unsure, select "Emulate execution only".
2332
2333	config LEGACY_VSYSCALL_XONLY
2334		bool "Emulate execution only"
2335		help
2336		  The kernel traps and emulates calls into the fixed vsyscall
2337		  address mapping and does not allow reads.  This
2338		  configuration is recommended when userspace might use the
2339		  legacy vsyscall area but support for legacy binary
2340		  instrumentation of legacy code is not needed.  It mitigates
2341		  certain uses of the vsyscall area as an ASLR-bypassing
2342		  buffer.
2343
2344	config LEGACY_VSYSCALL_NONE
2345		bool "None"
2346		help
2347		  There will be no vsyscall mapping at all. This will
2348		  eliminate any risk of ASLR bypass due to the vsyscall
2349		  fixed address mapping. Attempts to use the vsyscalls
2350		  will be reported to dmesg, so that either old or
2351		  malicious userspace programs can be identified.
2352
2353endchoice
2354
2355config CMDLINE_BOOL
2356	bool "Built-in kernel command line"
2357	help
2358	  Allow for specifying boot arguments to the kernel at
2359	  build time.  On some systems (e.g. embedded ones), it is
2360	  necessary or convenient to provide some or all of the
2361	  kernel boot arguments with the kernel itself (that is,
2362	  to not rely on the boot loader to provide them.)
2363
2364	  To compile command line arguments into the kernel,
2365	  set this option to 'Y', then fill in the
2366	  boot arguments in CONFIG_CMDLINE.
2367
2368	  Systems with fully functional boot loaders (i.e. non-embedded)
2369	  should leave this option set to 'N'.
2370
2371config CMDLINE
2372	string "Built-in kernel command string"
2373	depends on CMDLINE_BOOL
2374	default ""
2375	help
2376	  Enter arguments here that should be compiled into the kernel
2377	  image and used at boot time.  If the boot loader provides a
2378	  command line at boot time, it is appended to this string to
2379	  form the full kernel command line, when the system boots.
2380
2381	  However, you can use the CONFIG_CMDLINE_OVERRIDE option to
2382	  change this behavior.
2383
2384	  In most cases, the command line (whether built-in or provided
2385	  by the boot loader) should specify the device for the root
2386	  file system.
2387
2388config CMDLINE_OVERRIDE
2389	bool "Built-in command line overrides boot loader arguments"
2390	depends on CMDLINE_BOOL && CMDLINE != ""
2391	help
2392	  Set this option to 'Y' to have the kernel ignore the boot loader
2393	  command line, and use ONLY the built-in command line.
2394
2395	  This is used to work around broken boot loaders.  This should
2396	  be set to 'N' under normal conditions.
2397
2398config MODIFY_LDT_SYSCALL
2399	bool "Enable the LDT (local descriptor table)" if EXPERT
2400	default y
2401	help
2402	  Linux can allow user programs to install a per-process x86
2403	  Local Descriptor Table (LDT) using the modify_ldt(2) system
2404	  call.  This is required to run 16-bit or segmented code such as
2405	  DOSEMU or some Wine programs.  It is also used by some very old
2406	  threading libraries.
2407
2408	  Enabling this feature adds a small amount of overhead to
2409	  context switches and increases the low-level kernel attack
2410	  surface.  Disabling it removes the modify_ldt(2) system call.
2411
2412	  Saying 'N' here may make sense for embedded or server kernels.
2413
2414config STRICT_SIGALTSTACK_SIZE
2415	bool "Enforce strict size checking for sigaltstack"
2416	depends on DYNAMIC_SIGFRAME
2417	help
2418	  For historical reasons MINSIGSTKSZ is a constant which became
2419	  already too small with AVX512 support. Add a mechanism to
2420	  enforce strict checking of the sigaltstack size against the
2421	  real size of the FPU frame. This option enables the check
2422	  by default. It can also be controlled via the kernel command
2423	  line option 'strict_sas_size' independent of this config
2424	  switch. Enabling it might break existing applications which
2425	  allocate a too small sigaltstack but 'work' because they
2426	  never get a signal delivered.
2427
2428	  Say 'N' unless you want to really enforce this check.
2429
2430config CFI_AUTO_DEFAULT
2431	bool "Attempt to use FineIBT by default at boot time"
2432	depends on FINEIBT
2433	default y
2434	help
2435	  Attempt to use FineIBT by default at boot time. If enabled,
2436	  this is the same as booting with "cfi=auto". If disabled,
2437	  this is the same as booting with "cfi=kcfi".
2438
2439source "kernel/livepatch/Kconfig"
2440
2441config X86_BUS_LOCK_DETECT
2442	bool "Split Lock Detect and Bus Lock Detect support"
2443	depends on CPU_SUP_INTEL || CPU_SUP_AMD
2444	default y
2445	help
2446	  Enable Split Lock Detect and Bus Lock Detect functionalities.
2447	  See <file:Documentation/arch/x86/buslock.rst> for more information.
2448
2449endmenu
2450
2451config CC_HAS_NAMED_AS
2452	def_bool $(success,echo 'int __seg_fs fs; int __seg_gs gs;' | $(CC) -x c - -S -o /dev/null)
2453	depends on CC_IS_GCC
2454
2455#
2456# -fsanitize=kernel-address (KASAN) and -fsanitize=thread (KCSAN)
2457# are incompatible with named address spaces with GCC < 13.3
2458# (see GCC PR sanitizer/111736 and also PR sanitizer/115172).
2459#
2460
2461config CC_HAS_NAMED_AS_FIXED_SANITIZERS
2462	def_bool y
2463	depends on !(KASAN || KCSAN) || GCC_VERSION >= 130300
2464	depends on !(UBSAN_BOOL && KASAN) || GCC_VERSION >= 140200
2465
2466config USE_X86_SEG_SUPPORT
2467	def_bool CC_HAS_NAMED_AS
2468	depends on CC_HAS_NAMED_AS_FIXED_SANITIZERS
2469
2470config CC_HAS_SLS
2471	def_bool $(cc-option,-mharden-sls=all)
2472
2473config CC_HAS_RETURN_THUNK
2474	def_bool $(cc-option,-mfunction-return=thunk-extern)
2475
2476config CC_HAS_ENTRY_PADDING
2477	def_bool $(cc-option,-fpatchable-function-entry=16,16)
2478
2479config FUNCTION_PADDING_CFI
2480	int
2481	default 59 if FUNCTION_ALIGNMENT_64B
2482	default 27 if FUNCTION_ALIGNMENT_32B
2483	default 11 if FUNCTION_ALIGNMENT_16B
2484	default  3 if FUNCTION_ALIGNMENT_8B
2485	default  0
2486
2487# Basically: FUNCTION_ALIGNMENT - 5*CFI_CLANG
2488# except Kconfig can't do arithmetic :/
2489config FUNCTION_PADDING_BYTES
2490	int
2491	default FUNCTION_PADDING_CFI if CFI_CLANG
2492	default FUNCTION_ALIGNMENT
2493
2494config CALL_PADDING
2495	def_bool n
2496	depends on CC_HAS_ENTRY_PADDING && OBJTOOL
2497	select FUNCTION_ALIGNMENT_16B
2498
2499config FINEIBT
2500	def_bool y
2501	depends on X86_KERNEL_IBT && CFI_CLANG && MITIGATION_RETPOLINE
2502	select CALL_PADDING
2503
2504config HAVE_CALL_THUNKS
2505	def_bool y
2506	depends on CC_HAS_ENTRY_PADDING && MITIGATION_RETHUNK && OBJTOOL
2507
2508config CALL_THUNKS
2509	def_bool n
2510	select CALL_PADDING
2511
2512config PREFIX_SYMBOLS
2513	def_bool y
2514	depends on CALL_PADDING && !CFI_CLANG
2515
2516menuconfig CPU_MITIGATIONS
2517	bool "Mitigations for CPU vulnerabilities"
2518	default y
2519	help
2520	  Say Y here to enable options which enable mitigations for hardware
2521	  vulnerabilities (usually related to speculative execution).
2522	  Mitigations can be disabled or restricted to SMT systems at runtime
2523	  via the "mitigations" kernel parameter.
2524
2525	  If you say N, all mitigations will be disabled.  This CANNOT be
2526	  overridden at runtime.
2527
2528	  Say 'Y', unless you really know what you are doing.
2529
2530if CPU_MITIGATIONS
2531
2532config MITIGATION_PAGE_TABLE_ISOLATION
2533	bool "Remove the kernel mapping in user mode"
2534	default y
2535	depends on (X86_64 || X86_PAE)
2536	help
2537	  This feature reduces the number of hardware side channels by
2538	  ensuring that the majority of kernel addresses are not mapped
2539	  into userspace.
2540
2541	  See Documentation/arch/x86/pti.rst for more details.
2542
2543config MITIGATION_RETPOLINE
2544	bool "Avoid speculative indirect branches in kernel"
2545	select OBJTOOL if HAVE_OBJTOOL
2546	default y
2547	help
2548	  Compile kernel with the retpoline compiler options to guard against
2549	  kernel-to-user data leaks by avoiding speculative indirect
2550	  branches. Requires a compiler with -mindirect-branch=thunk-extern
2551	  support for full protection. The kernel may run slower.
2552
2553config MITIGATION_RETHUNK
2554	bool "Enable return-thunks"
2555	depends on MITIGATION_RETPOLINE && CC_HAS_RETURN_THUNK
2556	select OBJTOOL if HAVE_OBJTOOL
2557	default y if X86_64
2558	help
2559	  Compile the kernel with the return-thunks compiler option to guard
2560	  against kernel-to-user data leaks by avoiding return speculation.
2561	  Requires a compiler with -mfunction-return=thunk-extern
2562	  support for full protection. The kernel may run slower.
2563
2564config MITIGATION_UNRET_ENTRY
2565	bool "Enable UNRET on kernel entry"
2566	depends on CPU_SUP_AMD && MITIGATION_RETHUNK && X86_64
2567	default y
2568	help
2569	  Compile the kernel with support for the retbleed=unret mitigation.
2570
2571config MITIGATION_CALL_DEPTH_TRACKING
2572	bool "Mitigate RSB underflow with call depth tracking"
2573	depends on CPU_SUP_INTEL && HAVE_CALL_THUNKS
2574	select HAVE_DYNAMIC_FTRACE_NO_PATCHABLE
2575	select CALL_THUNKS
2576	default y
2577	help
2578	  Compile the kernel with call depth tracking to mitigate the Intel
2579	  SKL Return-Stack-Buffer (RSB) underflow issue. The mitigation is off
2580	  by default and needs to be enabled on the kernel command line via the
2581	  retbleed=stuff option. For non-affected systems the overhead of this
2582	  option is marginal as the call depth tracking is using run-time
2583	  generated call thunks in a compiler generated padding area and call
2584	  patching. This increases text size by ~5%. For non affected systems
2585	  this space is unused. On affected SKL systems this results in a
2586	  significant performance gain over the IBRS mitigation.
2587
2588config CALL_THUNKS_DEBUG
2589	bool "Enable call thunks and call depth tracking debugging"
2590	depends on MITIGATION_CALL_DEPTH_TRACKING
2591	select FUNCTION_ALIGNMENT_32B
2592	default n
2593	help
2594	  Enable call/ret counters for imbalance detection and build in
2595	  a noisy dmesg about callthunks generation and call patching for
2596	  trouble shooting. The debug prints need to be enabled on the
2597	  kernel command line with 'debug-callthunks'.
2598	  Only enable this when you are debugging call thunks as this
2599	  creates a noticeable runtime overhead. If unsure say N.
2600
2601config MITIGATION_IBPB_ENTRY
2602	bool "Enable IBPB on kernel entry"
2603	depends on CPU_SUP_AMD && X86_64
2604	default y
2605	help
2606	  Compile the kernel with support for the retbleed=ibpb and
2607	  spec_rstack_overflow={ibpb,ibpb-vmexit} mitigations.
2608
2609config MITIGATION_IBRS_ENTRY
2610	bool "Enable IBRS on kernel entry"
2611	depends on CPU_SUP_INTEL && X86_64
2612	default y
2613	help
2614	  Compile the kernel with support for the spectre_v2=ibrs mitigation.
2615	  This mitigates both spectre_v2 and retbleed at great cost to
2616	  performance.
2617
2618config MITIGATION_SRSO
2619	bool "Mitigate speculative RAS overflow on AMD"
2620	depends on CPU_SUP_AMD && X86_64 && MITIGATION_RETHUNK
2621	default y
2622	help
2623	  Enable the SRSO mitigation needed on AMD Zen1-4 machines.
2624
2625config MITIGATION_SLS
2626	bool "Mitigate Straight-Line-Speculation"
2627	depends on CC_HAS_SLS && X86_64
2628	select OBJTOOL if HAVE_OBJTOOL
2629	default n
2630	help
2631	  Compile the kernel with straight-line-speculation options to guard
2632	  against straight line speculation. The kernel image might be slightly
2633	  larger.
2634
2635config MITIGATION_GDS
2636	bool "Mitigate Gather Data Sampling"
2637	depends on CPU_SUP_INTEL
2638	default y
2639	help
2640	  Enable mitigation for Gather Data Sampling (GDS). GDS is a hardware
2641	  vulnerability which allows unprivileged speculative access to data
2642	  which was previously stored in vector registers. The attacker uses gather
2643	  instructions to infer the stale vector register data.
2644
2645config MITIGATION_RFDS
2646	bool "RFDS Mitigation"
2647	depends on CPU_SUP_INTEL
2648	default y
2649	help
2650	  Enable mitigation for Register File Data Sampling (RFDS) by default.
2651	  RFDS is a hardware vulnerability which affects Intel Atom CPUs. It
2652	  allows unprivileged speculative access to stale data previously
2653	  stored in floating point, vector and integer registers.
2654	  See also <file:Documentation/admin-guide/hw-vuln/reg-file-data-sampling.rst>
2655
2656config MITIGATION_SPECTRE_BHI
2657	bool "Mitigate Spectre-BHB (Branch History Injection)"
2658	depends on CPU_SUP_INTEL
2659	default y
2660	help
2661	  Enable BHI mitigations. BHI attacks are a form of Spectre V2 attacks
2662	  where the branch history buffer is poisoned to speculatively steer
2663	  indirect branches.
2664	  See <file:Documentation/admin-guide/hw-vuln/spectre.rst>
2665
2666config MITIGATION_MDS
2667	bool "Mitigate Microarchitectural Data Sampling (MDS) hardware bug"
2668	depends on CPU_SUP_INTEL
2669	default y
2670	help
2671	  Enable mitigation for Microarchitectural Data Sampling (MDS). MDS is
2672	  a hardware vulnerability which allows unprivileged speculative access
2673	  to data which is available in various CPU internal buffers.
2674	  See also <file:Documentation/admin-guide/hw-vuln/mds.rst>
2675
2676config MITIGATION_TAA
2677	bool "Mitigate TSX Asynchronous Abort (TAA) hardware bug"
2678	depends on CPU_SUP_INTEL
2679	default y
2680	help
2681	  Enable mitigation for TSX Asynchronous Abort (TAA). TAA is a hardware
2682	  vulnerability that allows unprivileged speculative access to data
2683	  which is available in various CPU internal buffers by using
2684	  asynchronous aborts within an Intel TSX transactional region.
2685	  See also <file:Documentation/admin-guide/hw-vuln/tsx_async_abort.rst>
2686
2687config MITIGATION_MMIO_STALE_DATA
2688	bool "Mitigate MMIO Stale Data hardware bug"
2689	depends on CPU_SUP_INTEL
2690	default y
2691	help
2692	  Enable mitigation for MMIO Stale Data hardware bugs.  Processor MMIO
2693	  Stale Data Vulnerabilities are a class of memory-mapped I/O (MMIO)
2694	  vulnerabilities that can expose data. The vulnerabilities require the
2695	  attacker to have access to MMIO.
2696	  See also
2697	  <file:Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst>
2698
2699config MITIGATION_L1TF
2700	bool "Mitigate L1 Terminal Fault (L1TF) hardware bug"
2701	depends on CPU_SUP_INTEL
2702	default y
2703	help
2704	  Mitigate L1 Terminal Fault (L1TF) hardware bug. L1 Terminal Fault is a
2705	  hardware vulnerability which allows unprivileged speculative access to data
2706	  available in the Level 1 Data Cache.
2707	  See <file:Documentation/admin-guide/hw-vuln/l1tf.rst
2708
2709config MITIGATION_RETBLEED
2710	bool "Mitigate RETBleed hardware bug"
2711	depends on (CPU_SUP_INTEL && MITIGATION_SPECTRE_V2) || MITIGATION_UNRET_ENTRY || MITIGATION_IBPB_ENTRY
2712	default y
2713	help
2714	  Enable mitigation for RETBleed (Arbitrary Speculative Code Execution
2715	  with Return Instructions) vulnerability.  RETBleed is a speculative
2716	  execution attack which takes advantage of microarchitectural behavior
2717	  in many modern microprocessors, similar to Spectre v2. An
2718	  unprivileged attacker can use these flaws to bypass conventional
2719	  memory security restrictions to gain read access to privileged memory
2720	  that would otherwise be inaccessible.
2721
2722config MITIGATION_SPECTRE_V1
2723	bool "Mitigate SPECTRE V1 hardware bug"
2724	default y
2725	help
2726	  Enable mitigation for Spectre V1 (Bounds Check Bypass). Spectre V1 is a
2727	  class of side channel attacks that takes advantage of speculative
2728	  execution that bypasses conditional branch instructions used for
2729	  memory access bounds check.
2730	  See also <file:Documentation/admin-guide/hw-vuln/spectre.rst>
2731
2732config MITIGATION_SPECTRE_V2
2733	bool "Mitigate SPECTRE V2 hardware bug"
2734	default y
2735	help
2736	  Enable mitigation for Spectre V2 (Branch Target Injection). Spectre
2737	  V2 is a class of side channel attacks that takes advantage of
2738	  indirect branch predictors inside the processor. In Spectre variant 2
2739	  attacks, the attacker can steer speculative indirect branches in the
2740	  victim to gadget code by poisoning the branch target buffer of a CPU
2741	  used for predicting indirect branch addresses.
2742	  See also <file:Documentation/admin-guide/hw-vuln/spectre.rst>
2743
2744config MITIGATION_SRBDS
2745	bool "Mitigate Special Register Buffer Data Sampling (SRBDS) hardware bug"
2746	depends on CPU_SUP_INTEL
2747	default y
2748	help
2749	  Enable mitigation for Special Register Buffer Data Sampling (SRBDS).
2750	  SRBDS is a hardware vulnerability that allows Microarchitectural Data
2751	  Sampling (MDS) techniques to infer values returned from special
2752	  register accesses. An unprivileged user can extract values returned
2753	  from RDRAND and RDSEED executed on another core or sibling thread
2754	  using MDS techniques.
2755	  See also
2756	  <file:Documentation/admin-guide/hw-vuln/special-register-buffer-data-sampling.rst>
2757
2758config MITIGATION_SSB
2759	bool "Mitigate Speculative Store Bypass (SSB) hardware bug"
2760	default y
2761	help
2762	  Enable mitigation for Speculative Store Bypass (SSB). SSB is a
2763	  hardware security vulnerability and its exploitation takes advantage
2764	  of speculative execution in a similar way to the Meltdown and Spectre
2765	  security vulnerabilities.
2766
2767endif
2768
2769config ARCH_HAS_ADD_PAGES
2770	def_bool y
2771	depends on ARCH_ENABLE_MEMORY_HOTPLUG
2772
2773menu "Power management and ACPI options"
2774
2775config ARCH_HIBERNATION_HEADER
2776	def_bool y
2777	depends on HIBERNATION
2778
2779source "kernel/power/Kconfig"
2780
2781source "drivers/acpi/Kconfig"
2782
2783config X86_APM_BOOT
2784	def_bool y
2785	depends on APM
2786
2787menuconfig APM
2788	tristate "APM (Advanced Power Management) BIOS support"
2789	depends on X86_32 && PM_SLEEP
2790	help
2791	  APM is a BIOS specification for saving power using several different
2792	  techniques. This is mostly useful for battery powered laptops with
2793	  APM compliant BIOSes. If you say Y here, the system time will be
2794	  reset after a RESUME operation, the /proc/apm device will provide
2795	  battery status information, and user-space programs will receive
2796	  notification of APM "events" (e.g. battery status change).
2797
2798	  If you select "Y" here, you can disable actual use of the APM
2799	  BIOS by passing the "apm=off" option to the kernel at boot time.
2800
2801	  Note that the APM support is almost completely disabled for
2802	  machines with more than one CPU.
2803
2804	  In order to use APM, you will need supporting software. For location
2805	  and more information, read <file:Documentation/power/apm-acpi.rst>
2806	  and the Battery Powered Linux mini-HOWTO, available from
2807	  <http://www.tldp.org/docs.html#howto>.
2808
2809	  This driver does not spin down disk drives (see the hdparm(8)
2810	  manpage ("man 8 hdparm") for that), and it doesn't turn off
2811	  VESA-compliant "green" monitors.
2812
2813	  This driver does not support the TI 4000M TravelMate and the ACER
2814	  486/DX4/75 because they don't have compliant BIOSes. Many "green"
2815	  desktop machines also don't have compliant BIOSes, and this driver
2816	  may cause those machines to panic during the boot phase.
2817
2818	  Generally, if you don't have a battery in your machine, there isn't
2819	  much point in using this driver and you should say N. If you get
2820	  random kernel OOPSes or reboots that don't seem to be related to
2821	  anything, try disabling/enabling this option (or disabling/enabling
2822	  APM in your BIOS).
2823
2824	  Some other things you should try when experiencing seemingly random,
2825	  "weird" problems:
2826
2827	  1) make sure that you have enough swap space and that it is
2828	  enabled.
2829	  2) pass the "idle=poll" option to the kernel
2830	  3) switch on floating point emulation in the kernel and pass
2831	  the "no387" option to the kernel
2832	  4) pass the "floppy=nodma" option to the kernel
2833	  5) pass the "mem=4M" option to the kernel (thereby disabling
2834	  all but the first 4 MB of RAM)
2835	  6) make sure that the CPU is not over clocked.
2836	  7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
2837	  8) disable the cache from your BIOS settings
2838	  9) install a fan for the video card or exchange video RAM
2839	  10) install a better fan for the CPU
2840	  11) exchange RAM chips
2841	  12) exchange the motherboard.
2842
2843	  To compile this driver as a module, choose M here: the
2844	  module will be called apm.
2845
2846if APM
2847
2848config APM_IGNORE_USER_SUSPEND
2849	bool "Ignore USER SUSPEND"
2850	help
2851	  This option will ignore USER SUSPEND requests. On machines with a
2852	  compliant APM BIOS, you want to say N. However, on the NEC Versa M
2853	  series notebooks, it is necessary to say Y because of a BIOS bug.
2854
2855config APM_DO_ENABLE
2856	bool "Enable PM at boot time"
2857	help
2858	  Enable APM features at boot time. From page 36 of the APM BIOS
2859	  specification: "When disabled, the APM BIOS does not automatically
2860	  power manage devices, enter the Standby State, enter the Suspend
2861	  State, or take power saving steps in response to CPU Idle calls."
2862	  This driver will make CPU Idle calls when Linux is idle (unless this
2863	  feature is turned off -- see "Do CPU IDLE calls", below). This
2864	  should always save battery power, but more complicated APM features
2865	  will be dependent on your BIOS implementation. You may need to turn
2866	  this option off if your computer hangs at boot time when using APM
2867	  support, or if it beeps continuously instead of suspending. Turn
2868	  this off if you have a NEC UltraLite Versa 33/C or a Toshiba
2869	  T400CDT. This is off by default since most machines do fine without
2870	  this feature.
2871
2872config APM_CPU_IDLE
2873	depends on CPU_IDLE
2874	bool "Make CPU Idle calls when idle"
2875	help
2876	  Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
2877	  On some machines, this can activate improved power savings, such as
2878	  a slowed CPU clock rate, when the machine is idle. These idle calls
2879	  are made after the idle loop has run for some length of time (e.g.,
2880	  333 mS). On some machines, this will cause a hang at boot time or
2881	  whenever the CPU becomes idle. (On machines with more than one CPU,
2882	  this option does nothing.)
2883
2884config APM_DISPLAY_BLANK
2885	bool "Enable console blanking using APM"
2886	help
2887	  Enable console blanking using the APM. Some laptops can use this to
2888	  turn off the LCD backlight when the screen blanker of the Linux
2889	  virtual console blanks the screen. Note that this is only used by
2890	  the virtual console screen blanker, and won't turn off the backlight
2891	  when using the X Window system. This also doesn't have anything to
2892	  do with your VESA-compliant power-saving monitor. Further, this
2893	  option doesn't work for all laptops -- it might not turn off your
2894	  backlight at all, or it might print a lot of errors to the console,
2895	  especially if you are using gpm.
2896
2897config APM_ALLOW_INTS
2898	bool "Allow interrupts during APM BIOS calls"
2899	help
2900	  Normally we disable external interrupts while we are making calls to
2901	  the APM BIOS as a measure to lessen the effects of a badly behaving
2902	  BIOS implementation.  The BIOS should reenable interrupts if it
2903	  needs to.  Unfortunately, some BIOSes do not -- especially those in
2904	  many of the newer IBM Thinkpads.  If you experience hangs when you
2905	  suspend, try setting this to Y.  Otherwise, say N.
2906
2907endif # APM
2908
2909source "drivers/cpufreq/Kconfig"
2910
2911source "drivers/cpuidle/Kconfig"
2912
2913source "drivers/idle/Kconfig"
2914
2915endmenu
2916
2917menu "Bus options (PCI etc.)"
2918
2919choice
2920	prompt "PCI access mode"
2921	depends on X86_32 && PCI
2922	default PCI_GOANY
2923	help
2924	  On PCI systems, the BIOS can be used to detect the PCI devices and
2925	  determine their configuration. However, some old PCI motherboards
2926	  have BIOS bugs and may crash if this is done. Also, some embedded
2927	  PCI-based systems don't have any BIOS at all. Linux can also try to
2928	  detect the PCI hardware directly without using the BIOS.
2929
2930	  With this option, you can specify how Linux should detect the
2931	  PCI devices. If you choose "BIOS", the BIOS will be used,
2932	  if you choose "Direct", the BIOS won't be used, and if you
2933	  choose "MMConfig", then PCI Express MMCONFIG will be used.
2934	  If you choose "Any", the kernel will try MMCONFIG, then the
2935	  direct access method and falls back to the BIOS if that doesn't
2936	  work. If unsure, go with the default, which is "Any".
2937
2938config PCI_GOBIOS
2939	bool "BIOS"
2940
2941config PCI_GOMMCONFIG
2942	bool "MMConfig"
2943
2944config PCI_GODIRECT
2945	bool "Direct"
2946
2947config PCI_GOOLPC
2948	bool "OLPC XO-1"
2949	depends on OLPC
2950
2951config PCI_GOANY
2952	bool "Any"
2953
2954endchoice
2955
2956config PCI_BIOS
2957	def_bool y
2958	depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY)
2959
2960# x86-64 doesn't support PCI BIOS access from long mode so always go direct.
2961config PCI_DIRECT
2962	def_bool y
2963	depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC || PCI_GOMMCONFIG))
2964
2965config PCI_MMCONFIG
2966	bool "Support mmconfig PCI config space access" if X86_64
2967	default y
2968	depends on PCI && (ACPI || JAILHOUSE_GUEST)
2969	depends on X86_64 || (PCI_GOANY || PCI_GOMMCONFIG)
2970
2971config PCI_OLPC
2972	def_bool y
2973	depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY)
2974
2975config PCI_XEN
2976	def_bool y
2977	depends on PCI && XEN
2978
2979config MMCONF_FAM10H
2980	def_bool y
2981	depends on X86_64 && PCI_MMCONFIG && ACPI
2982
2983config PCI_CNB20LE_QUIRK
2984	bool "Read CNB20LE Host Bridge Windows" if EXPERT
2985	depends on PCI
2986	help
2987	  Read the PCI windows out of the CNB20LE host bridge. This allows
2988	  PCI hotplug to work on systems with the CNB20LE chipset which do
2989	  not have ACPI.
2990
2991	  There's no public spec for this chipset, and this functionality
2992	  is known to be incomplete.
2993
2994	  You should say N unless you know you need this.
2995
2996config ISA_BUS
2997	bool "ISA bus support on modern systems" if EXPERT
2998	help
2999	  Expose ISA bus device drivers and options available for selection and
3000	  configuration. Enable this option if your target machine has an ISA
3001	  bus. ISA is an older system, displaced by PCI and newer bus
3002	  architectures -- if your target machine is modern, it probably does
3003	  not have an ISA bus.
3004
3005	  If unsure, say N.
3006
3007# x86_64 have no ISA slots, but can have ISA-style DMA.
3008config ISA_DMA_API
3009	bool "ISA-style DMA support" if (X86_64 && EXPERT)
3010	default y
3011	help
3012	  Enables ISA-style DMA support for devices requiring such controllers.
3013	  If unsure, say Y.
3014
3015if X86_32
3016
3017config ISA
3018	bool "ISA support"
3019	help
3020	  Find out whether you have ISA slots on your motherboard.  ISA is the
3021	  name of a bus system, i.e. the way the CPU talks to the other stuff
3022	  inside your box.  Other bus systems are PCI, EISA, MicroChannel
3023	  (MCA) or VESA.  ISA is an older system, now being displaced by PCI;
3024	  newer boards don't support it.  If you have ISA, say Y, otherwise N.
3025
3026config SCx200
3027	tristate "NatSemi SCx200 support"
3028	help
3029	  This provides basic support for National Semiconductor's
3030	  (now AMD's) Geode processors.  The driver probes for the
3031	  PCI-IDs of several on-chip devices, so its a good dependency
3032	  for other scx200_* drivers.
3033
3034	  If compiled as a module, the driver is named scx200.
3035
3036config SCx200HR_TIMER
3037	tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
3038	depends on SCx200
3039	default y
3040	help
3041	  This driver provides a clocksource built upon the on-chip
3042	  27MHz high-resolution timer.  Its also a workaround for
3043	  NSC Geode SC-1100's buggy TSC, which loses time when the
3044	  processor goes idle (as is done by the scheduler).  The
3045	  other workaround is idle=poll boot option.
3046
3047config OLPC
3048	bool "One Laptop Per Child support"
3049	depends on !X86_PAE
3050	select GPIOLIB
3051	select OF
3052	select OF_PROMTREE
3053	select IRQ_DOMAIN
3054	select OLPC_EC
3055	help
3056	  Add support for detecting the unique features of the OLPC
3057	  XO hardware.
3058
3059config OLPC_XO1_PM
3060	bool "OLPC XO-1 Power Management"
3061	depends on OLPC && MFD_CS5535=y && PM_SLEEP
3062	help
3063	  Add support for poweroff and suspend of the OLPC XO-1 laptop.
3064
3065config OLPC_XO1_RTC
3066	bool "OLPC XO-1 Real Time Clock"
3067	depends on OLPC_XO1_PM && RTC_DRV_CMOS
3068	help
3069	  Add support for the XO-1 real time clock, which can be used as a
3070	  programmable wakeup source.
3071
3072config OLPC_XO1_SCI
3073	bool "OLPC XO-1 SCI extras"
3074	depends on OLPC && OLPC_XO1_PM && GPIO_CS5535=y
3075	depends on INPUT=y
3076	select POWER_SUPPLY
3077	help
3078	  Add support for SCI-based features of the OLPC XO-1 laptop:
3079	   - EC-driven system wakeups
3080	   - Power button
3081	   - Ebook switch
3082	   - Lid switch
3083	   - AC adapter status updates
3084	   - Battery status updates
3085
3086config OLPC_XO15_SCI
3087	bool "OLPC XO-1.5 SCI extras"
3088	depends on OLPC && ACPI
3089	select POWER_SUPPLY
3090	help
3091	  Add support for SCI-based features of the OLPC XO-1.5 laptop:
3092	   - EC-driven system wakeups
3093	   - AC adapter status updates
3094	   - Battery status updates
3095
3096config GEODE_COMMON
3097	bool
3098
3099config ALIX
3100	bool "PCEngines ALIX System Support (LED setup)"
3101	select GPIOLIB
3102	select GEODE_COMMON
3103	help
3104	  This option enables system support for the PCEngines ALIX.
3105	  At present this just sets up LEDs for GPIO control on
3106	  ALIX2/3/6 boards.  However, other system specific setup should
3107	  get added here.
3108
3109	  Note: You must still enable the drivers for GPIO and LED support
3110	  (GPIO_CS5535 & LEDS_GPIO) to actually use the LEDs
3111
3112	  Note: You have to set alix.force=1 for boards with Award BIOS.
3113
3114config NET5501
3115	bool "Soekris Engineering net5501 System Support (LEDS, GPIO, etc)"
3116	select GPIOLIB
3117	select GEODE_COMMON
3118	help
3119	  This option enables system support for the Soekris Engineering net5501.
3120
3121config GEOS
3122	bool "Traverse Technologies GEOS System Support (LEDS, GPIO, etc)"
3123	select GPIOLIB
3124	select GEODE_COMMON
3125	depends on DMI
3126	help
3127	  This option enables system support for the Traverse Technologies GEOS.
3128
3129config TS5500
3130	bool "Technologic Systems TS-5500 platform support"
3131	depends on MELAN
3132	select CHECK_SIGNATURE
3133	select NEW_LEDS
3134	select LEDS_CLASS
3135	help
3136	  This option enables system support for the Technologic Systems TS-5500.
3137
3138endif # X86_32
3139
3140config AMD_NB
3141	def_bool y
3142	depends on AMD_NODE
3143
3144config AMD_NODE
3145	def_bool y
3146	depends on CPU_SUP_AMD && PCI
3147
3148endmenu
3149
3150menu "Binary Emulations"
3151
3152config IA32_EMULATION
3153	bool "IA32 Emulation"
3154	depends on X86_64
3155	select ARCH_WANT_OLD_COMPAT_IPC
3156	select BINFMT_ELF
3157	select COMPAT_OLD_SIGACTION
3158	help
3159	  Include code to run legacy 32-bit programs under a
3160	  64-bit kernel. You should likely turn this on, unless you're
3161	  100% sure that you don't have any 32-bit programs left.
3162
3163config IA32_EMULATION_DEFAULT_DISABLED
3164	bool "IA32 emulation disabled by default"
3165	default n
3166	depends on IA32_EMULATION
3167	help
3168	  Make IA32 emulation disabled by default. This prevents loading 32-bit
3169	  processes and access to 32-bit syscalls. If unsure, leave it to its
3170	  default value.
3171
3172config X86_X32_ABI
3173	bool "x32 ABI for 64-bit mode"
3174	depends on X86_64
3175	# llvm-objcopy does not convert x86_64 .note.gnu.property or
3176	# compressed debug sections to x86_x32 properly:
3177	# https://github.com/ClangBuiltLinux/linux/issues/514
3178	# https://github.com/ClangBuiltLinux/linux/issues/1141
3179	depends on $(success,$(OBJCOPY) --version | head -n1 | grep -qv llvm)
3180	help
3181	  Include code to run binaries for the x32 native 32-bit ABI
3182	  for 64-bit processors.  An x32 process gets access to the
3183	  full 64-bit register file and wide data path while leaving
3184	  pointers at 32 bits for smaller memory footprint.
3185
3186config COMPAT_32
3187	def_bool y
3188	depends on IA32_EMULATION || X86_32
3189	select HAVE_UID16
3190	select OLD_SIGSUSPEND3
3191
3192config COMPAT
3193	def_bool y
3194	depends on IA32_EMULATION || X86_X32_ABI
3195
3196config COMPAT_FOR_U64_ALIGNMENT
3197	def_bool y
3198	depends on COMPAT
3199
3200endmenu
3201
3202config HAVE_ATOMIC_IOMAP
3203	def_bool y
3204	depends on X86_32
3205
3206source "arch/x86/kvm/Kconfig"
3207
3208source "arch/x86/Kconfig.assembler"
3209