1 /*
2 * Copyright (c) 2018-2020, 2022 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "arm_compute/core/CPP/kernels/CPPBoxWithNonMaximaSuppressionLimitKernel.h"
25
26 #include "arm_compute/core/Helpers.h"
27 #include "src/core/helpers/WindowHelpers.h"
28
29 #include <algorithm>
30 #include <cmath>
31
32 namespace arm_compute
33 {
34 namespace
35 {
36 template <typename T>
SoftNMS(const ITensor * proposals,std::vector<std::vector<T>> & scores_in,std::vector<int> inds,const BoxNMSLimitInfo & info,int class_id)37 std::vector<int> SoftNMS(const ITensor *proposals, std::vector<std::vector<T>> &scores_in, std::vector<int> inds, const BoxNMSLimitInfo &info, int class_id)
38 {
39 std::vector<int> keep;
40 const int proposals_width = proposals->info()->dimension(1);
41
42 std::vector<T> x1(proposals_width);
43 std::vector<T> y1(proposals_width);
44 std::vector<T> x2(proposals_width);
45 std::vector<T> y2(proposals_width);
46 std::vector<T> areas(proposals_width);
47
48 for(int i = 0; i < proposals_width; ++i)
49 {
50 x1[i] = *reinterpret_cast<T *>(proposals->ptr_to_element(Coordinates(class_id * 4, i)));
51 y1[i] = *reinterpret_cast<T *>(proposals->ptr_to_element(Coordinates(class_id * 4 + 1, i)));
52 x2[i] = *reinterpret_cast<T *>(proposals->ptr_to_element(Coordinates(class_id * 4 + 2, i)));
53 y2[i] = *reinterpret_cast<T *>(proposals->ptr_to_element(Coordinates(class_id * 4 + 3, i)));
54 areas[i] = (x2[i] - x1[i] + 1.0) * (y2[i] - y1[i] + 1.0);
55 }
56
57 // Note: Soft NMS scores have already been initialized with input scores
58
59 while(!inds.empty())
60 {
61 // Find proposal with max score among remaining proposals
62 int max_pos = 0;
63 for(unsigned int i = 1; i < inds.size(); ++i)
64 {
65 if(scores_in[class_id][inds.at(i)] > scores_in[class_id][inds.at(max_pos)])
66 {
67 max_pos = i;
68 }
69 }
70 int element = inds.at(max_pos);
71 keep.push_back(element);
72 std::swap(inds.at(0), inds.at(max_pos));
73
74 // Remove first element and compute IoU of the remaining boxes with identified max box
75 inds.erase(inds.begin());
76
77 std::vector<int> sorted_indices_temp;
78 for(auto idx : inds)
79 {
80 const auto xx1 = std::max(x1[idx], x1[element]);
81 const auto yy1 = std::max(y1[idx], y1[element]);
82 const auto xx2 = std::min(x2[idx], x2[element]);
83 const auto yy2 = std::min(y2[idx], y2[element]);
84
85 const auto w = std::max((xx2 - xx1 + 1.f), 0.f);
86 const auto h = std::max((yy2 - yy1 + 1.f), 0.f);
87 const auto inter = w * h;
88 const auto ovr = inter / (areas[element] + areas[idx] - inter);
89
90 // Update scores based on computed IoU, overlap threshold and NMS method
91 T weight;
92 switch(info.soft_nms_method())
93 {
94 case NMSType::LINEAR:
95 weight = (ovr > info.nms()) ? (1.f - ovr) : 1.f;
96 break;
97 case NMSType::GAUSSIAN: // Gaussian
98 weight = std::exp(-1.f * ovr * ovr / info.soft_nms_sigma());
99 break;
100 case NMSType::ORIGINAL: // Original NMS
101 weight = (ovr > info.nms()) ? 0.f : 1.f;
102 break;
103 default:
104 ARM_COMPUTE_ERROR("Not supported");
105 }
106
107 // Discard boxes with new scores below min threshold and update pending indices
108 scores_in[class_id][idx] *= weight;
109 if(scores_in[class_id][idx] >= info.soft_nms_min_score_thres())
110 {
111 sorted_indices_temp.push_back(idx);
112 }
113 }
114 inds = sorted_indices_temp;
115 }
116
117 return keep;
118 }
119
120 template <typename T>
NonMaximaSuppression(const ITensor * proposals,std::vector<int> sorted_indices,const BoxNMSLimitInfo & info,int class_id)121 std::vector<int> NonMaximaSuppression(const ITensor *proposals, std::vector<int> sorted_indices, const BoxNMSLimitInfo &info, int class_id)
122 {
123 std::vector<int> keep;
124
125 const int proposals_width = proposals->info()->dimension(1);
126
127 std::vector<T> x1(proposals_width);
128 std::vector<T> y1(proposals_width);
129 std::vector<T> x2(proposals_width);
130 std::vector<T> y2(proposals_width);
131 std::vector<T> areas(proposals_width);
132
133 for(int i = 0; i < proposals_width; ++i)
134 {
135 x1[i] = *reinterpret_cast<T *>(proposals->ptr_to_element(Coordinates(class_id * 4, i)));
136 y1[i] = *reinterpret_cast<T *>(proposals->ptr_to_element(Coordinates(class_id * 4 + 1, i)));
137 x2[i] = *reinterpret_cast<T *>(proposals->ptr_to_element(Coordinates(class_id * 4 + 2, i)));
138 y2[i] = *reinterpret_cast<T *>(proposals->ptr_to_element(Coordinates(class_id * 4 + 3, i)));
139 areas[i] = (x2[i] - x1[i] + 1.0) * (y2[i] - y1[i] + 1.0);
140 }
141
142 while(!sorted_indices.empty())
143 {
144 int i = sorted_indices.at(0);
145 keep.push_back(i);
146
147 std::vector<int> sorted_indices_temp = sorted_indices;
148 std::vector<int> new_indices;
149 sorted_indices_temp.erase(sorted_indices_temp.begin());
150
151 for(unsigned int j = 0; j < sorted_indices_temp.size(); ++j)
152 {
153 const float xx1 = std::max(x1[sorted_indices_temp.at(j)], x1[i]);
154 const float yy1 = std::max(y1[sorted_indices_temp.at(j)], y1[i]);
155 const float xx2 = std::min(x2[sorted_indices_temp.at(j)], x2[i]);
156 const float yy2 = std::min(y2[sorted_indices_temp.at(j)], y2[i]);
157
158 const float w = std::max((xx2 - xx1 + 1.f), 0.f);
159 const float h = std::max((yy2 - yy1 + 1.f), 0.f);
160 const float inter = w * h;
161 const float ovr = inter / (areas[i] + areas[sorted_indices_temp.at(j)] - inter);
162 const float ctr_x = xx1 + (w / 2);
163 const float ctr_y = yy1 + (h / 2);
164
165 // If suppress_size is specified, filter the boxes based on their size and position
166 const bool keep_size = !info.suppress_size() || (w >= info.min_size() && h >= info.min_size() && ctr_x < info.im_width() && ctr_y < info.im_height());
167 if(ovr <= info.nms() && keep_size)
168 {
169 new_indices.push_back(j);
170 }
171 }
172
173 const unsigned int new_indices_size = new_indices.size();
174 std::vector<int> new_sorted_indices(new_indices_size);
175 for(unsigned int i = 0; i < new_indices_size; ++i)
176 {
177 new_sorted_indices[i] = sorted_indices[new_indices[i] + 1];
178 }
179 sorted_indices = new_sorted_indices;
180 }
181
182 return keep;
183 }
184 } // namespace
185
CPPBoxWithNonMaximaSuppressionLimitKernel()186 CPPBoxWithNonMaximaSuppressionLimitKernel::CPPBoxWithNonMaximaSuppressionLimitKernel()
187 : _scores_in(nullptr), _boxes_in(nullptr), _batch_splits_in(nullptr), _scores_out(nullptr), _boxes_out(nullptr), _classes(nullptr), _batch_splits_out(nullptr), _keeps(nullptr), _keeps_size(nullptr),
188 _info()
189 {
190 }
191
is_parallelisable() const192 bool CPPBoxWithNonMaximaSuppressionLimitKernel::is_parallelisable() const
193 {
194 return false;
195 }
196
197 template <typename T>
run_nmslimit()198 void CPPBoxWithNonMaximaSuppressionLimitKernel::run_nmslimit()
199 {
200 const int batch_size = _batch_splits_in == nullptr ? 1 : _batch_splits_in->info()->dimension(0);
201 const int num_classes = _scores_in->info()->dimension(0);
202 const int scores_count = _scores_in->info()->dimension(1);
203 std::vector<int> total_keep_per_batch(batch_size);
204 std::vector<std::vector<int>> keeps(num_classes);
205 int total_keep_count = 0;
206
207 std::vector<std::vector<T>> in_scores(num_classes, std::vector<T>(scores_count));
208 for(int i = 0; i < scores_count; ++i)
209 {
210 for(int j = 0; j < num_classes; ++j)
211 {
212 in_scores[j][i] = *reinterpret_cast<const T *>(_scores_in->ptr_to_element(Coordinates(j, i)));
213 }
214 }
215
216 int cur_start_idx = 0;
217 for(int b = 0; b < batch_size; ++b)
218 {
219 // Skip first class if there is more than 1 except if the number of classes is 1.
220 const int j_start = (num_classes == 1 ? 0 : 1);
221 for(int j = j_start; j < num_classes; ++j)
222 {
223 std::vector<T> cur_scores(scores_count);
224 std::vector<int> inds;
225 for(int i = 0; i < scores_count; ++i)
226 {
227 const T score = in_scores[j][i];
228 cur_scores[i] = score;
229
230 if(score > _info.score_thresh())
231 {
232 inds.push_back(i);
233 }
234 }
235 if(_info.soft_nms_enabled())
236 {
237 keeps[j] = SoftNMS(_boxes_in, in_scores, inds, _info, j);
238 }
239 else
240 {
241 std::sort(inds.data(), inds.data() + inds.size(),
242 [&cur_scores](int lhs, int rhs)
243 {
244 return cur_scores[lhs] > cur_scores[rhs];
245 });
246
247 keeps[j] = NonMaximaSuppression<T>(_boxes_in, inds, _info, j);
248 }
249 total_keep_count += keeps[j].size();
250 }
251
252 if(_info.detections_per_im() > 0 && total_keep_count > _info.detections_per_im())
253 {
254 // merge all scores (represented by indices) together and sort
255 auto get_all_scores_sorted = [&in_scores, &keeps, total_keep_count]()
256 {
257 std::vector<T> ret(total_keep_count);
258
259 int ret_idx = 0;
260 for(unsigned int i = 1; i < keeps.size(); ++i)
261 {
262 auto &cur_keep = keeps[i];
263 for(auto &ckv : cur_keep)
264 {
265 ret[ret_idx++] = in_scores[i][ckv];
266 }
267 }
268
269 std::sort(ret.data(), ret.data() + ret.size());
270
271 return ret;
272 };
273
274 auto all_scores_sorted = get_all_scores_sorted();
275 const T image_thresh = all_scores_sorted[all_scores_sorted.size() - _info.detections_per_im()];
276 for(int j = 1; j < num_classes; ++j)
277 {
278 auto &cur_keep = keeps[j];
279 std::vector<int> new_keeps_j;
280 for(auto &k : cur_keep)
281 {
282 if(in_scores[j][k] >= image_thresh)
283 {
284 new_keeps_j.push_back(k);
285 }
286 }
287 keeps[j] = new_keeps_j;
288 }
289 total_keep_count = _info.detections_per_im();
290 }
291
292 total_keep_per_batch[b] = total_keep_count;
293
294 // Write results
295 int cur_out_idx = 0;
296 for(int j = j_start; j < num_classes; ++j)
297 {
298 auto &cur_keep = keeps[j];
299 auto cur_out_scores = reinterpret_cast<T *>(_scores_out->ptr_to_element(Coordinates(cur_start_idx + cur_out_idx)));
300 auto cur_out_classes = reinterpret_cast<T *>(_classes->ptr_to_element(Coordinates(cur_start_idx + cur_out_idx)));
301 const int box_column = (cur_start_idx + cur_out_idx) * 4;
302
303 for(unsigned int k = 0; k < cur_keep.size(); ++k)
304 {
305 cur_out_scores[k] = in_scores[j][cur_keep[k]];
306 cur_out_classes[k] = static_cast<T>(j);
307 auto cur_out_box_row0 = reinterpret_cast<T *>(_boxes_out->ptr_to_element(Coordinates(box_column + 0, k)));
308 auto cur_out_box_row1 = reinterpret_cast<T *>(_boxes_out->ptr_to_element(Coordinates(box_column + 1, k)));
309 auto cur_out_box_row2 = reinterpret_cast<T *>(_boxes_out->ptr_to_element(Coordinates(box_column + 2, k)));
310 auto cur_out_box_row3 = reinterpret_cast<T *>(_boxes_out->ptr_to_element(Coordinates(box_column + 3, k)));
311 *cur_out_box_row0 = *reinterpret_cast<const T *>(_boxes_in->ptr_to_element(Coordinates(j * 4 + 0, cur_keep[k])));
312 *cur_out_box_row1 = *reinterpret_cast<const T *>(_boxes_in->ptr_to_element(Coordinates(j * 4 + 1, cur_keep[k])));
313 *cur_out_box_row2 = *reinterpret_cast<const T *>(_boxes_in->ptr_to_element(Coordinates(j * 4 + 2, cur_keep[k])));
314 *cur_out_box_row3 = *reinterpret_cast<const T *>(_boxes_in->ptr_to_element(Coordinates(j * 4 + 3, cur_keep[k])));
315 }
316
317 cur_out_idx += cur_keep.size();
318 }
319
320 if(_keeps != nullptr)
321 {
322 cur_out_idx = 0;
323 for(int j = 0; j < num_classes; ++j)
324 {
325 for(unsigned int i = 0; i < keeps[j].size(); ++i)
326 {
327 *reinterpret_cast<T *>(_keeps->ptr_to_element(Coordinates(cur_start_idx + cur_out_idx + i))) = static_cast<T>(keeps[j].at(i));
328 }
329 *reinterpret_cast<uint32_t *>(_keeps_size->ptr_to_element(Coordinates(j + b * num_classes))) = keeps[j].size();
330 cur_out_idx += keeps[j].size();
331 }
332 }
333
334 cur_start_idx += total_keep_count;
335 }
336
337 if(_batch_splits_out != nullptr)
338 {
339 for(int b = 0; b < batch_size; ++b)
340 {
341 *reinterpret_cast<float *>(_batch_splits_out->ptr_to_element(Coordinates(b))) = total_keep_per_batch[b];
342 }
343 }
344 }
345
configure(const ITensor * scores_in,const ITensor * boxes_in,const ITensor * batch_splits_in,ITensor * scores_out,ITensor * boxes_out,ITensor * classes,ITensor * batch_splits_out,ITensor * keeps,ITensor * keeps_size,const BoxNMSLimitInfo info)346 void CPPBoxWithNonMaximaSuppressionLimitKernel::configure(const ITensor *scores_in, const ITensor *boxes_in, const ITensor *batch_splits_in, ITensor *scores_out, ITensor *boxes_out, ITensor *classes,
347 ITensor *batch_splits_out, ITensor *keeps, ITensor *keeps_size, const BoxNMSLimitInfo info)
348 {
349 ARM_COMPUTE_ERROR_ON_NULLPTR(scores_in, boxes_in, scores_out, boxes_out, classes);
350 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(scores_in, 1, DataType::F16, DataType::F32);
351 ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(scores_in, boxes_in, scores_out);
352 const unsigned int num_classes = scores_in->info()->dimension(0);
353
354 ARM_COMPUTE_UNUSED(num_classes);
355 ARM_COMPUTE_ERROR_ON_MSG((4 * num_classes) != boxes_in->info()->dimension(0), "First dimension of input boxes must be of size 4*num_classes");
356 ARM_COMPUTE_ERROR_ON_MSG(scores_in->info()->dimension(1) != boxes_in->info()->dimension(1), "Input scores and input boxes must have the same number of rows");
357
358 ARM_COMPUTE_ERROR_ON(scores_out->info()->dimension(0) != boxes_out->info()->dimension(1));
359 ARM_COMPUTE_ERROR_ON(boxes_out->info()->dimension(0) != 4);
360 ARM_COMPUTE_ERROR_ON(scores_out->info()->dimension(0) != classes->info()->dimension(0));
361 if(keeps != nullptr)
362 {
363 ARM_COMPUTE_ERROR_ON_MSG(keeps_size == nullptr, "keeps_size cannot be nullptr if keeps has to be provided as output");
364 ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(scores_in, keeps);
365 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(keeps_size, 1, DataType::U32);
366 ARM_COMPUTE_ERROR_ON(scores_out->info()->dimension(0) != keeps->info()->dimension(0));
367 ARM_COMPUTE_ERROR_ON(num_classes != keeps_size->info()->dimension(0));
368 }
369 if(batch_splits_in != nullptr)
370 {
371 ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(scores_in, batch_splits_in);
372 }
373 if(batch_splits_out != nullptr)
374 {
375 ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(scores_in, batch_splits_out);
376 }
377
378 _scores_in = scores_in;
379 _boxes_in = boxes_in;
380 _batch_splits_in = batch_splits_in;
381 _scores_out = scores_out;
382 _boxes_out = boxes_out;
383 _classes = classes;
384 _batch_splits_out = batch_splits_out;
385 _keeps = keeps;
386 _keeps_size = keeps_size;
387 _info = info;
388
389 // Configure kernel window
390 Window win = calculate_max_window(*scores_in->info(), Steps(scores_in->info()->dimension(0)));
391
392 IKernel::configure(win);
393 }
394
run(const Window & window,const ThreadInfo & info)395 void CPPBoxWithNonMaximaSuppressionLimitKernel::run(const Window &window, const ThreadInfo &info)
396 {
397 ARM_COMPUTE_UNUSED(info);
398 ARM_COMPUTE_UNUSED(window);
399 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
400 ARM_COMPUTE_ERROR_ON_MISMATCHING_WINDOWS(IKernel::window(), window);
401
402 switch(_scores_in->info()->data_type())
403 {
404 case DataType::F32:
405 run_nmslimit<float>();
406 break;
407 case DataType::F16:
408 run_nmslimit<half>();
409 break;
410 default:
411 ARM_COMPUTE_ERROR("Not supported");
412 }
413 }
414 } // namespace arm_compute
415