1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "interpreter_common.h"
18
19 #include <cmath>
20
21 #include "base/casts.h"
22 #include "base/pointer_size.h"
23 #include "class_linker.h"
24 #include "class_root-inl.h"
25 #include "debugger.h"
26 #include "dex/dex_file_types.h"
27 #include "entrypoints/runtime_asm_entrypoints.h"
28 #include "handle.h"
29 #include "intrinsics_enum.h"
30 #include "intrinsics_list.h"
31 #include "jit/jit.h"
32 #include "jvalue-inl.h"
33 #include "method_handles-inl.h"
34 #include "method_handles.h"
35 #include "mirror/array-alloc-inl.h"
36 #include "mirror/array-inl.h"
37 #include "mirror/call_site-inl.h"
38 #include "mirror/class.h"
39 #include "mirror/emulated_stack_frame.h"
40 #include "mirror/method_handle_impl-inl.h"
41 #include "mirror/method_type-inl.h"
42 #include "mirror/object_array-alloc-inl.h"
43 #include "mirror/object_array-inl.h"
44 #include "mirror/var_handle.h"
45 #include "reflection-inl.h"
46 #include "reflection.h"
47 #include "shadow_frame-inl.h"
48 #include "stack.h"
49 #include "thread-inl.h"
50 #include "var_handles.h"
51 #include "well_known_classes-inl.h"
52
53 namespace art HIDDEN {
54 namespace interpreter {
55
ThrowNullPointerExceptionFromInterpreter()56 void ThrowNullPointerExceptionFromInterpreter() {
57 ThrowNullPointerExceptionFromDexPC();
58 }
59
CheckStackOverflow(Thread * self,size_t frame_size)60 bool CheckStackOverflow(Thread* self, size_t frame_size)
61 REQUIRES_SHARED(Locks::mutator_lock_) {
62 bool implicit_check = Runtime::Current()->GetImplicitStackOverflowChecks();
63 uint8_t* stack_end = self->GetStackEndForInterpreter(implicit_check);
64 if (UNLIKELY(__builtin_frame_address(0) < stack_end + frame_size)) {
65 ThrowStackOverflowError<kNativeStackType>(self);
66 return false;
67 }
68 return true;
69 }
70
ShouldStayInSwitchInterpreter(ArtMethod * method)71 bool ShouldStayInSwitchInterpreter(ArtMethod* method)
72 REQUIRES_SHARED(Locks::mutator_lock_) {
73 if (!Runtime::Current()->IsStarted()) {
74 // For unstarted runtimes, always use the interpreter entrypoint. This fixes the case where
75 // we are doing cross compilation. Note that GetEntryPointFromQuickCompiledCode doesn't use
76 // the image pointer size here and this may case an overflow if it is called from the
77 // compiler. b/62402160
78 return true;
79 }
80
81 if (UNLIKELY(method->IsNative() || method->IsProxyMethod())) {
82 return false;
83 }
84
85 if (Thread::Current()->IsForceInterpreter()) {
86 // Force the use of interpreter when it is required by the debugger.
87 return true;
88 }
89
90 if (Thread::Current()->IsAsyncExceptionPending()) {
91 // Force use of interpreter to handle async-exceptions
92 return true;
93 }
94
95 const void* code = method->GetEntryPointFromQuickCompiledCode();
96 return Runtime::Current()->GetClassLinker()->IsQuickToInterpreterBridge(code);
97 }
98
99 template <typename T>
SendMethodExitEvents(Thread * self,const instrumentation::Instrumentation * instrumentation,ShadowFrame & frame,ArtMethod * method,T & result)100 bool SendMethodExitEvents(Thread* self,
101 const instrumentation::Instrumentation* instrumentation,
102 ShadowFrame& frame,
103 ArtMethod* method,
104 T& result) {
105 bool had_event = false;
106 // We can get additional ForcePopFrame requests during handling of these events. We should
107 // respect these and send additional instrumentation events.
108 do {
109 frame.SetForcePopFrame(false);
110 if (UNLIKELY(instrumentation->HasMethodExitListeners() && !frame.GetSkipMethodExitEvents())) {
111 had_event = true;
112 instrumentation->MethodExitEvent(self, method, instrumentation::OptionalFrame{frame}, result);
113 }
114 // We don't send method-exit if it's a pop-frame. We still send frame_popped though.
115 if (UNLIKELY(frame.NeedsNotifyPop() && instrumentation->HasWatchedFramePopListeners())) {
116 had_event = true;
117 instrumentation->WatchedFramePopped(self, frame);
118 }
119 } while (UNLIKELY(frame.GetForcePopFrame()));
120 if (UNLIKELY(had_event)) {
121 return !self->IsExceptionPending();
122 } else {
123 return true;
124 }
125 }
126
127 template
128 bool SendMethodExitEvents(Thread* self,
129 const instrumentation::Instrumentation* instrumentation,
130 ShadowFrame& frame,
131 ArtMethod* method,
132 MutableHandle<mirror::Object>& result);
133
134 template
135 bool SendMethodExitEvents(Thread* self,
136 const instrumentation::Instrumentation* instrumentation,
137 ShadowFrame& frame,
138 ArtMethod* method,
139 JValue& result);
140
141 // We execute any instrumentation events that are triggered by this exception and change the
142 // shadow_frame's dex_pc to that of the exception handler if there is one in the current method.
143 // Return true if we should continue executing in the current method and false if we need to go up
144 // the stack to find an exception handler.
145 // We accept a null Instrumentation* meaning we must not report anything to the instrumentation.
146 // TODO We should have a better way to skip instrumentation reporting or possibly rethink that
147 // behavior.
MoveToExceptionHandler(Thread * self,ShadowFrame & shadow_frame,bool skip_listeners,bool skip_throw_listener)148 bool MoveToExceptionHandler(Thread* self,
149 ShadowFrame& shadow_frame,
150 bool skip_listeners,
151 bool skip_throw_listener) {
152 self->VerifyStack();
153 StackHandleScope<2> hs(self);
154 Handle<mirror::Throwable> exception(hs.NewHandle(self->GetException()));
155 const instrumentation::Instrumentation* instrumentation =
156 Runtime::Current()->GetInstrumentation();
157 if (!skip_throw_listener &&
158 instrumentation->HasExceptionThrownListeners() &&
159 self->IsExceptionThrownByCurrentMethod(exception.Get())) {
160 // See b/65049545 for why we don't need to check to see if the exception has changed.
161 instrumentation->ExceptionThrownEvent(self, exception.Get());
162 if (shadow_frame.GetForcePopFrame()) {
163 // We will check in the caller for GetForcePopFrame again. We need to bail out early to
164 // prevent an ExceptionHandledEvent from also being sent before popping.
165 return true;
166 }
167 }
168 bool clear_exception = false;
169 uint32_t found_dex_pc = shadow_frame.GetMethod()->FindCatchBlock(
170 hs.NewHandle(exception->GetClass()), shadow_frame.GetDexPC(), &clear_exception);
171 if (found_dex_pc == dex::kDexNoIndex) {
172 if (!skip_listeners) {
173 if (shadow_frame.NeedsNotifyPop()) {
174 instrumentation->WatchedFramePopped(self, shadow_frame);
175 if (shadow_frame.GetForcePopFrame()) {
176 // We will check in the caller for GetForcePopFrame again. We need to bail out early to
177 // prevent an ExceptionHandledEvent from also being sent before popping and to ensure we
178 // handle other types of non-standard-exits.
179 return true;
180 }
181 }
182 // Exception is not caught by the current method. We will unwind to the
183 // caller. Notify any instrumentation listener.
184 instrumentation->MethodUnwindEvent(self,
185 shadow_frame.GetMethod(),
186 shadow_frame.GetDexPC());
187 }
188 return shadow_frame.GetForcePopFrame();
189 } else {
190 shadow_frame.SetDexPC(found_dex_pc);
191 if (!skip_listeners && instrumentation->HasExceptionHandledListeners()) {
192 shadow_frame.SetNotifyExceptionHandledEvent(/*enable=*/ true);
193 } else if (clear_exception) {
194 self->ClearException();
195 }
196 return true;
197 }
198 }
199
UnexpectedOpcode(const Instruction * inst,const ShadowFrame & shadow_frame)200 void UnexpectedOpcode(const Instruction* inst, const ShadowFrame& shadow_frame) {
201 LOG(FATAL) << "Unexpected instruction: "
202 << inst->DumpString(shadow_frame.GetMethod()->GetDexFile());
203 UNREACHABLE();
204 }
205
206 // START DECLARATIONS :
207 //
208 // These additional declarations are required because clang complains
209 // about ALWAYS_INLINE (-Werror, -Wgcc-compat) in definitions.
210 //
211
212 template <bool is_range>
213 NO_STACK_PROTECTOR
214 static ALWAYS_INLINE bool DoCallCommon(ArtMethod* called_method,
215 Thread* self,
216 ShadowFrame& shadow_frame,
217 JValue* result,
218 uint16_t number_of_inputs,
219 uint32_t (&arg)[Instruction::kMaxVarArgRegs],
220 uint32_t vregC,
221 bool string_init) REQUIRES_SHARED(Locks::mutator_lock_);
222
223 template <bool is_range>
224 ALWAYS_INLINE void CopyRegisters(ShadowFrame& caller_frame,
225 ShadowFrame* callee_frame,
226 const uint32_t (&arg)[Instruction::kMaxVarArgRegs],
227 const size_t first_src_reg,
228 const size_t first_dest_reg,
229 const size_t num_regs) REQUIRES_SHARED(Locks::mutator_lock_);
230
231 // END DECLARATIONS.
232
233 NO_STACK_PROTECTOR
ArtInterpreterToCompiledCodeBridge(Thread * self,ArtMethod * caller,ShadowFrame * shadow_frame,uint16_t arg_offset,JValue * result)234 void ArtInterpreterToCompiledCodeBridge(Thread* self,
235 ArtMethod* caller,
236 ShadowFrame* shadow_frame,
237 uint16_t arg_offset,
238 JValue* result)
239 REQUIRES_SHARED(Locks::mutator_lock_) {
240 ArtMethod* method = shadow_frame->GetMethod();
241 // Basic checks for the arg_offset. If there's no code item, the arg_offset must be 0. Otherwise,
242 // check that the arg_offset isn't greater than the number of registers. A stronger check is
243 // difficult since the frame may contain space for all the registers in the method, or only enough
244 // space for the arguments.
245 if (kIsDebugBuild) {
246 if (method->GetCodeItem() == nullptr) {
247 DCHECK_EQ(0u, arg_offset) << method->PrettyMethod();
248 } else {
249 DCHECK_LE(arg_offset, shadow_frame->NumberOfVRegs());
250 }
251 }
252 jit::Jit* jit = Runtime::Current()->GetJit();
253 if (jit != nullptr && caller != nullptr) {
254 jit->NotifyInterpreterToCompiledCodeTransition(self, caller);
255 }
256 method->Invoke(self, shadow_frame->GetVRegArgs(arg_offset),
257 (shadow_frame->NumberOfVRegs() - arg_offset) * sizeof(uint32_t),
258 result, method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty());
259 }
260
SetStringInitValueToAllAliases(ShadowFrame * shadow_frame,uint16_t this_obj_vreg,JValue result)261 void SetStringInitValueToAllAliases(ShadowFrame* shadow_frame,
262 uint16_t this_obj_vreg,
263 JValue result)
264 REQUIRES_SHARED(Locks::mutator_lock_) {
265 ObjPtr<mirror::Object> existing = shadow_frame->GetVRegReference(this_obj_vreg);
266 if (existing == nullptr) {
267 // If it's null, we come from compiled code that was deoptimized. Nothing to do,
268 // as the compiler verified there was no alias.
269 // Set the new string result of the StringFactory.
270 shadow_frame->SetVRegReference(this_obj_vreg, result.GetL());
271 return;
272 }
273 // Set the string init result into all aliases.
274 for (uint32_t i = 0, e = shadow_frame->NumberOfVRegs(); i < e; ++i) {
275 if (shadow_frame->GetVRegReference(i) == existing) {
276 DCHECK_EQ(shadow_frame->GetVRegReference(i),
277 reinterpret_cast32<mirror::Object*>(shadow_frame->GetVReg(i)));
278 shadow_frame->SetVRegReference(i, result.GetL());
279 DCHECK_EQ(shadow_frame->GetVRegReference(i),
280 reinterpret_cast32<mirror::Object*>(shadow_frame->GetVReg(i)));
281 }
282 }
283 }
284
285 template<bool is_range>
DoMethodHandleInvokeCommon(Thread * self,ShadowFrame & shadow_frame,bool invoke_exact,const Instruction * inst,uint16_t inst_data,JValue * result)286 static bool DoMethodHandleInvokeCommon(Thread* self,
287 ShadowFrame& shadow_frame,
288 bool invoke_exact,
289 const Instruction* inst,
290 uint16_t inst_data,
291 JValue* result)
292 REQUIRES_SHARED(Locks::mutator_lock_) {
293 // Make sure to check for async exceptions
294 if (UNLIKELY(self->ObserveAsyncException())) {
295 return false;
296 }
297 // Invoke-polymorphic instructions always take a receiver. i.e, they are never static.
298 const uint32_t vRegC = (is_range) ? inst->VRegC_4rcc() : inst->VRegC_45cc();
299 const int invoke_method_idx = (is_range) ? inst->VRegB_4rcc() : inst->VRegB_45cc();
300
301 // Initialize |result| to 0 as this is the default return value for
302 // polymorphic invocations of method handle types with void return
303 // and provides a sensible return result in error cases.
304 result->SetJ(0);
305
306 // The invoke_method_idx here is the name of the signature polymorphic method that
307 // was symbolically invoked in bytecode (say MethodHandle.invoke or MethodHandle.invokeExact)
308 // and not the method that we'll dispatch to in the end.
309 StackHandleScope<2> hs(self);
310 Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
311 ObjPtr<mirror::MethodHandle>::DownCast(shadow_frame.GetVRegReference(vRegC))));
312 if (UNLIKELY(method_handle == nullptr)) {
313 // Note that the invoke type is kVirtual here because a call to a signature
314 // polymorphic method is shaped like a virtual call at the bytecode level.
315 ThrowNullPointerExceptionForMethodAccess(invoke_method_idx, InvokeType::kVirtual);
316 return false;
317 }
318
319 // The vRegH value gives the index of the proto_id associated with this
320 // signature polymorphic call site.
321 const uint16_t vRegH = (is_range) ? inst->VRegH_4rcc() : inst->VRegH_45cc();
322 const dex::ProtoIndex callsite_proto_id(vRegH);
323
324 // Call through to the classlinker and ask it to resolve the static type associated
325 // with the callsite. This information is stored in the dex cache so it's
326 // guaranteed to be fast after the first resolution.
327 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
328 Handle<mirror::MethodType> callsite_type(hs.NewHandle(
329 class_linker->ResolveMethodType(self, callsite_proto_id, shadow_frame.GetMethod())));
330
331 // This implies we couldn't resolve one or more types in this method handle.
332 if (UNLIKELY(callsite_type == nullptr)) {
333 CHECK(self->IsExceptionPending());
334 return false;
335 }
336
337 // There is a common dispatch method for method handles that takes
338 // arguments either from a range or an array of arguments depending
339 // on whether the DEX instruction is invoke-polymorphic/range or
340 // invoke-polymorphic. The array here is for the latter.
341 if (UNLIKELY(is_range)) {
342 // VRegC is the register holding the method handle. Arguments passed
343 // to the method handle's target do not include the method handle.
344 RangeInstructionOperands operands(inst->VRegC_4rcc() + 1, inst->VRegA_4rcc() - 1);
345 if (invoke_exact) {
346 return MethodHandleInvokeExact(self,
347 shadow_frame,
348 method_handle,
349 callsite_type,
350 &operands,
351 result);
352 } else {
353 return MethodHandleInvoke(self,
354 shadow_frame,
355 method_handle,
356 callsite_type,
357 &operands,
358 result);
359 }
360 } else {
361 // Get the register arguments for the invoke.
362 uint32_t args[Instruction::kMaxVarArgRegs] = {};
363 inst->GetVarArgs(args, inst_data);
364 // Drop the first register which is the method handle performing the invoke.
365 memmove(args, args + 1, sizeof(args[0]) * (Instruction::kMaxVarArgRegs - 1));
366 args[Instruction::kMaxVarArgRegs - 1] = 0;
367 VarArgsInstructionOperands operands(args, inst->VRegA_45cc() - 1);
368 if (invoke_exact) {
369 return MethodHandleInvokeExact(self,
370 shadow_frame,
371 method_handle,
372 callsite_type,
373 &operands,
374 result);
375 } else {
376 return MethodHandleInvoke(self,
377 shadow_frame,
378 method_handle,
379 callsite_type,
380 &operands,
381 result);
382 }
383 }
384 }
385
DoMethodHandleInvokeExact(Thread * self,ShadowFrame & shadow_frame,const Instruction * inst,uint16_t inst_data,JValue * result)386 bool DoMethodHandleInvokeExact(Thread* self,
387 ShadowFrame& shadow_frame,
388 const Instruction* inst,
389 uint16_t inst_data,
390 JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) {
391 if (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC) {
392 static const bool kIsRange = false;
393 return DoMethodHandleInvokeCommon<kIsRange>(
394 self, shadow_frame, /* invoke_exact= */ true, inst, inst_data, result);
395 } else {
396 DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_POLYMORPHIC_RANGE);
397 static const bool kIsRange = true;
398 return DoMethodHandleInvokeCommon<kIsRange>(
399 self, shadow_frame, /* invoke_exact= */ true, inst, inst_data, result);
400 }
401 }
402
DoMethodHandleInvoke(Thread * self,ShadowFrame & shadow_frame,const Instruction * inst,uint16_t inst_data,JValue * result)403 bool DoMethodHandleInvoke(Thread* self,
404 ShadowFrame& shadow_frame,
405 const Instruction* inst,
406 uint16_t inst_data,
407 JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) {
408 if (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC) {
409 static const bool kIsRange = false;
410 return DoMethodHandleInvokeCommon<kIsRange>(
411 self, shadow_frame, /* invoke_exact= */ false, inst, inst_data, result);
412 } else {
413 DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_POLYMORPHIC_RANGE);
414 static const bool kIsRange = true;
415 return DoMethodHandleInvokeCommon<kIsRange>(
416 self, shadow_frame, /* invoke_exact= */ false, inst, inst_data, result);
417 }
418 }
419
DoVarHandleInvokeCommon(Thread * self,ShadowFrame & shadow_frame,const Instruction * inst,uint16_t inst_data,JValue * result,mirror::VarHandle::AccessMode access_mode)420 static bool DoVarHandleInvokeCommon(Thread* self,
421 ShadowFrame& shadow_frame,
422 const Instruction* inst,
423 uint16_t inst_data,
424 JValue* result,
425 mirror::VarHandle::AccessMode access_mode)
426 REQUIRES_SHARED(Locks::mutator_lock_) {
427 // Make sure to check for async exceptions
428 if (UNLIKELY(self->ObserveAsyncException())) {
429 return false;
430 }
431
432 bool is_var_args = inst->HasVarArgs();
433 const uint32_t vRegC = is_var_args ? inst->VRegC_45cc() : inst->VRegC_4rcc();
434 const uint16_t vRegH = is_var_args ? inst->VRegH_45cc() : inst->VRegH_4rcc();
435 StackHandleScope<1> hs(self);
436 Handle<mirror::VarHandle> var_handle = hs.NewHandle(
437 ObjPtr<mirror::VarHandle>::DownCast(shadow_frame.GetVRegReference(vRegC)));
438 ArtMethod* method = shadow_frame.GetMethod();
439 uint32_t var_args[Instruction::kMaxVarArgRegs];
440 std::optional<VarArgsInstructionOperands> var_args_operands(std::nullopt);
441 std::optional<RangeInstructionOperands> range_operands(std::nullopt);
442 InstructionOperands* all_operands;
443 if (is_var_args) {
444 inst->GetVarArgs(var_args, inst_data);
445 var_args_operands.emplace(var_args, inst->VRegA_45cc());
446 all_operands = &var_args_operands.value();
447 } else {
448 range_operands.emplace(inst->VRegC_4rcc(), inst->VRegA_4rcc());
449 all_operands = &range_operands.value();
450 }
451 NoReceiverInstructionOperands operands(all_operands);
452
453 return VarHandleInvokeAccessor(self,
454 shadow_frame,
455 var_handle,
456 method,
457 dex::ProtoIndex(vRegH),
458 access_mode,
459 &operands,
460 result);
461 }
462
463 #define DO_VAR_HANDLE_ACCESSOR(_access_mode) \
464 bool DoVarHandle ## _access_mode(Thread* self, \
465 ShadowFrame& shadow_frame, \
466 const Instruction* inst, \
467 uint16_t inst_data, \
468 JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { \
469 const auto access_mode = mirror::VarHandle::AccessMode::k ## _access_mode; \
470 return DoVarHandleInvokeCommon(self, shadow_frame, inst, inst_data, result, access_mode); \
471 }
472
473 DO_VAR_HANDLE_ACCESSOR(CompareAndExchange)
DO_VAR_HANDLE_ACCESSOR(CompareAndExchangeAcquire)474 DO_VAR_HANDLE_ACCESSOR(CompareAndExchangeAcquire)
475 DO_VAR_HANDLE_ACCESSOR(CompareAndExchangeRelease)
476 DO_VAR_HANDLE_ACCESSOR(CompareAndSet)
477 DO_VAR_HANDLE_ACCESSOR(Get)
478 DO_VAR_HANDLE_ACCESSOR(GetAcquire)
479 DO_VAR_HANDLE_ACCESSOR(GetAndAdd)
480 DO_VAR_HANDLE_ACCESSOR(GetAndAddAcquire)
481 DO_VAR_HANDLE_ACCESSOR(GetAndAddRelease)
482 DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseAnd)
483 DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseAndAcquire)
484 DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseAndRelease)
485 DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseOr)
486 DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseOrAcquire)
487 DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseOrRelease)
488 DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseXor)
489 DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseXorAcquire)
490 DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseXorRelease)
491 DO_VAR_HANDLE_ACCESSOR(GetAndSet)
492 DO_VAR_HANDLE_ACCESSOR(GetAndSetAcquire)
493 DO_VAR_HANDLE_ACCESSOR(GetAndSetRelease)
494 DO_VAR_HANDLE_ACCESSOR(GetOpaque)
495 DO_VAR_HANDLE_ACCESSOR(GetVolatile)
496 DO_VAR_HANDLE_ACCESSOR(Set)
497 DO_VAR_HANDLE_ACCESSOR(SetOpaque)
498 DO_VAR_HANDLE_ACCESSOR(SetRelease)
499 DO_VAR_HANDLE_ACCESSOR(SetVolatile)
500 DO_VAR_HANDLE_ACCESSOR(WeakCompareAndSet)
501 DO_VAR_HANDLE_ACCESSOR(WeakCompareAndSetAcquire)
502 DO_VAR_HANDLE_ACCESSOR(WeakCompareAndSetPlain)
503 DO_VAR_HANDLE_ACCESSOR(WeakCompareAndSetRelease)
504
505 #undef DO_VAR_HANDLE_ACCESSOR
506
507 template<bool is_range>
508 bool DoInvokePolymorphic(Thread* self,
509 ShadowFrame& shadow_frame,
510 const Instruction* inst,
511 uint16_t inst_data,
512 JValue* result) {
513 const int invoke_method_idx = inst->VRegB();
514 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
515 ArtMethod* invoke_method =
516 class_linker->ResolveMethodWithChecks(
517 invoke_method_idx, shadow_frame.GetMethod(), kPolymorphic);
518
519 // Ensure intrinsic identifiers are initialized.
520 DCHECK(invoke_method->IsIntrinsic());
521
522 // Dispatch based on intrinsic identifier associated with method.
523 switch (invoke_method->GetIntrinsic()) {
524 #define CASE_SIGNATURE_POLYMORPHIC_INTRINSIC(Name, ...) \
525 case Intrinsics::k##Name: \
526 return Do ## Name(self, shadow_frame, inst, inst_data, result);
527 ART_SIGNATURE_POLYMORPHIC_INTRINSICS_LIST(CASE_SIGNATURE_POLYMORPHIC_INTRINSIC)
528 #undef CASE_SIGNATURE_POLYMORPHIC_INTRINSIC
529 default:
530 LOG(FATAL) << "Unreachable: " << invoke_method->GetIntrinsic();
531 UNREACHABLE();
532 return false;
533 }
534 }
535
ConvertScalarBootstrapArgument(jvalue value)536 static JValue ConvertScalarBootstrapArgument(jvalue value) {
537 // value either contains a primitive scalar value if it corresponds
538 // to a primitive type, or it contains an integer value if it
539 // corresponds to an object instance reference id (e.g. a string id).
540 return JValue::FromPrimitive(value.j);
541 }
542
GetClassForBootstrapArgument(EncodedArrayValueIterator::ValueType type)543 static ObjPtr<mirror::Class> GetClassForBootstrapArgument(EncodedArrayValueIterator::ValueType type)
544 REQUIRES_SHARED(Locks::mutator_lock_) {
545 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
546 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = class_linker->GetClassRoots();
547 switch (type) {
548 case EncodedArrayValueIterator::ValueType::kBoolean:
549 case EncodedArrayValueIterator::ValueType::kByte:
550 case EncodedArrayValueIterator::ValueType::kChar:
551 case EncodedArrayValueIterator::ValueType::kShort:
552 // These types are disallowed by JVMS. Treat as integers. This
553 // will result in CCE's being raised if the BSM has one of these
554 // types.
555 case EncodedArrayValueIterator::ValueType::kInt:
556 return GetClassRoot(ClassRoot::kPrimitiveInt, class_roots);
557 case EncodedArrayValueIterator::ValueType::kLong:
558 return GetClassRoot(ClassRoot::kPrimitiveLong, class_roots);
559 case EncodedArrayValueIterator::ValueType::kFloat:
560 return GetClassRoot(ClassRoot::kPrimitiveFloat, class_roots);
561 case EncodedArrayValueIterator::ValueType::kDouble:
562 return GetClassRoot(ClassRoot::kPrimitiveDouble, class_roots);
563 case EncodedArrayValueIterator::ValueType::kMethodType:
564 return GetClassRoot<mirror::MethodType>(class_roots);
565 case EncodedArrayValueIterator::ValueType::kMethodHandle:
566 return GetClassRoot<mirror::MethodHandle>(class_roots);
567 case EncodedArrayValueIterator::ValueType::kString:
568 return GetClassRoot<mirror::String>();
569 case EncodedArrayValueIterator::ValueType::kType:
570 return GetClassRoot<mirror::Class>();
571 case EncodedArrayValueIterator::ValueType::kField:
572 case EncodedArrayValueIterator::ValueType::kMethod:
573 case EncodedArrayValueIterator::ValueType::kEnum:
574 case EncodedArrayValueIterator::ValueType::kArray:
575 case EncodedArrayValueIterator::ValueType::kAnnotation:
576 case EncodedArrayValueIterator::ValueType::kNull:
577 return nullptr;
578 case EncodedArrayValueIterator::ValueType::kEndOfInput:
579 LOG(FATAL) << "Unreachable";
580 UNREACHABLE();
581 }
582 }
583
GetArgumentForBootstrapMethod(Thread * self,ArtMethod * referrer,EncodedArrayValueIterator::ValueType type,const JValue * encoded_value,JValue * decoded_value)584 static bool GetArgumentForBootstrapMethod(Thread* self,
585 ArtMethod* referrer,
586 EncodedArrayValueIterator::ValueType type,
587 const JValue* encoded_value,
588 JValue* decoded_value)
589 REQUIRES_SHARED(Locks::mutator_lock_) {
590 // The encoded_value contains either a scalar value (IJDF) or a
591 // scalar DEX file index to a reference type to be materialized.
592 switch (type) {
593 case EncodedArrayValueIterator::ValueType::kInt:
594 case EncodedArrayValueIterator::ValueType::kFloat:
595 decoded_value->SetI(encoded_value->GetI());
596 return true;
597 case EncodedArrayValueIterator::ValueType::kLong:
598 case EncodedArrayValueIterator::ValueType::kDouble:
599 decoded_value->SetJ(encoded_value->GetJ());
600 return true;
601 case EncodedArrayValueIterator::ValueType::kMethodType: {
602 StackHandleScope<2> hs(self);
603 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader()));
604 Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache()));
605 dex::ProtoIndex proto_idx(encoded_value->GetC());
606 ClassLinker* cl = Runtime::Current()->GetClassLinker();
607 ObjPtr<mirror::MethodType> o =
608 cl->ResolveMethodType(self, proto_idx, dex_cache, class_loader);
609 if (UNLIKELY(o.IsNull())) {
610 DCHECK(self->IsExceptionPending());
611 return false;
612 }
613 decoded_value->SetL(o);
614 return true;
615 }
616 case EncodedArrayValueIterator::ValueType::kMethodHandle: {
617 uint32_t index = static_cast<uint32_t>(encoded_value->GetI());
618 ClassLinker* cl = Runtime::Current()->GetClassLinker();
619 ObjPtr<mirror::MethodHandle> o = cl->ResolveMethodHandle(self, index, referrer);
620 if (UNLIKELY(o.IsNull())) {
621 DCHECK(self->IsExceptionPending());
622 return false;
623 }
624 decoded_value->SetL(o);
625 return true;
626 }
627 case EncodedArrayValueIterator::ValueType::kString: {
628 dex::StringIndex index(static_cast<uint32_t>(encoded_value->GetI()));
629 ClassLinker* cl = Runtime::Current()->GetClassLinker();
630 ObjPtr<mirror::String> o = cl->ResolveString(index, referrer);
631 if (UNLIKELY(o.IsNull())) {
632 DCHECK(self->IsExceptionPending());
633 return false;
634 }
635 decoded_value->SetL(o);
636 return true;
637 }
638 case EncodedArrayValueIterator::ValueType::kType: {
639 dex::TypeIndex index(static_cast<uint32_t>(encoded_value->GetI()));
640 ClassLinker* cl = Runtime::Current()->GetClassLinker();
641 ObjPtr<mirror::Class> o = cl->ResolveType(index, referrer);
642 if (UNLIKELY(o.IsNull())) {
643 DCHECK(self->IsExceptionPending());
644 return false;
645 }
646 decoded_value->SetL(o);
647 return true;
648 }
649 case EncodedArrayValueIterator::ValueType::kBoolean:
650 case EncodedArrayValueIterator::ValueType::kByte:
651 case EncodedArrayValueIterator::ValueType::kChar:
652 case EncodedArrayValueIterator::ValueType::kShort:
653 case EncodedArrayValueIterator::ValueType::kField:
654 case EncodedArrayValueIterator::ValueType::kMethod:
655 case EncodedArrayValueIterator::ValueType::kEnum:
656 case EncodedArrayValueIterator::ValueType::kArray:
657 case EncodedArrayValueIterator::ValueType::kAnnotation:
658 case EncodedArrayValueIterator::ValueType::kNull:
659 // Unreachable - unsupported types that have been checked when
660 // determining the effect call site type based on the bootstrap
661 // argument types.
662 case EncodedArrayValueIterator::ValueType::kEndOfInput:
663 LOG(FATAL) << "Unreachable";
664 UNREACHABLE();
665 }
666 }
667
PackArgumentForBootstrapMethod(Thread * self,ArtMethod * referrer,CallSiteArrayValueIterator * it,ShadowFrameSetter * setter)668 static bool PackArgumentForBootstrapMethod(Thread* self,
669 ArtMethod* referrer,
670 CallSiteArrayValueIterator* it,
671 ShadowFrameSetter* setter)
672 REQUIRES_SHARED(Locks::mutator_lock_) {
673 auto type = it->GetValueType();
674 const JValue encoded_value = ConvertScalarBootstrapArgument(it->GetJavaValue());
675 JValue decoded_value;
676 if (!GetArgumentForBootstrapMethod(self, referrer, type, &encoded_value, &decoded_value)) {
677 return false;
678 }
679 switch (it->GetValueType()) {
680 case EncodedArrayValueIterator::ValueType::kInt:
681 case EncodedArrayValueIterator::ValueType::kFloat:
682 setter->Set(static_cast<uint32_t>(decoded_value.GetI()));
683 return true;
684 case EncodedArrayValueIterator::ValueType::kLong:
685 case EncodedArrayValueIterator::ValueType::kDouble:
686 setter->SetLong(decoded_value.GetJ());
687 return true;
688 case EncodedArrayValueIterator::ValueType::kMethodType:
689 case EncodedArrayValueIterator::ValueType::kMethodHandle:
690 case EncodedArrayValueIterator::ValueType::kString:
691 case EncodedArrayValueIterator::ValueType::kType:
692 setter->SetReference(decoded_value.GetL());
693 return true;
694 case EncodedArrayValueIterator::ValueType::kBoolean:
695 case EncodedArrayValueIterator::ValueType::kByte:
696 case EncodedArrayValueIterator::ValueType::kChar:
697 case EncodedArrayValueIterator::ValueType::kShort:
698 case EncodedArrayValueIterator::ValueType::kField:
699 case EncodedArrayValueIterator::ValueType::kMethod:
700 case EncodedArrayValueIterator::ValueType::kEnum:
701 case EncodedArrayValueIterator::ValueType::kArray:
702 case EncodedArrayValueIterator::ValueType::kAnnotation:
703 case EncodedArrayValueIterator::ValueType::kNull:
704 // Unreachable - unsupported types that have been checked when
705 // determining the effect call site type based on the bootstrap
706 // argument types.
707 case EncodedArrayValueIterator::ValueType::kEndOfInput:
708 LOG(FATAL) << "Unreachable";
709 UNREACHABLE();
710 }
711 }
712
PackCollectorArrayForBootstrapMethod(Thread * self,ArtMethod * referrer,ObjPtr<mirror::Class> array_type,int32_t array_length,CallSiteArrayValueIterator * it,ShadowFrameSetter * setter)713 static bool PackCollectorArrayForBootstrapMethod(Thread* self,
714 ArtMethod* referrer,
715 ObjPtr<mirror::Class> array_type,
716 int32_t array_length,
717 CallSiteArrayValueIterator* it,
718 ShadowFrameSetter* setter)
719 REQUIRES_SHARED(Locks::mutator_lock_) {
720 StackHandleScope<1> hs(self);
721 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
722 JValue decoded_value;
723
724 #define COLLECT_PRIMITIVE_ARRAY(Descriptor, Type) \
725 Handle<mirror::Type ## Array> array = \
726 hs.NewHandle(mirror::Type ## Array::Alloc(self, array_length)); \
727 if (array.IsNull()) { \
728 return false; \
729 } \
730 for (int32_t i = 0; it->HasNext(); it->Next(), ++i) { \
731 auto type = it->GetValueType(); \
732 DCHECK_EQ(type, EncodedArrayValueIterator::ValueType::k ## Type); \
733 const JValue encoded_value = \
734 ConvertScalarBootstrapArgument(it->GetJavaValue()); \
735 GetArgumentForBootstrapMethod(self, \
736 referrer, \
737 type, \
738 &encoded_value, \
739 &decoded_value); \
740 array->Set(i, decoded_value.Get ## Descriptor()); \
741 } \
742 setter->SetReference(array.Get()); \
743 return true;
744
745 #define COLLECT_REFERENCE_ARRAY(T, Type) \
746 Handle<mirror::ObjectArray<T>> array = /* NOLINT */ \
747 hs.NewHandle(mirror::ObjectArray<T>::Alloc(self, \
748 array_type, \
749 array_length)); \
750 if (array.IsNull()) { \
751 return false; \
752 } \
753 for (int32_t i = 0; it->HasNext(); it->Next(), ++i) { \
754 auto type = it->GetValueType(); \
755 DCHECK_EQ(type, EncodedArrayValueIterator::ValueType::k ## Type); \
756 const JValue encoded_value = \
757 ConvertScalarBootstrapArgument(it->GetJavaValue()); \
758 if (!GetArgumentForBootstrapMethod(self, \
759 referrer, \
760 type, \
761 &encoded_value, \
762 &decoded_value)) { \
763 return false; \
764 } \
765 ObjPtr<mirror::Object> o = decoded_value.GetL(); \
766 if (Runtime::Current()->IsActiveTransaction()) { \
767 array->Set<true>(i, ObjPtr<T>::DownCast(o)); \
768 } else { \
769 array->Set<false>(i, ObjPtr<T>::DownCast(o)); \
770 } \
771 } \
772 setter->SetReference(array.Get()); \
773 return true;
774
775 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = class_linker->GetClassRoots();
776 ObjPtr<mirror::Class> component_type = array_type->GetComponentType();
777 if (component_type == GetClassRoot(ClassRoot::kPrimitiveInt, class_roots)) {
778 COLLECT_PRIMITIVE_ARRAY(I, Int);
779 } else if (component_type == GetClassRoot(ClassRoot::kPrimitiveLong, class_roots)) {
780 COLLECT_PRIMITIVE_ARRAY(J, Long);
781 } else if (component_type == GetClassRoot(ClassRoot::kPrimitiveFloat, class_roots)) {
782 COLLECT_PRIMITIVE_ARRAY(F, Float);
783 } else if (component_type == GetClassRoot(ClassRoot::kPrimitiveDouble, class_roots)) {
784 COLLECT_PRIMITIVE_ARRAY(D, Double);
785 } else if (component_type == GetClassRoot<mirror::MethodType>()) {
786 COLLECT_REFERENCE_ARRAY(mirror::MethodType, MethodType);
787 } else if (component_type == GetClassRoot<mirror::MethodHandle>()) {
788 COLLECT_REFERENCE_ARRAY(mirror::MethodHandle, MethodHandle);
789 } else if (component_type == GetClassRoot<mirror::String>(class_roots)) {
790 COLLECT_REFERENCE_ARRAY(mirror::String, String);
791 } else if (component_type == GetClassRoot<mirror::Class>()) {
792 COLLECT_REFERENCE_ARRAY(mirror::Class, Type);
793 } else {
794 component_type->DumpClass(LOG_STREAM(FATAL_WITHOUT_ABORT), mirror::Class::kDumpClassFullDetail);
795 LOG(FATAL) << "unexpected class: " << component_type->PrettyTypeOf();
796 UNREACHABLE();
797 }
798 #undef COLLECT_PRIMITIVE_ARRAY
799 #undef COLLECT_REFERENCE_ARRAY
800 }
801
BuildCallSiteForBootstrapMethod(Thread * self,const DexFile * dex_file,uint32_t call_site_idx)802 static ObjPtr<mirror::MethodType> BuildCallSiteForBootstrapMethod(Thread* self,
803 const DexFile* dex_file,
804 uint32_t call_site_idx)
805 REQUIRES_SHARED(Locks::mutator_lock_) {
806 const dex::CallSiteIdItem& csi = dex_file->GetCallSiteId(call_site_idx);
807 CallSiteArrayValueIterator it(*dex_file, csi);
808 DCHECK_GE(it.Size(), 1u);
809
810 StackHandleScope<2> hs(self);
811 // Create array for parameter types.
812 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
813 ObjPtr<mirror::Class> class_array_type =
814 GetClassRoot<mirror::ObjectArray<mirror::Class>>(class_linker);
815 Handle<mirror::ObjectArray<mirror::Class>> ptypes = hs.NewHandle(
816 mirror::ObjectArray<mirror::Class>::Alloc(self,
817 class_array_type,
818 static_cast<int>(it.Size())));
819 if (ptypes.IsNull()) {
820 DCHECK(self->IsExceptionPending());
821 return nullptr;
822 }
823
824 // Populate the first argument with an instance of j.l.i.MethodHandles.Lookup
825 // that the runtime will construct.
826 ptypes->Set(0, GetClassRoot<mirror::MethodHandlesLookup>(class_linker));
827 it.Next();
828
829 // The remaining parameter types are derived from the types of
830 // arguments present in the DEX file.
831 int index = 1;
832 while (it.HasNext()) {
833 ObjPtr<mirror::Class> ptype = GetClassForBootstrapArgument(it.GetValueType());
834 if (ptype.IsNull()) {
835 ThrowClassCastException("Unsupported bootstrap argument type");
836 return nullptr;
837 }
838 ptypes->Set(index, ptype);
839 index++;
840 it.Next();
841 }
842 DCHECK_EQ(static_cast<size_t>(index), it.Size());
843
844 // By definition, the return type is always a j.l.i.CallSite.
845 Handle<mirror::Class> rtype = hs.NewHandle(GetClassRoot<mirror::CallSite>());
846 return mirror::MethodType::Create(self, rtype, ptypes);
847 }
848
InvokeBootstrapMethod(Thread * self,ShadowFrame & shadow_frame,uint32_t call_site_idx)849 static ObjPtr<mirror::CallSite> InvokeBootstrapMethod(Thread* self,
850 ShadowFrame& shadow_frame,
851 uint32_t call_site_idx)
852 REQUIRES_SHARED(Locks::mutator_lock_) {
853 StackHandleScope<5> hs(self);
854 // There are three mandatory arguments expected from the call site
855 // value array in the DEX file: the bootstrap method handle, the
856 // method name to pass to the bootstrap method, and the method type
857 // to pass to the bootstrap method.
858 static constexpr size_t kMandatoryArgumentsCount = 3;
859 ArtMethod* referrer = shadow_frame.GetMethod();
860 const DexFile* dex_file = referrer->GetDexFile();
861 const dex::CallSiteIdItem& csi = dex_file->GetCallSiteId(call_site_idx);
862 CallSiteArrayValueIterator it(*dex_file, csi);
863 if (it.Size() < kMandatoryArgumentsCount) {
864 ThrowBootstrapMethodError("Truncated bootstrap arguments (%zu < %zu)",
865 it.Size(), kMandatoryArgumentsCount);
866 return nullptr;
867 }
868
869 if (it.GetValueType() != EncodedArrayValueIterator::ValueType::kMethodHandle) {
870 ThrowBootstrapMethodError("First bootstrap argument is not a method handle");
871 return nullptr;
872 }
873
874 uint32_t bsm_index = static_cast<uint32_t>(it.GetJavaValue().i);
875 it.Next();
876
877 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
878 Handle<mirror::MethodHandle> bsm =
879 hs.NewHandle(class_linker->ResolveMethodHandle(self, bsm_index, referrer));
880 if (bsm.IsNull()) {
881 DCHECK(self->IsExceptionPending());
882 return nullptr;
883 }
884
885 if (bsm->GetHandleKind() != mirror::MethodHandle::Kind::kInvokeStatic) {
886 // JLS suggests also accepting constructors. This is currently
887 // hard as constructor invocations happen via transformers in ART
888 // today. The constructor would need to be a class derived from java.lang.invoke.CallSite.
889 ThrowBootstrapMethodError("Unsupported bootstrap method invocation kind");
890 return nullptr;
891 }
892
893 // Construct the local call site type information based on the 3
894 // mandatory arguments provided by the runtime and the static arguments
895 // in the DEX file. We will use these arguments to build a shadow frame.
896 MutableHandle<mirror::MethodType> call_site_type =
897 hs.NewHandle(BuildCallSiteForBootstrapMethod(self, dex_file, call_site_idx));
898 if (call_site_type.IsNull()) {
899 DCHECK(self->IsExceptionPending());
900 return nullptr;
901 }
902
903 // Check if this BSM is targeting a variable arity method. If so,
904 // we'll need to collect the trailing arguments into an array.
905 Handle<mirror::Array> collector_arguments;
906 int32_t collector_arguments_length;
907 if (bsm->GetTargetMethod()->IsVarargs()) {
908 int number_of_bsm_parameters = bsm->GetMethodType()->GetNumberOfPTypes();
909 if (number_of_bsm_parameters == 0) {
910 ThrowBootstrapMethodError("Variable arity BSM does not have any arguments");
911 return nullptr;
912 }
913 Handle<mirror::Class> collector_array_class =
914 hs.NewHandle(bsm->GetMethodType()->GetPTypes()->Get(number_of_bsm_parameters - 1));
915 if (!collector_array_class->IsArrayClass()) {
916 ThrowBootstrapMethodError("Variable arity BSM does not have array as final argument");
917 return nullptr;
918 }
919 // The call site may include no arguments to be collected. In this
920 // case the number of arguments must be at least the number of BSM
921 // parameters less the collector array.
922 if (call_site_type->GetNumberOfPTypes() < number_of_bsm_parameters - 1) {
923 ThrowWrongMethodTypeException(bsm->GetMethodType(), call_site_type.Get());
924 return nullptr;
925 }
926 // Check all the arguments to be collected match the collector array component type.
927 for (int i = number_of_bsm_parameters - 1; i < call_site_type->GetNumberOfPTypes(); ++i) {
928 if (call_site_type->GetPTypes()->Get(i) != collector_array_class->GetComponentType()) {
929 ThrowClassCastException(collector_array_class->GetComponentType(),
930 call_site_type->GetPTypes()->Get(i));
931 return nullptr;
932 }
933 }
934 // Update the call site method type so it now includes the collector array.
935 int32_t collector_arguments_start = number_of_bsm_parameters - 1;
936 collector_arguments_length = call_site_type->GetNumberOfPTypes() - number_of_bsm_parameters + 1;
937 call_site_type.Assign(
938 mirror::MethodType::CollectTrailingArguments(self,
939 call_site_type.Get(),
940 collector_array_class.Get(),
941 collector_arguments_start));
942 if (call_site_type.IsNull()) {
943 DCHECK(self->IsExceptionPending());
944 return nullptr;
945 }
946 } else {
947 collector_arguments_length = 0;
948 }
949
950 if (call_site_type->GetNumberOfPTypes() != bsm->GetMethodType()->GetNumberOfPTypes()) {
951 ThrowWrongMethodTypeException(bsm->GetMethodType(), call_site_type.Get());
952 return nullptr;
953 }
954
955 // BSM invocation has a different set of exceptions that
956 // j.l.i.MethodHandle.invoke(). Scan arguments looking for CCE
957 // "opportunities". Unfortunately we cannot just leave this to the
958 // method handle invocation as this might generate a WMTE.
959 for (int32_t i = 0; i < call_site_type->GetNumberOfPTypes(); ++i) {
960 ObjPtr<mirror::Class> from = call_site_type->GetPTypes()->Get(i);
961 ObjPtr<mirror::Class> to = bsm->GetMethodType()->GetPTypes()->Get(i);
962 if (!IsParameterTypeConvertible(from, to)) {
963 ThrowClassCastException(from, to);
964 return nullptr;
965 }
966 }
967 if (!IsReturnTypeConvertible(call_site_type->GetRType(), bsm->GetMethodType()->GetRType())) {
968 ThrowClassCastException(bsm->GetMethodType()->GetRType(), call_site_type->GetRType());
969 return nullptr;
970 }
971
972 // Set-up a shadow frame for invoking the bootstrap method handle.
973 ShadowFrameAllocaUniquePtr bootstrap_frame =
974 CREATE_SHADOW_FRAME(call_site_type->NumberOfVRegs(),
975 referrer,
976 shadow_frame.GetDexPC());
977 ScopedStackedShadowFramePusher pusher(self, bootstrap_frame.get());
978 ShadowFrameSetter setter(bootstrap_frame.get(), 0u);
979
980 // The first parameter is a MethodHandles lookup instance.
981 Handle<mirror::Class> lookup_class =
982 hs.NewHandle(shadow_frame.GetMethod()->GetDeclaringClass());
983 ObjPtr<mirror::MethodHandlesLookup> lookup =
984 mirror::MethodHandlesLookup::Create(self, lookup_class);
985 if (lookup.IsNull()) {
986 DCHECK(self->IsExceptionPending());
987 return nullptr;
988 }
989 setter.SetReference(lookup);
990
991 // Pack the remaining arguments into the frame.
992 int number_of_arguments = call_site_type->GetNumberOfPTypes();
993 int argument_index;
994 for (argument_index = 1; argument_index < number_of_arguments; ++argument_index) {
995 if (argument_index == number_of_arguments - 1 &&
996 call_site_type->GetPTypes()->Get(argument_index)->IsArrayClass()) {
997 ObjPtr<mirror::Class> array_type = call_site_type->GetPTypes()->Get(argument_index);
998 if (!PackCollectorArrayForBootstrapMethod(self,
999 referrer,
1000 array_type,
1001 collector_arguments_length,
1002 &it,
1003 &setter)) {
1004 DCHECK(self->IsExceptionPending());
1005 return nullptr;
1006 }
1007 } else if (!PackArgumentForBootstrapMethod(self, referrer, &it, &setter)) {
1008 DCHECK(self->IsExceptionPending());
1009 return nullptr;
1010 }
1011 it.Next();
1012 }
1013 DCHECK(!it.HasNext());
1014 DCHECK(setter.Done());
1015
1016 // Invoke the bootstrap method handle.
1017 JValue result;
1018 RangeInstructionOperands operands(0, bootstrap_frame->NumberOfVRegs());
1019 bool invoke_success = MethodHandleInvoke(self,
1020 *bootstrap_frame,
1021 bsm,
1022 call_site_type,
1023 &operands,
1024 &result);
1025 if (!invoke_success) {
1026 DCHECK(self->IsExceptionPending());
1027 return nullptr;
1028 }
1029
1030 Handle<mirror::Object> object(hs.NewHandle(result.GetL()));
1031 if (UNLIKELY(object.IsNull())) {
1032 // This will typically be for LambdaMetafactory which is not supported.
1033 ThrowClassCastException("Bootstrap method returned null");
1034 return nullptr;
1035 }
1036
1037 // Check the result type is a subclass of j.l.i.CallSite.
1038 ObjPtr<mirror::Class> call_site_class = GetClassRoot<mirror::CallSite>(class_linker);
1039 if (UNLIKELY(!object->InstanceOf(call_site_class))) {
1040 ThrowClassCastException(object->GetClass(), call_site_class);
1041 return nullptr;
1042 }
1043
1044 // Check the call site target is not null as we're going to invoke it.
1045 ObjPtr<mirror::CallSite> call_site = ObjPtr<mirror::CallSite>::DownCast(result.GetL());
1046 ObjPtr<mirror::MethodHandle> target = call_site->GetTarget();
1047 if (UNLIKELY(target == nullptr)) {
1048 ThrowClassCastException("Bootstrap method returned a CallSite with a null target");
1049 return nullptr;
1050 }
1051 return call_site;
1052 }
1053
1054 namespace {
1055
DoResolveCallSite(Thread * self,ShadowFrame & shadow_frame,uint32_t call_site_idx)1056 ObjPtr<mirror::CallSite> DoResolveCallSite(Thread* self,
1057 ShadowFrame& shadow_frame,
1058 uint32_t call_site_idx)
1059 REQUIRES_SHARED(Locks::mutator_lock_) {
1060 StackHandleScope<1> hs(self);
1061 Handle<mirror::DexCache> dex_cache(hs.NewHandle(shadow_frame.GetMethod()->GetDexCache()));
1062
1063 // Get the call site from the DexCache if present.
1064 ObjPtr<mirror::CallSite> call_site = dex_cache->GetResolvedCallSite(call_site_idx);
1065 if (LIKELY(call_site != nullptr)) {
1066 return call_site;
1067 }
1068
1069 // Invoke the bootstrap method to get a candidate call site.
1070 call_site = InvokeBootstrapMethod(self, shadow_frame, call_site_idx);
1071 if (UNLIKELY(call_site == nullptr)) {
1072 if (!self->GetException()->IsError()) {
1073 // Use a BootstrapMethodError if the exception is not an instance of java.lang.Error.
1074 ThrowWrappedBootstrapMethodError("Exception from call site #%u bootstrap method",
1075 call_site_idx);
1076 }
1077 return nullptr;
1078 }
1079
1080 // Attempt to place the candidate call site into the DexCache, return the winning call site.
1081 return dex_cache->SetResolvedCallSite(call_site_idx, call_site);
1082 }
1083
1084 } // namespace
1085
DoInvokeCustom(Thread * self,ShadowFrame & shadow_frame,uint32_t call_site_idx,const InstructionOperands * operands,JValue * result)1086 bool DoInvokeCustom(Thread* self,
1087 ShadowFrame& shadow_frame,
1088 uint32_t call_site_idx,
1089 const InstructionOperands* operands,
1090 JValue* result) {
1091 // Make sure to check for async exceptions
1092 if (UNLIKELY(self->ObserveAsyncException())) {
1093 return false;
1094 }
1095
1096 // invoke-custom is not supported in transactions. In transactions
1097 // there is a limited set of types supported. invoke-custom allows
1098 // running arbitrary code and instantiating arbitrary types.
1099 CHECK(!Runtime::Current()->IsActiveTransaction());
1100
1101 ObjPtr<mirror::CallSite> call_site = DoResolveCallSite(self, shadow_frame, call_site_idx);
1102 if (call_site.IsNull()) {
1103 DCHECK(self->IsExceptionPending());
1104 return false;
1105 }
1106
1107 StackHandleScope<2> hs(self);
1108 Handle<mirror::MethodHandle> target = hs.NewHandle(call_site->GetTarget());
1109 Handle<mirror::MethodType> target_method_type = hs.NewHandle(target->GetMethodType());
1110 DCHECK_EQ(operands->GetNumberOfOperands(), target_method_type->NumberOfVRegs())
1111 << " call_site_idx" << call_site_idx;
1112 return MethodHandleInvokeExact(self,
1113 shadow_frame,
1114 target,
1115 target_method_type,
1116 operands,
1117 result);
1118 }
1119
1120 // Assign register 'src_reg' from shadow_frame to register 'dest_reg' into new_shadow_frame.
AssignRegister(ShadowFrame * new_shadow_frame,const ShadowFrame & shadow_frame,size_t dest_reg,size_t src_reg)1121 static inline void AssignRegister(ShadowFrame* new_shadow_frame, const ShadowFrame& shadow_frame,
1122 size_t dest_reg, size_t src_reg)
1123 REQUIRES_SHARED(Locks::mutator_lock_) {
1124 // Uint required, so that sign extension does not make this wrong on 64b systems
1125 uint32_t src_value = shadow_frame.GetVReg(src_reg);
1126 ObjPtr<mirror::Object> o = shadow_frame.GetVRegReference<kVerifyNone>(src_reg);
1127
1128 // If both register locations contains the same value, the register probably holds a reference.
1129 // Note: As an optimization, non-moving collectors leave a stale reference value
1130 // in the references array even after the original vreg was overwritten to a non-reference.
1131 if (src_value == reinterpret_cast32<uint32_t>(o.Ptr())) {
1132 new_shadow_frame->SetVRegReference(dest_reg, o);
1133 } else {
1134 new_shadow_frame->SetVReg(dest_reg, src_value);
1135 }
1136 }
1137
1138 template <bool is_range>
CopyRegisters(ShadowFrame & caller_frame,ShadowFrame * callee_frame,const uint32_t (& arg)[Instruction::kMaxVarArgRegs],const size_t first_src_reg,const size_t first_dest_reg,const size_t num_regs)1139 inline void CopyRegisters(ShadowFrame& caller_frame,
1140 ShadowFrame* callee_frame,
1141 const uint32_t (&arg)[Instruction::kMaxVarArgRegs],
1142 const size_t first_src_reg,
1143 const size_t first_dest_reg,
1144 const size_t num_regs) {
1145 if (is_range) {
1146 const size_t dest_reg_bound = first_dest_reg + num_regs;
1147 for (size_t src_reg = first_src_reg, dest_reg = first_dest_reg; dest_reg < dest_reg_bound;
1148 ++dest_reg, ++src_reg) {
1149 AssignRegister(callee_frame, caller_frame, dest_reg, src_reg);
1150 }
1151 } else {
1152 DCHECK_LE(num_regs, arraysize(arg));
1153
1154 for (size_t arg_index = 0; arg_index < num_regs; ++arg_index) {
1155 AssignRegister(callee_frame, caller_frame, first_dest_reg + arg_index, arg[arg_index]);
1156 }
1157 }
1158 }
1159
1160 template <bool is_range>
DoCallCommon(ArtMethod * called_method,Thread * self,ShadowFrame & shadow_frame,JValue * result,uint16_t number_of_inputs,uint32_t (& arg)[Instruction::kMaxVarArgRegs],uint32_t vregC,bool string_init)1161 static inline bool DoCallCommon(ArtMethod* called_method,
1162 Thread* self,
1163 ShadowFrame& shadow_frame,
1164 JValue* result,
1165 uint16_t number_of_inputs,
1166 uint32_t (&arg)[Instruction::kMaxVarArgRegs],
1167 uint32_t vregC,
1168 bool string_init) {
1169 // Compute method information.
1170 CodeItemDataAccessor accessor(called_method->DexInstructionData());
1171 // Number of registers for the callee's call frame.
1172 uint16_t num_regs;
1173 // Test whether to use the interpreter or compiler entrypoint, and save that result to pass to
1174 // PerformCall. A deoptimization could occur at any time, and we shouldn't change which
1175 // entrypoint to use once we start building the shadow frame.
1176
1177 const bool use_interpreter_entrypoint = ShouldStayInSwitchInterpreter(called_method);
1178 if (LIKELY(accessor.HasCodeItem())) {
1179 // When transitioning to compiled code, space only needs to be reserved for the input registers.
1180 // The rest of the frame gets discarded. This also prevents accessing the called method's code
1181 // item, saving memory by keeping code items of compiled code untouched.
1182 if (!use_interpreter_entrypoint) {
1183 DCHECK(!Runtime::Current()->IsAotCompiler()) << "Compiler should use interpreter entrypoint";
1184 num_regs = number_of_inputs;
1185 } else {
1186 num_regs = accessor.RegistersSize();
1187 DCHECK_EQ(string_init ? number_of_inputs - 1 : number_of_inputs, accessor.InsSize());
1188 }
1189 } else {
1190 DCHECK(called_method->IsNative() || called_method->IsProxyMethod());
1191 num_regs = number_of_inputs;
1192 }
1193
1194 // Hack for String init:
1195 //
1196 // Rewrite invoke-x java.lang.String.<init>(this, a, b, c, ...) into:
1197 // invoke-x StringFactory(a, b, c, ...)
1198 // by effectively dropping the first virtual register from the invoke.
1199 //
1200 // (at this point the ArtMethod has already been replaced,
1201 // so we just need to fix-up the arguments)
1202 //
1203 // Note that FindMethodFromCode in entrypoint_utils-inl.h was also special-cased
1204 // to handle the compiler optimization of replacing `this` with null without
1205 // throwing NullPointerException.
1206 uint32_t string_init_vreg_this = is_range ? vregC : arg[0];
1207 if (UNLIKELY(string_init)) {
1208 DCHECK_GT(num_regs, 0u); // As the method is an instance method, there should be at least 1.
1209
1210 // The new StringFactory call is static and has one fewer argument.
1211 if (!accessor.HasCodeItem()) {
1212 DCHECK(called_method->IsNative() || called_method->IsProxyMethod());
1213 num_regs--;
1214 } // else ... don't need to change num_regs since it comes up from the string_init's code item
1215 number_of_inputs--;
1216
1217 // Rewrite the var-args, dropping the 0th argument ("this")
1218 for (uint32_t i = 1; i < arraysize(arg); ++i) {
1219 arg[i - 1] = arg[i];
1220 }
1221 arg[arraysize(arg) - 1] = 0;
1222
1223 // Rewrite the non-var-arg case
1224 vregC++; // Skips the 0th vreg in the range ("this").
1225 }
1226
1227 // Parameter registers go at the end of the shadow frame.
1228 DCHECK_GE(num_regs, number_of_inputs);
1229 size_t first_dest_reg = num_regs - number_of_inputs;
1230 DCHECK_NE(first_dest_reg, (size_t)-1);
1231
1232 // Allocate shadow frame on the stack.
1233 const char* old_cause = self->StartAssertNoThreadSuspension("DoCallCommon");
1234 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
1235 CREATE_SHADOW_FRAME(num_regs, called_method, /* dex pc */ 0);
1236 ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get();
1237
1238 // Initialize new shadow frame by copying the registers from the callee shadow frame.
1239 if (!shadow_frame.GetMethod()->SkipAccessChecks()) {
1240 // Slow path.
1241 // We might need to do class loading, which incurs a thread state change to kNative. So
1242 // register the shadow frame as under construction and allow suspension again.
1243 ScopedStackedShadowFramePusher pusher(self, new_shadow_frame);
1244 self->EndAssertNoThreadSuspension(old_cause);
1245
1246 // ArtMethod here is needed to check type information of the call site against the callee.
1247 // Type information is retrieved from a DexFile/DexCache for that respective declared method.
1248 //
1249 // As a special case for proxy methods, which are not dex-backed,
1250 // we have to retrieve type information from the proxy's method
1251 // interface method instead (which is dex backed since proxies are never interfaces).
1252 ArtMethod* method =
1253 new_shadow_frame->GetMethod()->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1254
1255 // We need to do runtime check on reference assignment. We need to load the shorty
1256 // to get the exact type of each reference argument.
1257 const dex::TypeList* params = method->GetParameterTypeList();
1258 uint32_t shorty_len = 0;
1259 const char* shorty = method->GetShorty(&shorty_len);
1260
1261 // Handle receiver apart since it's not part of the shorty.
1262 size_t dest_reg = first_dest_reg;
1263 size_t arg_offset = 0;
1264
1265 if (!method->IsStatic()) {
1266 size_t receiver_reg = is_range ? vregC : arg[0];
1267 new_shadow_frame->SetVRegReference(dest_reg, shadow_frame.GetVRegReference(receiver_reg));
1268 ++dest_reg;
1269 ++arg_offset;
1270 DCHECK(!string_init); // All StringFactory methods are static.
1271 }
1272
1273 // Copy the caller's invoke-* arguments into the callee's parameter registers.
1274 for (uint32_t shorty_pos = 0; dest_reg < num_regs; ++shorty_pos, ++dest_reg, ++arg_offset) {
1275 // Skip the 0th 'shorty' type since it represents the return type.
1276 DCHECK_LT(shorty_pos + 1, shorty_len) << "for shorty '" << shorty << "'";
1277 const size_t src_reg = (is_range) ? vregC + arg_offset : arg[arg_offset];
1278 switch (shorty[shorty_pos + 1]) {
1279 // Handle Object references. 1 virtual register slot.
1280 case 'L': {
1281 ObjPtr<mirror::Object> o = shadow_frame.GetVRegReference(src_reg);
1282 if (o != nullptr) {
1283 const dex::TypeIndex type_idx = params->GetTypeItem(shorty_pos).type_idx_;
1284 ObjPtr<mirror::Class> arg_type = method->GetDexCache()->GetResolvedType(type_idx);
1285 if (arg_type == nullptr) {
1286 StackHandleScope<1> hs(self);
1287 // Preserve o since it is used below and GetClassFromTypeIndex may cause thread
1288 // suspension.
1289 HandleWrapperObjPtr<mirror::Object> h = hs.NewHandleWrapper(&o);
1290 arg_type = method->ResolveClassFromTypeIndex(type_idx);
1291 if (arg_type == nullptr) {
1292 CHECK(self->IsExceptionPending());
1293 return false;
1294 }
1295 }
1296 if (!o->VerifierInstanceOf(arg_type)) {
1297 // This should never happen.
1298 std::string temp1, temp2;
1299 self->ThrowNewExceptionF("Ljava/lang/InternalError;",
1300 "Invoking %s with bad arg %d, type '%s' not instance of '%s'",
1301 new_shadow_frame->GetMethod()->GetName(), shorty_pos,
1302 o->GetClass()->GetDescriptor(&temp1),
1303 arg_type->GetDescriptor(&temp2));
1304 return false;
1305 }
1306 }
1307 new_shadow_frame->SetVRegReference(dest_reg, o);
1308 break;
1309 }
1310 // Handle doubles and longs. 2 consecutive virtual register slots.
1311 case 'J': case 'D': {
1312 uint64_t wide_value =
1313 (static_cast<uint64_t>(shadow_frame.GetVReg(src_reg + 1)) << BitSizeOf<uint32_t>()) |
1314 static_cast<uint32_t>(shadow_frame.GetVReg(src_reg));
1315 new_shadow_frame->SetVRegLong(dest_reg, wide_value);
1316 // Skip the next virtual register slot since we already used it.
1317 ++dest_reg;
1318 ++arg_offset;
1319 break;
1320 }
1321 // Handle all other primitives that are always 1 virtual register slot.
1322 default:
1323 new_shadow_frame->SetVReg(dest_reg, shadow_frame.GetVReg(src_reg));
1324 break;
1325 }
1326 }
1327 } else {
1328 if (is_range) {
1329 DCHECK_EQ(num_regs, first_dest_reg + number_of_inputs);
1330 }
1331
1332 CopyRegisters<is_range>(shadow_frame,
1333 new_shadow_frame,
1334 arg,
1335 vregC,
1336 first_dest_reg,
1337 number_of_inputs);
1338 self->EndAssertNoThreadSuspension(old_cause);
1339 }
1340
1341 PerformCall(self,
1342 accessor,
1343 shadow_frame.GetMethod(),
1344 first_dest_reg,
1345 new_shadow_frame,
1346 result,
1347 use_interpreter_entrypoint);
1348
1349 if (string_init && !self->IsExceptionPending()) {
1350 SetStringInitValueToAllAliases(&shadow_frame, string_init_vreg_this, *result);
1351 }
1352
1353 return !self->IsExceptionPending();
1354 }
1355
1356 template<bool is_range>
1357 NO_STACK_PROTECTOR
DoCall(ArtMethod * called_method,Thread * self,ShadowFrame & shadow_frame,const Instruction * inst,uint16_t inst_data,bool is_string_init,JValue * result)1358 bool DoCall(ArtMethod* called_method,
1359 Thread* self,
1360 ShadowFrame& shadow_frame,
1361 const Instruction* inst,
1362 uint16_t inst_data,
1363 bool is_string_init,
1364 JValue* result) {
1365 // Argument word count.
1366 const uint16_t number_of_inputs =
1367 (is_range) ? inst->VRegA_3rc(inst_data) : inst->VRegA_35c(inst_data);
1368
1369 // TODO: find a cleaner way to separate non-range and range information without duplicating
1370 // code.
1371 uint32_t arg[Instruction::kMaxVarArgRegs] = {}; // only used in invoke-XXX.
1372 uint32_t vregC = 0;
1373 if (is_range) {
1374 vregC = inst->VRegC_3rc();
1375 } else {
1376 vregC = inst->VRegC_35c();
1377 inst->GetVarArgs(arg, inst_data);
1378 }
1379
1380 return DoCallCommon<is_range>(
1381 called_method,
1382 self,
1383 shadow_frame,
1384 result,
1385 number_of_inputs,
1386 arg,
1387 vregC,
1388 is_string_init);
1389 }
1390
1391 template <bool is_range>
DoFilledNewArray(const Instruction * inst,const ShadowFrame & shadow_frame,Thread * self,JValue * result)1392 bool DoFilledNewArray(const Instruction* inst,
1393 const ShadowFrame& shadow_frame,
1394 Thread* self,
1395 JValue* result) {
1396 DCHECK(inst->Opcode() == Instruction::FILLED_NEW_ARRAY ||
1397 inst->Opcode() == Instruction::FILLED_NEW_ARRAY_RANGE);
1398 const int32_t length = is_range ? inst->VRegA_3rc() : inst->VRegA_35c();
1399 if (!is_range) {
1400 // Checks FILLED_NEW_ARRAY's length does not exceed 5 arguments.
1401 CHECK_LE(length, 5);
1402 }
1403 if (UNLIKELY(length < 0)) {
1404 ThrowNegativeArraySizeException(length);
1405 return false;
1406 }
1407 uint16_t type_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
1408 bool do_access_check = !shadow_frame.GetMethod()->SkipAccessChecks();
1409 ObjPtr<mirror::Class> array_class = ResolveVerifyAndClinit(dex::TypeIndex(type_idx),
1410 shadow_frame.GetMethod(),
1411 self,
1412 false,
1413 do_access_check);
1414 if (UNLIKELY(array_class == nullptr)) {
1415 DCHECK(self->IsExceptionPending());
1416 return false;
1417 }
1418 CHECK(array_class->IsArrayClass());
1419 ObjPtr<mirror::Class> component_class = array_class->GetComponentType();
1420 const bool is_primitive_int_component = component_class->IsPrimitiveInt();
1421 if (UNLIKELY(component_class->IsPrimitive() && !is_primitive_int_component)) {
1422 if (component_class->IsPrimitiveLong() || component_class->IsPrimitiveDouble()) {
1423 ThrowRuntimeException("Bad filled array request for type %s",
1424 component_class->PrettyDescriptor().c_str());
1425 } else {
1426 self->ThrowNewExceptionF("Ljava/lang/InternalError;",
1427 "Found type %s; filled-new-array not implemented for anything but 'int'",
1428 component_class->PrettyDescriptor().c_str());
1429 }
1430 return false;
1431 }
1432 ObjPtr<mirror::Object> new_array = mirror::Array::Alloc(
1433 self,
1434 array_class,
1435 length,
1436 array_class->GetComponentSizeShift(),
1437 Runtime::Current()->GetHeap()->GetCurrentAllocator());
1438 if (UNLIKELY(new_array == nullptr)) {
1439 self->AssertPendingOOMException();
1440 return false;
1441 }
1442 uint32_t arg[Instruction::kMaxVarArgRegs]; // only used in filled-new-array.
1443 uint32_t vregC = 0; // only used in filled-new-array-range.
1444 if (is_range) {
1445 vregC = inst->VRegC_3rc();
1446 } else {
1447 inst->GetVarArgs(arg);
1448 }
1449 // We're initializing a newly allocated array, so we do not need to record that under
1450 // a transaction. If the transaction is aborted, the whole array shall be unreachable.
1451 if (LIKELY(is_primitive_int_component)) {
1452 ObjPtr<mirror::IntArray> int_array = new_array->AsIntArray();
1453 for (int32_t i = 0; i < length; ++i) {
1454 size_t src_reg = is_range ? vregC + i : arg[i];
1455 int_array->SetWithoutChecks</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
1456 i, shadow_frame.GetVReg(src_reg));
1457 }
1458 } else {
1459 ObjPtr<mirror::ObjectArray<mirror::Object>> object_array =
1460 new_array->AsObjectArray<mirror::Object>();
1461 for (int32_t i = 0; i < length; ++i) {
1462 size_t src_reg = is_range ? vregC + i : arg[i];
1463 object_array->SetWithoutChecks</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
1464 i, shadow_frame.GetVRegReference(src_reg));
1465 }
1466 }
1467
1468 result->SetL(new_array);
1469 return true;
1470 }
1471
UnlockHeldMonitors(Thread * self,ShadowFrame * shadow_frame)1472 void UnlockHeldMonitors(Thread* self, ShadowFrame* shadow_frame)
1473 REQUIRES_SHARED(Locks::mutator_lock_) {
1474 DCHECK(shadow_frame->GetForcePopFrame() ||
1475 (Runtime::Current()->IsActiveTransaction() &&
1476 Runtime::Current()->GetClassLinker()->IsTransactionAborted()));
1477 // Unlock all monitors.
1478 if (shadow_frame->GetMethod()->MustCountLocks()) {
1479 DCHECK(!shadow_frame->GetMethod()->SkipAccessChecks());
1480 // Get the monitors from the shadow-frame monitor-count data.
1481 shadow_frame->GetLockCountData().VisitMonitors(
1482 [&](mirror::Object** obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1483 // Since we don't use the 'obj' pointer after the DoMonitorExit everything should be fine
1484 // WRT suspension.
1485 DoMonitorExit(self, shadow_frame, *obj);
1486 });
1487 } else {
1488 std::vector<verifier::MethodVerifier::DexLockInfo> locks;
1489 verifier::MethodVerifier::FindLocksAtDexPc(shadow_frame->GetMethod(),
1490 shadow_frame->GetDexPC(),
1491 &locks,
1492 Runtime::Current()->GetTargetSdkVersion());
1493 for (const auto& reg : locks) {
1494 if (UNLIKELY(reg.dex_registers.empty())) {
1495 LOG(ERROR) << "Unable to determine reference locked by "
1496 << shadow_frame->GetMethod()->PrettyMethod() << " at pc "
1497 << shadow_frame->GetDexPC();
1498 } else {
1499 DoMonitorExit(
1500 self, shadow_frame, shadow_frame->GetVRegReference(*reg.dex_registers.begin()));
1501 }
1502 }
1503 }
1504 }
1505
PerformNonStandardReturn(Thread * self,ShadowFrame & frame,JValue & result,const instrumentation::Instrumentation * instrumentation,bool unlock_monitors)1506 void PerformNonStandardReturn(Thread* self,
1507 ShadowFrame& frame,
1508 JValue& result,
1509 const instrumentation::Instrumentation* instrumentation,
1510 bool unlock_monitors) {
1511 if (UNLIKELY(self->IsExceptionPending())) {
1512 LOG(WARNING) << "Suppressing exception for non-standard method exit: "
1513 << self->GetException()->Dump();
1514 self->ClearException();
1515 }
1516 if (unlock_monitors) {
1517 UnlockHeldMonitors(self, &frame);
1518 DoMonitorCheckOnExit(self, &frame);
1519 }
1520 result = JValue();
1521 if (UNLIKELY(NeedsMethodExitEvent(instrumentation))) {
1522 SendMethodExitEvents(self, instrumentation, frame, frame.GetMethod(), result);
1523 }
1524 }
1525
1526 // Explicit DoCall template function declarations.
1527 #define EXPLICIT_DO_CALL_TEMPLATE_DECL(_is_range) \
1528 template REQUIRES_SHARED(Locks::mutator_lock_) \
1529 bool DoCall<_is_range>(ArtMethod* method, \
1530 Thread* self, \
1531 ShadowFrame& shadow_frame, \
1532 const Instruction* inst, \
1533 uint16_t inst_data, \
1534 bool string_init, \
1535 JValue* result)
1536 EXPLICIT_DO_CALL_TEMPLATE_DECL(false);
1537 EXPLICIT_DO_CALL_TEMPLATE_DECL(true);
1538 #undef EXPLICIT_DO_CALL_TEMPLATE_DECL
1539
1540 // Explicit DoInvokePolymorphic template function declarations.
1541 #define EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(_is_range) \
1542 template REQUIRES_SHARED(Locks::mutator_lock_) \
1543 bool DoInvokePolymorphic<_is_range>( \
1544 Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, \
1545 uint16_t inst_data, JValue* result)
1546 EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(false);
1547 EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(true);
1548 #undef EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL
1549
1550 // Explicit DoFilledNewArray template function declarations.
1551 #define EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(_is_range_) \
1552 template REQUIRES_SHARED(Locks::mutator_lock_) \
1553 bool DoFilledNewArray<_is_range_>(const Instruction* inst, \
1554 const ShadowFrame& shadow_frame, \
1555 Thread* self, \
1556 JValue* result)
1557 EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(false);
1558 EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(true);
1559 #undef EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL
1560
1561 } // namespace interpreter
1562 } // namespace art
1563