xref: /aosp_15_r20/external/rappor/analysis/R/association.R (revision 2abb31345f6c95944768b5222a9a5ed3fc68cc00)
1# Copyright 2014 Google Inc. All rights reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14
15library(parallel)  # mclapply
16
17source.rappor <- function(rel_path)  {
18  abs_path <- paste0(Sys.getenv("RAPPOR_REPO", ""), rel_path)
19  source(abs_path)
20}
21
22source.rappor("analysis/R/util.R")  # for Log
23source.rappor("analysis/R/decode.R")  # for ComputeCounts
24
25#
26# Tools used to estimate variable distributions of up to three variables
27#     in RAPPOR. This contains the functions relevant to estimating joint
28#     distributions.
29
30GetOtherProbs <- function(counts, map_by_cohort, marginal, params, pstar,
31                          qstar) {
32  # Computes the marginal for the "other" category.
33  #
34  # Args:
35  #   counts: m x (k+1) matrix with counts of each bit for each
36  #       cohort (m=#cohorts total, k=# bits in bloom filter), first column
37  #       stores the total counts
38  #   map_by_cohort: list of matrices encoding locations of hashes for each
39  #       string "other" category)
40  #   marginal: object containing the estimated frequencies of known strings
41  #       as well as the strings themselves, variance, etc.
42  #   params: RAPPOR encoding parameters
43  #
44  # Returns:
45  #   List of vectors of probabilities that each bit was set by the "other"
46  #   category.  The list is indexed by cohort.
47
48  N <- sum(counts[, 1])
49
50  # Counts of known strings to remove from each cohort.
51  known_counts <- ceiling(marginal$proportion * N / params$m)
52  sum_known <- sum(known_counts)
53
54  # Select only the strings we care about from each cohort.
55  # NOTE: drop = FALSE necessary if there is one candidate
56  candidate_map <- lapply(map_by_cohort, function(map_for_cohort) {
57    map_for_cohort[, marginal$string, drop = FALSE]
58  })
59
60  # If no strings were found, all nonzero counts were set by "other"
61  if (length(marginal) == 0) {
62    probs_other <- apply(counts, 1, function(cohort_row) {
63      cohort_row[-1] / cohort_row[1]
64    })
65    return(as.list(as.data.frame(probs_other)))
66  }
67
68  # Counts set by known strings without noise considerations.
69  known_counts_by_cohort <- sapply(candidate_map, function(map_for_cohort) {
70    as.vector(as.matrix(map_for_cohort) %*% known_counts)
71  })
72
73  # Protect against R's matrix/vector confusion.  This ensures
74  # known_counts_by_cohort is a matrix in the k=1 case.
75  dim(known_counts_by_cohort) <- c(params$m, params$k)
76
77  # Counts set by known vals zero bits adjusting by p plus true bits
78  # adjusting by q.
79  known_counts_by_cohort <- (sum_known - known_counts_by_cohort) * pstar +
80                            known_counts_by_cohort * qstar
81
82  # Add the left hand sums to make it a m x (k+1) "counts" matrix
83  known_counts_by_cohort <- cbind(sum_known, known_counts_by_cohort)
84
85  # Counts set by the "other" category.
86  reduced_counts <- counts - known_counts_by_cohort
87  reduced_counts[reduced_counts < 0] <- 0
88  probs_other <- apply(reduced_counts, 1, function(cohort_row) {
89    cohort_row[-1] / cohort_row[1]
90  })
91
92  # Protect against R's matrix/vector confusion.
93  dim(probs_other) <- c(params$k, params$m)
94
95  probs_other[probs_other > 1] <- 1
96  probs_other[is.nan(probs_other)] <- 0
97  probs_other[is.infinite(probs_other)] <- 0
98
99  # Convert it from a k x m matrix to a list indexed by m cohorts.
100  # as.data.frame makes each cohort a column, which can be indexed by
101  # probs_other[[cohort]].
102  result <- as.list(as.data.frame(probs_other))
103
104  result
105}
106
107GetCondProbBooleanReports <- function(reports, pstar, qstar, num_cores) {
108  # Compute conditional probabilities given a set of Boolean reports.
109  #
110  # Args:
111  #   reports: RAPPOR reports as a list of bit arrays (of length 1, because
112  #   this is a boolean report)
113  #   pstar, qstar: standard params computed from from rappor parameters
114  #   num_cores: number of cores to pass to mclapply to parallelize apply
115  #
116  # Returns:
117  #   Conditional probability of all boolean reports corresponding to
118  #   candidates (TRUE, FALSE)
119
120  # The values below are p(report=1|value=TRUE), p(report=1|value=FALSE)
121  cond_probs_for_1 <- c(qstar, pstar)
122  # The values below are p(report=0|value=TRUE), p(report=0|value=FALSE)
123  cond_probs_for_0 <- c(1 - qstar,  1 - pstar)
124
125  cond_report_dist <- mclapply(reports, function(report) {
126    if (report[[1]] == 1) {
127      cond_probs_for_1
128    } else {
129      cond_probs_for_0
130    }
131  }, mc.cores = num_cores)
132  cond_report_dist
133}
134
135GetCondProbStringReports <- function(reports, cohorts, map, m, pstar, qstar,
136                                     marginal, prob_other = NULL, num_cores) {
137  # Wrapper around GetCondProb. Given a set of reports, cohorts, map and
138  # parameters m, p*, and q*, it first computes bit indices by cohort, and
139  # then applies GetCondProb individually to each report.
140  #
141  # Args:
142  #   reports: RAPPOR reports as a list of bit arrays
143  #   cohorts: cohorts corresponding to these reports as a list
144  #   map: map file
145  #   m, pstar, qstar: standard params computed from from rappor parameters
146  #   marginal: list containing marginal estimates (output of Decode)
147  #   prob_other: vector of length k, indicating how often each bit in the
148  #     Bloom filter was set by a string in the "other" category.
149  #
150  # Returns:
151  #   Conditional probability of all reports given each of the strings in
152  #   marginal$string
153
154  # Get bit indices that are set per candidate per cohort
155  bit_indices_by_cohort <- lapply(1:m, function(cohort) {
156    map_for_cohort <- map$map_by_cohort[[cohort]]
157    # Find the bits set by the candidate strings
158    bit_indices <- lapply(marginal$string, function(x) {
159      which(map_for_cohort[, x])
160    })
161    bit_indices
162  })
163
164  # Apply GetCondProb over all reports
165  cond_report_dist <- mclapply(seq(length(reports)), function(i) {
166    cohort <- cohorts[i]
167    #Log('Report %d, cohort %d', i, cohort)
168    bit_indices <- bit_indices_by_cohort[[cohort]]
169    GetCondProb(reports[[i]], pstar, qstar, bit_indices,
170                prob_other = prob_other[[cohort]])
171  }, mc.cores = num_cores)
172  cond_report_dist
173}
174
175
176GetCondProb <- function(report, pstar, qstar, bit_indices, prob_other = NULL) {
177  # Given the observed bit array, estimate P(report | true value).
178  # Probabilities are estimated for all truth values.
179  #
180  # Args:
181  #   report: A single observed RAPPOR report (binary vector of length k).
182  #   params: RAPPOR parameters.
183  #   bit_indices: list with one entry for each candidate.  Each entry is an
184  #     integer vector of length h, specifying which bits are set for the
185  #     candidate in the report's cohort.
186  #   prob_other: vector of length k, indicating how often each bit in the
187  #     Bloom filter was set by a string in the "other" category.
188  #
189  # Returns:
190  #   Conditional probability of report given each of the strings in
191  #       candidate_strings
192  ones <- sum(report)
193  zeros <- length(report) - ones
194  probs <- ifelse(report == 1, pstar, 1 - pstar)
195
196  # Find the likelihood of report given each candidate string
197  prob_obs_vals <- sapply(bit_indices, function(x) {
198    prod(c(probs[-x], ifelse(report[x] == 1, qstar, 1 - qstar)))
199  })
200
201  # Account for the "other" category
202  if (!is.null(prob_other)) {
203    prob_other <- prod(c(prob_other[which(report == 1)],
204                         (1 - prob_other)[which(report == 0)]))
205    c(prob_obs_vals, prob_other)
206  } else {
207    prob_obs_vals
208  }
209}
210
211UpdatePij <- function(pij, cond_prob) {
212  # Update the probability matrix based on the EM algorithm.
213  #
214  # Args:
215  #   pij: conditional distribution of x (vector)
216  #   cond_prob: conditional distribution computed previously
217  #
218  # Returns:
219  #   Updated pijs from em algorithm (maximization)
220
221  # NOTE: Not using mclapply here because we have a faster C++ implementation.
222  # mclapply spawns multiple processes, and each process can take up 3 GB+ or 5
223  # GB+ of memory.
224  wcp <- lapply(cond_prob, function(x) {
225    z <- x * pij
226    z <- z / sum(z)
227    z[is.nan(z)] <- 0
228    z
229  })
230  Reduce("+", wcp) / length(wcp)
231}
232
233ComputeVar <- function(cond_prob, est) {
234  # Computes the variance of the estimated pij's.
235  #
236  # Args:
237  #   cond_prob: conditional distribution computed previously
238  #   est: estimated pij's
239  #
240  # Returns:
241  #   Variance of the estimated pij's
242
243  inform <- Reduce("+", lapply(cond_prob, function(x) {
244    (outer(as.vector(x), as.vector(x))) / (sum(x * est))^2
245  }))
246  var_cov <- solve(inform)
247  sd <- matrix(sqrt(diag(var_cov)), dim(cond_prob[[1]]))
248  list(var_cov = var_cov, sd = sd, inform = inform)
249}
250
251EM <- function(cond_prob, starting_pij = NULL, estimate_var = FALSE,
252               max_em_iters = 1000, epsilon = 10^-6, verbose = FALSE) {
253  # Performs estimation.
254  #
255  # Args:
256  #   cond_prob: conditional distribution computed previously
257  #   starting_pij: estimated pij's
258  #   estimate_var: flags whether we should estimate the variance
259  #       of our computed distribution
260  #   max_em_iters: maximum number of EM iterations
261  #   epsilon: convergence parameter
262  #   verbose: flags whether to display error data
263  #
264  # Returns:
265  #   Estimated pij's, variance, error params
266
267  pij <- list()
268  state_space <- dim(cond_prob[[1]])
269  if (is.null(starting_pij)) {
270    pij[[1]] <- array(1 / prod(state_space), state_space)
271  } else {
272    pij[[1]] <- starting_pij
273  }
274
275  i <- 0  # visible outside loop
276  if (nrow(pij[[1]]) > 0) {
277    # Run EM
278    for (i in 1:max_em_iters) {
279      pij[[i + 1]] <- UpdatePij(pij[[i]], cond_prob)
280      dif <- max(abs(pij[[i + 1]] - pij[[i]]))
281      if (dif < epsilon) {
282        break
283      }
284      Log('EM iteration %d, dif = %e', i, dif)
285    }
286  }
287  # Compute the variance of the estimate.
288  est <- pij[[length(pij)]]
289  if (estimate_var) {
290    var_cov <- ComputeVar(cond_prob, est)
291    sd <- var_cov$sd
292    inform <- var_cov$inform
293    var_cov <- var_cov$var_cov
294  } else {
295    var_cov <- NULL
296    inform <- NULL
297    sd <- NULL
298  }
299  list(est = est, sd = sd, var_cov = var_cov, hist = pij, num_em_iters = i)
300}
301
302TestIndependence <- function(est, inform) {
303  # Tests the degree of independence between variables.
304  #
305  # Args:
306  #   est: esimated pij values
307  #   inform: information matrix
308  #
309  # Returns:
310  #   Chi-squared statistic for whether two variables are independent
311
312  expec <- outer(apply(est, 1, sum), apply(est, 2, sum))
313  diffs <- matrix(est - expec, ncol = 1)
314  stat <- t(diffs) %*% inform %*% diffs
315  df <- (nrow(est) - 1) * (ncol(est) - 1)
316  list(stat = stat, pval = pchisq(stat, df, lower = FALSE))
317}
318
319UpdateJointConditional <- function(cond_report_dist, joint_conditional = NULL) {
320  # Updates the joint conditional  distribution of d variables, where
321  #     num_variables is chosen by the client. Since variables are conditionally
322  #     independent of one another, this is basically an outer product.
323  #
324  # Args:
325  #   joint_conditional: The current state of the joint conditional
326  #       distribution. This is a list with as many elements as there
327  #       are reports.
328  #   cond_report_dist: The conditional distribution of variable x, which will
329  #       be outer-producted with the current joint conditional.
330  #
331  # Returns:
332  #   A list of same length as joint_conditional containing the joint
333  #       conditional distribution of all variables. If I want
334  #       P(X'=x',Y=y'|X=x,Y=y), I will look at
335  #       joint_conditional[x,x',y,y'].
336
337  if (is.null(joint_conditional)) {
338    lapply(cond_report_dist, function(x) array(x))
339  } else {
340    mapply("outer", joint_conditional, cond_report_dist,
341           SIMPLIFY = FALSE)
342  }
343}
344
345ComputeDistributionEM <- function(reports, report_cohorts, maps,
346                                  ignore_other = FALSE,
347                                  params = NULL,
348                                  params_list = NULL,
349                                  marginals = NULL,
350                                  estimate_var = FALSE,
351                                  num_cores = 10,
352                                  em_iter_func = EM,
353                                  max_em_iters = 1000) {
354  # Computes the distribution of num_variables variables, where
355  #     num_variables is chosen by the client, using the EM algorithm.
356  #
357  # Args:
358  #   reports: A list of num_variables elements, each a 2-dimensional array
359  #       containing the counts of each bin for each report
360  #   report_cohorts: A num_variables-element list; the ith element is an array
361  #       containing the cohort of jth report for ith variable.
362  #   maps: A num_variables-element list containing the map for each variable
363  #   ignore_other: A boolean describing whether to compute the "other" category
364  #   params: RAPPOR encoding parameters.  If set, all variables are assumed to
365  #       be encoded with these parameters.
366  #   params_list: A list of num_variables elements, each of which is the
367  #       RAPPOR encoding parameters for a variable (a list itself).  If set,
368  #       it must be the same length as 'reports'.
369  #   marginals: List of estimated marginals for each variable
370  #   estimate_var: A flag telling whether to estimate the variance.
371  #   em_iter_func: Function that implements the iterative EM algorithm.
372
373  # Handle the case that the client wants to find the joint distribution of too
374  # many variables.
375  num_variables <- length(reports)
376
377  if (is.null(params) && is.null(params_list)) {
378    stop("Either params or params_list must be passed")
379  }
380
381  Log('Computing joint conditional')
382
383  # Compute the counts for each variable and then do conditionals.
384  joint_conditional = NULL
385  found_strings <- list()
386
387  for (j in (1:num_variables)) {
388    Log('Processing var %d', j)
389
390    var_report <- reports[[j]]
391    var_cohort <- report_cohorts[[j]]
392    var_map <- maps[[j]]
393    if (!is.null(params)) {
394      var_params <- params
395    } else {
396      var_params <- params_list[[j]]
397    }
398
399    var_counts <- NULL
400    if (is.null(marginals)) {
401      Log('\tSumming bits to gets observed counts')
402      var_counts <- ComputeCounts(var_report, var_cohort, var_params)
403
404      Log('\tDecoding marginal')
405      marginal <- Decode(var_counts, var_map$all_cohorts_map, var_params,
406                         quiet = TRUE)$fit
407      Log('\tMarginal for var %d has %d values:', j, nrow(marginal))
408      print(marginal[, c('estimate', 'proportion')])  # rownames are the string
409      cat('\n')
410
411      if (nrow(marginal) == 0) {
412        Log('ERROR: Nothing decoded for variable %d', j)
413        return (NULL)
414      }
415    } else {
416      marginal <- marginals[[j]]
417    }
418    found_strings[[j]] <- marginal$string
419
420    p <- var_params$p
421    q <- var_params$q
422    f <- var_params$f
423    # pstar and qstar needed to compute other probabilities as well as for
424    # inputs to GetCondProb{Boolean, String}Reports subsequently
425    pstar <- (1 - f / 2) * p + (f / 2) * q
426    qstar <- (1 - f / 2) * q + (f / 2) * p
427    k <- var_params$k
428
429    # Ignore other probability if either ignore_other is set or k == 1
430    # (Boolean RAPPOR)
431    if (ignore_other || (k == 1)) {
432      prob_other <- vector(mode = "list", length = var_params$m)
433    } else {
434      # Compute the probability of the "other" category
435      if (is.null(var_counts)) {
436        var_counts <- ComputeCounts(var_report, var_cohort, var_params)
437      }
438      prob_other <- GetOtherProbs(var_counts, var_map$map_by_cohort, marginal,
439                                  var_params, pstar, qstar)
440      found_strings[[j]] <- c(found_strings[[j]], "Other")
441    }
442
443    # Get the joint conditional distribution
444    Log('\tGetCondProb for each report (%d cores)', num_cores)
445
446    # TODO(pseudorandom): check RAPPOR type more systematically instead of by
447    # checking if k == 1
448    if (k == 1) {
449      cond_report_dist <- GetCondProbBooleanReports(var_report, pstar, qstar,
450                                                    num_cores)
451    } else {
452      cond_report_dist <- GetCondProbStringReports(var_report,
453                                var_cohort, var_map, var_params$m, pstar, qstar,
454                                marginal, prob_other, num_cores)
455    }
456
457    Log('\tUpdateJointConditional')
458
459    # Update the joint conditional distribution of all variables
460    joint_conditional <- UpdateJointConditional(cond_report_dist,
461                                                joint_conditional)
462  }
463
464  N <- length(joint_conditional)
465  dimensions <- dim(joint_conditional[[1]])
466  # e.g. 2 x 3
467  dimensions_str <- paste(dimensions, collapse = ' x ')
468  total_entries <- prod(c(N, dimensions))
469
470  Log('Starting EM with N = %d matrices of size %s (%d entries)',
471      N, dimensions_str, total_entries)
472
473  start_time <- proc.time()[['elapsed']]
474
475  # Run expectation maximization to find joint distribution
476  em <- em_iter_func(joint_conditional, max_em_iters=max_em_iters,
477                     epsilon = 10 ^ -6, verbose = FALSE,
478                     estimate_var = estimate_var)
479
480  em_elapsed_time <- proc.time()[['elapsed']] - start_time
481
482  dimnames(em$est) <- found_strings
483  # Return results in a usable format
484  list(fit = em$est,
485       sd = em$sd,
486       em_elapsed_time = em_elapsed_time,
487       num_em_iters = em$num_em_iters,
488       # This last field is implementation-specific; it can be used for
489       # interactive debugging.
490       em = em)
491}
492