1 // Copyright 2018 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "partition_alloc/partition_bucket.h"
6 
7 #include <algorithm>
8 #include <bit>
9 #include <cstdint>
10 #include <tuple>
11 
12 #include "build/build_config.h"
13 #include "partition_alloc/address_pool_manager.h"
14 #include "partition_alloc/freeslot_bitmap.h"
15 #include "partition_alloc/freeslot_bitmap_constants.h"
16 #include "partition_alloc/oom.h"
17 #include "partition_alloc/page_allocator.h"
18 #include "partition_alloc/page_allocator_constants.h"
19 #include "partition_alloc/partition_address_space.h"
20 #include "partition_alloc/partition_alloc.h"
21 #include "partition_alloc/partition_alloc_base/bits.h"
22 #include "partition_alloc/partition_alloc_base/compiler_specific.h"
23 #include "partition_alloc/partition_alloc_base/component_export.h"
24 #include "partition_alloc/partition_alloc_base/debug/alias.h"
25 #include "partition_alloc/partition_alloc_base/debug/debugging_buildflags.h"
26 #include "partition_alloc/partition_alloc_base/immediate_crash.h"
27 #include "partition_alloc/partition_alloc_base/thread_annotations.h"
28 #include "partition_alloc/partition_alloc_buildflags.h"
29 #include "partition_alloc/partition_alloc_check.h"
30 #include "partition_alloc/partition_alloc_config.h"
31 #include "partition_alloc/partition_alloc_constants.h"
32 #include "partition_alloc/partition_alloc_forward.h"
33 #include "partition_alloc/partition_direct_map_extent.h"
34 #include "partition_alloc/partition_freelist_entry.h"
35 #include "partition_alloc/partition_oom.h"
36 #include "partition_alloc/partition_page.h"
37 #include "partition_alloc/partition_root.h"
38 #include "partition_alloc/reservation_offset_table.h"
39 #include "partition_alloc/tagging.h"
40 
41 #if BUILDFLAG(USE_STARSCAN)
42 #include "partition_alloc/starscan/pcscan.h"
43 #endif
44 
45 namespace partition_alloc::internal {
46 
47 namespace {
48 
49 #if PA_CONFIG(ENABLE_SHADOW_METADATA)
ShadowMetadataStart(uintptr_t super_page,pool_handle pool)50 PA_ALWAYS_INLINE uintptr_t ShadowMetadataStart(uintptr_t super_page,
51                                                pool_handle pool) {
52   uintptr_t shadow_metadata_start =
53       super_page + SystemPageSize() + ShadowPoolOffset(pool);
54   PA_DCHECK(!PartitionAddressSpace::IsInRegularPool(shadow_metadata_start));
55   PA_DCHECK(!PartitionAddressSpace::IsInBRPPool(shadow_metadata_start));
56   return shadow_metadata_start;
57 }
58 #endif
59 
PartitionOutOfMemoryMappingFailure(PartitionRoot * root,size_t size)60 [[noreturn]] PA_NOINLINE void PartitionOutOfMemoryMappingFailure(
61     PartitionRoot* root,
62     size_t size) PA_LOCKS_EXCLUDED(PartitionRootLock(root)) {
63   PA_NO_CODE_FOLDING();
64   root->OutOfMemory(size);
65   PA_IMMEDIATE_CRASH();  // Not required, kept as documentation.
66 }
67 
PartitionOutOfMemoryCommitFailure(PartitionRoot * root,size_t size)68 [[noreturn]] PA_NOINLINE void PartitionOutOfMemoryCommitFailure(
69     PartitionRoot* root,
70     size_t size) PA_LOCKS_EXCLUDED(PartitionRootLock(root)) {
71   PA_NO_CODE_FOLDING();
72   root->OutOfMemory(size);
73   PA_IMMEDIATE_CRASH();  // Not required, kept as documentation.
74 }
75 
76 #if !BUILDFLAG(HAS_64_BIT_POINTERS) && BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
77 // |start| has to be aligned to kSuperPageSize, but |end| doesn't. This means
78 // that a partial super page is allowed at the end. Since the block list uses
79 // kSuperPageSize granularity, a partial super page is considered blocked if
80 // there is a raw_ptr<T> pointing anywhere in that super page, even if doesn't
81 // point to that partially allocated region.
AreAllowedSuperPagesForBRPPool(uintptr_t start,uintptr_t end)82 bool AreAllowedSuperPagesForBRPPool(uintptr_t start, uintptr_t end) {
83   PA_DCHECK(!(start % kSuperPageSize));
84   for (uintptr_t super_page = start; super_page < end;
85        super_page += kSuperPageSize) {
86     // If any blocked super page is found inside the given memory region,
87     // the memory region is blocked.
88     if (!AddressPoolManagerBitmap::IsAllowedSuperPageForBRPPool(super_page)) {
89       AddressPoolManagerBitmap::IncrementBlocklistHitCount();
90       return false;
91     }
92   }
93   return true;
94 }
95 #endif  // !BUILDFLAG(HAS_64_BIT_POINTERS) &&
96         // BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
97 
98 // Reserves |requested_size| worth of super pages from the specified pool.
99 // If BRP pool is requested this function will honor BRP block list.
100 //
101 // The returned address will be aligned to kSuperPageSize, and so
102 // |requested_address| should be. |requested_size| doesn't have to be, however.
103 //
104 // |requested_address| is merely a hint, which will be attempted, but easily
105 // given up on if doesn't work the first time.
106 //
107 // The function doesn't need to hold root->lock_ or any other locks, because:
108 // - It (1) reserves memory, (2) then consults AreAllowedSuperPagesForBRPPool
109 //   for that memory, and (3) returns the memory if
110 //   allowed, or unreserves and decommits if not allowed. So no other
111 //   overlapping region can be allocated while executing
112 //   AreAllowedSuperPagesForBRPPool.
113 // - IsAllowedSuperPageForBRPPool (used by AreAllowedSuperPagesForBRPPool) is
114 //   designed to not need locking.
ReserveMemoryFromPool(pool_handle pool,uintptr_t requested_address,size_t requested_size)115 uintptr_t ReserveMemoryFromPool(pool_handle pool,
116                                 uintptr_t requested_address,
117                                 size_t requested_size) {
118   PA_DCHECK(!(requested_address % kSuperPageSize));
119 
120   uintptr_t reserved_address = AddressPoolManager::GetInstance().Reserve(
121       pool, requested_address, requested_size);
122 
123   // In 32-bit mode, when allocating from BRP pool, verify that the requested
124   // allocation honors the block list. Find a better address otherwise.
125 #if !BUILDFLAG(HAS_64_BIT_POINTERS) && BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
126   if (pool == kBRPPoolHandle) {
127     constexpr int kMaxRandomAddressTries = 10;
128     for (int i = 0; i < kMaxRandomAddressTries; ++i) {
129       if (!reserved_address ||
130           AreAllowedSuperPagesForBRPPool(reserved_address,
131                                          reserved_address + requested_size)) {
132         break;
133       }
134       AddressPoolManager::GetInstance().UnreserveAndDecommit(
135           pool, reserved_address, requested_size);
136       // No longer try to honor |requested_address|, because it didn't work for
137       // us last time.
138       reserved_address =
139           AddressPoolManager::GetInstance().Reserve(pool, 0, requested_size);
140     }
141 
142     // If the allocation attempt succeeds, we will break out of the following
143     // loop immediately.
144     //
145     // Last resort: sequentially scan the whole 32-bit address space. The number
146     // of blocked super-pages should be very small, so we expect to practically
147     // never need to run the following code. Note that it may fail to find an
148     // available super page, e.g., when it becomes available after the scan
149     // passes through it, but we accept the risk.
150     for (uintptr_t address_to_try = kSuperPageSize; address_to_try != 0;
151          address_to_try += kSuperPageSize) {
152       if (!reserved_address ||
153           AreAllowedSuperPagesForBRPPool(reserved_address,
154                                          reserved_address + requested_size)) {
155         break;
156       }
157       AddressPoolManager::GetInstance().UnreserveAndDecommit(
158           pool, reserved_address, requested_size);
159       // Reserve() can return a different pointer than attempted.
160       reserved_address = AddressPoolManager::GetInstance().Reserve(
161           pool, address_to_try, requested_size);
162     }
163 
164     // If the loop ends naturally, the last allocated region hasn't been
165     // verified. Do it now.
166     if (reserved_address &&
167         !AreAllowedSuperPagesForBRPPool(reserved_address,
168                                         reserved_address + requested_size)) {
169       AddressPoolManager::GetInstance().UnreserveAndDecommit(
170           pool, reserved_address, requested_size);
171       reserved_address = 0;
172     }
173   }
174 #endif  // !BUILDFLAG(HAS_64_BIT_POINTERS) &&
175         // BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
176 
177 #if !BUILDFLAG(HAS_64_BIT_POINTERS)
178   // Only mark the region as belonging to the pool after it has passed the
179   // blocklist check in order to avoid a potential race with destructing a
180   // raw_ptr<T> object that points to non-PA memory in another thread.
181   // If `MarkUsed` was called earlier, the other thread could incorrectly
182   // determine that the allocation had come form PartitionAlloc.
183   if (reserved_address) {
184     AddressPoolManager::GetInstance().MarkUsed(pool, reserved_address,
185                                                requested_size);
186   }
187 #endif
188 
189   PA_DCHECK(!(reserved_address % kSuperPageSize));
190   return reserved_address;
191 }
192 
PartitionDirectMap(PartitionRoot * root,AllocFlags flags,size_t raw_size,size_t slot_span_alignment)193 SlotSpanMetadata* PartitionDirectMap(PartitionRoot* root,
194                                      AllocFlags flags,
195                                      size_t raw_size,
196                                      size_t slot_span_alignment) {
197   PA_DCHECK((slot_span_alignment >= PartitionPageSize()) &&
198             std::has_single_bit(slot_span_alignment));
199 
200   // No static EXCLUSIVE_LOCKS_REQUIRED(), as the checker doesn't understand
201   // scoped unlocking.
202   PartitionRootLock(root).AssertAcquired();
203 
204   const bool return_null = ContainsFlags(flags, AllocFlags::kReturnNull);
205   if (PA_UNLIKELY(raw_size > MaxDirectMapped())) {
206     if (return_null) {
207       return nullptr;
208     }
209 
210     // The lock is here to protect PA from:
211     // 1. Concurrent calls
212     // 2. Reentrant calls
213     //
214     // This is fine here however, as:
215     // 1. Concurrency: |PartitionRoot::OutOfMemory()| never returns, so the lock
216     //    will not be re-acquired, which would lead to acting on inconsistent
217     //    data that could have been modified in-between releasing and acquiring
218     //    it.
219     // 2. Reentrancy: This is why we release the lock. On some platforms,
220     //    terminating the process may free() memory, or even possibly try to
221     //    allocate some. Calling free() is fine, but will deadlock since
222     //    |PartitionRoot::lock_| is not recursive.
223     //
224     // Supporting reentrant calls properly is hard, and not a requirement for
225     // PA. However up to that point, we've only *read* data, not *written* to
226     // any state. Reentrant calls are then fine, especially as we don't continue
227     // on this path. The only downside is possibly endless recursion if the OOM
228     // handler allocates and fails to use UncheckedMalloc() or equivalent, but
229     // that's violating the contract of base::TerminateBecauseOutOfMemory().
230     ScopedUnlockGuard unlock{PartitionRootLock(root)};
231     PartitionExcessiveAllocationSize(raw_size);
232   }
233 
234   PartitionDirectMapExtent* map_extent = nullptr;
235   PartitionPageMetadata* page_metadata = nullptr;
236 
237   {
238     // Getting memory for direct-mapped allocations doesn't interact with the
239     // rest of the allocator, but takes a long time, as it involves several
240     // system calls. Although no mmap() (or equivalent) calls are made on
241     // 64 bit systems, page permissions are changed with mprotect(), which is
242     // a syscall.
243     //
244     // These calls are almost always slow (at least a couple us per syscall on a
245     // desktop Linux machine), and they also have a very long latency tail,
246     // possibly from getting descheduled. As a consequence, we should not hold
247     // the lock when performing a syscall. This is not the only problematic
248     // location, but since this one doesn't interact with the rest of the
249     // allocator, we can safely drop and then re-acquire the lock.
250     //
251     // Note that this only affects allocations that are not served out of the
252     // thread cache, but as a simple example the buffer partition in blink is
253     // frequently used for large allocations (e.g. ArrayBuffer), and frequent,
254     // small ones (e.g. WTF::String), and does not have a thread cache.
255     ScopedUnlockGuard scoped_unlock{PartitionRootLock(root)};
256 
257     const size_t slot_size = PartitionRoot::GetDirectMapSlotSize(raw_size);
258     // The super page starts with a partition page worth of metadata and guard
259     // pages, hence alignment requests ==PartitionPageSize() will be
260     // automatically satisfied. Padding is needed for higher-order alignment
261     // requests. Note, |slot_span_alignment| is at least 1 partition page.
262     const size_t padding_for_alignment =
263         slot_span_alignment - PartitionPageSize();
264     const size_t reservation_size = PartitionRoot::GetDirectMapReservationSize(
265         raw_size + padding_for_alignment);
266     PA_DCHECK(reservation_size >= raw_size);
267 #if BUILDFLAG(PA_DCHECK_IS_ON)
268     const size_t available_reservation_size =
269         reservation_size - padding_for_alignment -
270         PartitionRoot::GetDirectMapMetadataAndGuardPagesSize();
271     PA_DCHECK(slot_size <= available_reservation_size);
272 #endif
273 
274     pool_handle pool = root->ChoosePool();
275     uintptr_t reservation_start;
276     {
277       // Reserving memory from the pool is actually not a syscall on 64 bit
278       // platforms.
279 #if !BUILDFLAG(HAS_64_BIT_POINTERS)
280       ScopedSyscallTimer timer{root};
281 #endif
282       reservation_start = ReserveMemoryFromPool(pool, 0, reservation_size);
283     }
284     if (PA_UNLIKELY(!reservation_start)) {
285       if (return_null) {
286         return nullptr;
287       }
288 
289       PartitionOutOfMemoryMappingFailure(root, reservation_size);
290     }
291 
292     root->total_size_of_direct_mapped_pages.fetch_add(
293         reservation_size, std::memory_order_relaxed);
294 
295     // Shift by 1 partition page (metadata + guard pages) and alignment padding.
296     const uintptr_t slot_start =
297         reservation_start + PartitionPageSize() + padding_for_alignment;
298 
299     {
300       ScopedSyscallTimer timer{root};
301       RecommitSystemPages(reservation_start + SystemPageSize(),
302                           SystemPageSize(),
303 #if PA_CONFIG(ENABLE_SHADOW_METADATA)
304                           root->PageAccessibilityWithThreadIsolationIfEnabled(
305                               PageAccessibilityConfiguration::kRead),
306 #else
307                           root->PageAccessibilityWithThreadIsolationIfEnabled(
308                               PageAccessibilityConfiguration::kReadWrite),
309 #endif
310                           PageAccessibilityDisposition::kRequireUpdate);
311     }
312 
313     if (pool == kBRPPoolHandle) {
314       // Allocate a system page for BRP ref-count table (only one of its
315       // elements will be used).
316       ScopedSyscallTimer timer{root};
317       RecommitSystemPages(reservation_start + SystemPageSize() * 2,
318                           SystemPageSize(),
319                           root->PageAccessibilityWithThreadIsolationIfEnabled(
320                               PageAccessibilityConfiguration::kReadWrite),
321                           PageAccessibilityDisposition::kRequireUpdate);
322     }
323 
324 #if PA_CONFIG(ENABLE_SHADOW_METADATA)
325     {
326       ScopedSyscallTimer timer{root};
327       RecommitSystemPages(ShadowMetadataStart(reservation_start, pool),
328                           SystemPageSize(),
329                           root->PageAccessibilityWithThreadIsolationIfEnabled(
330                               PageAccessibilityConfiguration::kReadWrite),
331                           PageAccessibilityDisposition::kRequireUpdate);
332     }
333 #endif
334 
335     // No need to hold root->lock_. Now that memory is reserved, no other
336     // overlapping region can be allocated (because of how pools work),
337     // so no other thread can update the same offset table entries at the
338     // same time. Furthermore, nobody will be ready these offsets until this
339     // function returns.
340     auto* offset_ptr = ReservationOffsetPointer(reservation_start);
341     [[maybe_unused]] const auto* offset_ptr_end =
342         GetReservationOffsetTableEnd(reservation_start);
343 
344     // |raw_size| > MaxBucketed(). So |reservation_size| > 0.
345     PA_DCHECK(reservation_size > 0);
346     const uint16_t offset_end = (reservation_size - 1) >> kSuperPageShift;
347     for (uint16_t offset = 0; offset <= offset_end; ++offset) {
348       PA_DCHECK(offset < kOffsetTagNormalBuckets);
349       PA_DCHECK(offset_ptr < offset_ptr_end);
350       *offset_ptr++ = offset;
351     }
352 
353     auto* super_page_extent = PartitionSuperPageToExtent(reservation_start);
354     super_page_extent->root = root;
355     // The new structures are all located inside a fresh system page so they
356     // will all be zeroed out. These DCHECKs are for documentation and to assert
357     // our expectations of the kernel.
358     PA_DCHECK(!super_page_extent->number_of_consecutive_super_pages);
359     PA_DCHECK(!super_page_extent->next);
360 
361     PartitionPageMetadata* first_page_metadata =
362         reinterpret_cast<PartitionPageMetadata*>(super_page_extent) + 1;
363     page_metadata = PartitionPageMetadata::FromAddr(slot_start);
364     // |first_page_metadata| and |page_metadata| may be equal, if there is no
365     // alignment padding.
366     if (page_metadata != first_page_metadata) {
367       PA_DCHECK(page_metadata > first_page_metadata);
368       PA_DCHECK(page_metadata - first_page_metadata <=
369                 PartitionPageMetadata::kMaxSlotSpanMetadataOffset);
370       PA_CHECK(!first_page_metadata->is_valid);
371       first_page_metadata->has_valid_span_after_this = true;
372       first_page_metadata->slot_span_metadata_offset =
373           page_metadata - first_page_metadata;
374     }
375     auto* direct_map_metadata =
376         reinterpret_cast<PartitionDirectMapMetadata*>(page_metadata);
377     // Since direct map metadata is larger than PartitionPageMetadata, make sure
378     // the first and the last bytes are on the same system page, i.e. within the
379     // super page metadata region.
380     PA_DCHECK(
381         base::bits::AlignDown(reinterpret_cast<uintptr_t>(direct_map_metadata),
382                               SystemPageSize()) ==
383         base::bits::AlignDown(reinterpret_cast<uintptr_t>(direct_map_metadata) +
384                                   sizeof(PartitionDirectMapMetadata) - 1,
385                               SystemPageSize()));
386     PA_DCHECK(page_metadata == &direct_map_metadata->page_metadata);
387     page_metadata->is_valid = true;
388     PA_DCHECK(!page_metadata->has_valid_span_after_this);
389     PA_DCHECK(!page_metadata->slot_span_metadata_offset);
390     PA_DCHECK(!page_metadata->slot_span_metadata.next_slot_span);
391     PA_DCHECK(!page_metadata->slot_span_metadata.marked_full);
392     PA_DCHECK(!page_metadata->slot_span_metadata.num_allocated_slots);
393     PA_DCHECK(!page_metadata->slot_span_metadata.num_unprovisioned_slots);
394     PA_DCHECK(!page_metadata->slot_span_metadata.in_empty_cache());
395 
396     PA_DCHECK(!direct_map_metadata->second_page_metadata
397                    .subsequent_page_metadata.raw_size);
398     // Raw size is set later, by the caller.
399     direct_map_metadata->second_page_metadata.slot_span_metadata_offset = 1;
400 
401     PA_DCHECK(!direct_map_metadata->bucket.active_slot_spans_head);
402     PA_DCHECK(!direct_map_metadata->bucket.empty_slot_spans_head);
403     PA_DCHECK(!direct_map_metadata->bucket.decommitted_slot_spans_head);
404     PA_DCHECK(!direct_map_metadata->bucket.num_system_pages_per_slot_span);
405     PA_DCHECK(!direct_map_metadata->bucket.num_full_slot_spans);
406     direct_map_metadata->bucket.slot_size = slot_size;
407 
408     new (&page_metadata->slot_span_metadata)
409         SlotSpanMetadata(&direct_map_metadata->bucket);
410 
411     // It is typically possible to map a large range of inaccessible pages, and
412     // this is leveraged in multiple places, including the pools. However,
413     // this doesn't mean that we can commit all this memory.  For the vast
414     // majority of allocations, this just means that we crash in a slightly
415     // different place, but for callers ready to handle failures, we have to
416     // return nullptr. See crbug.com/1187404.
417     //
418     // Note that we didn't check above, because if we cannot even commit a
419     // single page, then this is likely hopeless anyway, and we will crash very
420     // soon.
421     //
422     // Direct map never uses tagging, as size is always >kMaxMemoryTaggingSize.
423     PA_DCHECK(raw_size > kMaxMemoryTaggingSize);
424     const bool ok = root->TryRecommitSystemPagesForDataWithAcquiringLock(
425         slot_start, slot_size, PageAccessibilityDisposition::kRequireUpdate,
426         false);
427     if (!ok) {
428       if (!return_null) {
429         PartitionOutOfMemoryCommitFailure(root, slot_size);
430       }
431 
432       {
433         ScopedSyscallTimer timer{root};
434 #if !BUILDFLAG(HAS_64_BIT_POINTERS)
435         AddressPoolManager::GetInstance().MarkUnused(pool, reservation_start,
436                                                      reservation_size);
437 #endif
438         AddressPoolManager::GetInstance().UnreserveAndDecommit(
439             pool, reservation_start, reservation_size);
440       }
441 
442       root->total_size_of_direct_mapped_pages.fetch_sub(
443           reservation_size, std::memory_order_relaxed);
444 
445       return nullptr;
446     }
447 
448     auto* next_entry =
449         root->get_freelist_dispatcher()->EmplaceAndInitNull(slot_start);
450 
451     page_metadata->slot_span_metadata.SetFreelistHead(next_entry);
452 
453     map_extent = &direct_map_metadata->direct_map_extent;
454     map_extent->reservation_size = reservation_size;
455     map_extent->padding_for_alignment = padding_for_alignment;
456     map_extent->bucket = &direct_map_metadata->bucket;
457   }
458 
459   PartitionRootLock(root).AssertAcquired();
460 
461   // Maintain the doubly-linked list of all direct mappings.
462   map_extent->next_extent = root->direct_map_list;
463   if (map_extent->next_extent) {
464     map_extent->next_extent->prev_extent = map_extent;
465   }
466   map_extent->prev_extent = nullptr;
467   root->direct_map_list = map_extent;
468 
469   return &page_metadata->slot_span_metadata;
470 }
471 
ComputeSystemPagesPerSlotSpanPreferSmall(size_t slot_size)472 uint8_t ComputeSystemPagesPerSlotSpanPreferSmall(size_t slot_size) {
473   if (slot_size > MaxRegularSlotSpanSize()) {
474     // This is technically not needed, as for now all the larger slot sizes are
475     // multiples of the system page size.
476     return base::bits::AlignUp(slot_size, SystemPageSize()) / SystemPageSize();
477   }
478 
479   // Smaller slot spans waste less address space, as well as potentially lower
480   // fragmentation:
481   // - Address space: This comes from fuller SuperPages (since the tail end of a
482   //   SuperPage is more likely to be used when the slot span is smaller. Also,
483   //   if a slot span is partially used, a smaller slot span will use less
484   //   address space.
485   // - In-slot fragmentation: Slot span management code will prioritize
486   //   almost-full slot spans, as well as trying to keep empty slot spans
487   //   empty. The more granular this logic can work, the better.
488   //
489   // Since metadata space overhead is constant per-PartitionPage, keeping
490   // smaller slot spans makes sense.
491   //
492   // Underlying memory allocation is done per-PartitionPage, but memory commit
493   // is done per system page. This means that we prefer to fill the entirety of
494   // a PartitionPage with a slot span, but we can tolerate some system pages
495   // being empty at the end, as these will not cost committed or dirty memory.
496   //
497   // The choice below is, for multi-slot slot spans:
498   // - If a full PartitionPage slot span is possible with less than 2% of a
499   //   *single* system page wasted, use it. The smallest possible size wins.
500   // - Otherwise, select the size with the smallest virtual address space
501   //   loss. Allow a SlotSpan to leave some slack in its PartitionPage, up to
502   //   1/4 of the total.
503   for (size_t partition_page_count = 1;
504        partition_page_count <= kMaxPartitionPagesPerRegularSlotSpan;
505        partition_page_count++) {
506     size_t candidate_size = partition_page_count * PartitionPageSize();
507     size_t waste = candidate_size % slot_size;
508     if (waste <= .02 * SystemPageSize()) {
509       return partition_page_count * NumSystemPagesPerPartitionPage();
510     }
511   }
512 
513   size_t best_count = 0;
514   size_t best_waste = std::numeric_limits<size_t>::max();
515   for (size_t partition_page_count = 1;
516        partition_page_count <= kMaxPartitionPagesPerRegularSlotSpan;
517        partition_page_count++) {
518     // Prefer no slack.
519     for (size_t slack = 0; slack < partition_page_count; slack++) {
520       size_t system_page_count =
521           partition_page_count * NumSystemPagesPerPartitionPage() - slack;
522       size_t candidate_size = system_page_count * SystemPageSize();
523       size_t waste = candidate_size % slot_size;
524       if (waste < best_waste) {
525         best_waste = waste;
526         best_count = system_page_count;
527       }
528     }
529   }
530   return best_count;
531 }
532 
ComputeSystemPagesPerSlotSpanInternal(size_t slot_size)533 uint8_t ComputeSystemPagesPerSlotSpanInternal(size_t slot_size) {
534   // This works out reasonably for the current bucket sizes of the generic
535   // allocator, and the current values of partition page size and constants.
536   // Specifically, we have enough room to always pack the slots perfectly into
537   // some number of system pages. The only waste is the waste associated with
538   // unfaulted pages (i.e. wasted address space).
539   // TODO: we end up using a lot of system pages for very small sizes. For
540   // example, we'll use 12 system pages for slot size 24. The slot size is so
541   // small that the waste would be tiny with just 4, or 1, system pages.  Later,
542   // we can investigate whether there are anti-fragmentation benefits to using
543   // fewer system pages.
544   double best_waste_ratio = 1.0f;
545   uint16_t best_pages = 0;
546   if (slot_size > MaxRegularSlotSpanSize()) {
547     // TODO(ajwong): Why is there a DCHECK here for this?
548     // http://crbug.com/776537
549     PA_DCHECK(!(slot_size % SystemPageSize()));
550     best_pages = static_cast<uint16_t>(slot_size >> SystemPageShift());
551     PA_CHECK(best_pages <= std::numeric_limits<uint8_t>::max());
552     return static_cast<uint8_t>(best_pages);
553   }
554   PA_DCHECK(slot_size <= MaxRegularSlotSpanSize());
555   for (uint16_t i = NumSystemPagesPerPartitionPage() - 1;
556        i <= MaxSystemPagesPerRegularSlotSpan(); ++i) {
557     size_t page_size = i << SystemPageShift();
558     size_t num_slots = page_size / slot_size;
559     size_t waste = page_size - (num_slots * slot_size);
560     // Leaving a page unfaulted is not free; the page will occupy an empty page
561     // table entry.  Make a simple attempt to account for that.
562     //
563     // TODO(ajwong): This looks wrong. PTEs are allocated for all pages
564     // regardless of whether or not they are wasted. Should it just
565     // be waste += i * sizeof(void*)?
566     // http://crbug.com/776537
567     size_t num_remainder_pages = i & (NumSystemPagesPerPartitionPage() - 1);
568     size_t num_unfaulted_pages =
569         num_remainder_pages
570             ? (NumSystemPagesPerPartitionPage() - num_remainder_pages)
571             : 0;
572     waste += sizeof(void*) * num_unfaulted_pages;
573     double waste_ratio =
574         static_cast<double>(waste) / static_cast<double>(page_size);
575     if (waste_ratio < best_waste_ratio) {
576       best_waste_ratio = waste_ratio;
577       best_pages = i;
578     }
579   }
580   PA_DCHECK(best_pages > 0);
581   PA_CHECK(best_pages <= MaxSystemPagesPerRegularSlotSpan());
582   return static_cast<uint8_t>(best_pages);
583 }
584 
585 }  // namespace
586 
ComputeSystemPagesPerSlotSpan(size_t slot_size,bool prefer_smaller_slot_spans)587 uint8_t ComputeSystemPagesPerSlotSpan(size_t slot_size,
588                                       bool prefer_smaller_slot_spans) {
589   if (prefer_smaller_slot_spans) {
590     size_t system_page_count =
591         ComputeSystemPagesPerSlotSpanPreferSmall(slot_size);
592     size_t waste = (system_page_count * SystemPageSize()) % slot_size;
593     // In case the waste is too large (more than 5% of a page), don't try to use
594     // the "small" slot span formula. This happens when we have a lot of
595     // buckets, in some cases the formula doesn't find a nice, small size.
596     if (waste <= .05 * SystemPageSize()) {
597       return system_page_count;
598     }
599   }
600 
601   return ComputeSystemPagesPerSlotSpanInternal(slot_size);
602 }
603 
Init(uint32_t new_slot_size)604 void PartitionBucket::Init(uint32_t new_slot_size) {
605   slot_size = new_slot_size;
606   slot_size_reciprocal = kReciprocalMask / new_slot_size + 1;
607   active_slot_spans_head = SlotSpanMetadata::get_sentinel_slot_span_non_const();
608   empty_slot_spans_head = nullptr;
609   decommitted_slot_spans_head = nullptr;
610   num_full_slot_spans = 0;
611   bool prefer_smaller_slot_spans =
612 #if PA_CONFIG(PREFER_SMALLER_SLOT_SPANS)
613       true
614 #else
615       false
616 #endif
617       ;
618   num_system_pages_per_slot_span =
619       ComputeSystemPagesPerSlotSpan(slot_size, prefer_smaller_slot_spans);
620 }
621 
AllocNewSlotSpan(PartitionRoot * root,AllocFlags flags,size_t slot_span_alignment)622 PA_ALWAYS_INLINE SlotSpanMetadata* PartitionBucket::AllocNewSlotSpan(
623     PartitionRoot* root,
624     AllocFlags flags,
625     size_t slot_span_alignment) {
626   PA_DCHECK(!(root->next_partition_page % PartitionPageSize()));
627   PA_DCHECK(!(root->next_partition_page_end % PartitionPageSize()));
628 
629   size_t num_partition_pages = get_pages_per_slot_span();
630   size_t slot_span_reservation_size = num_partition_pages
631                                       << PartitionPageShift();
632   size_t slot_span_committed_size = get_bytes_per_span();
633   PA_DCHECK(num_partition_pages <= NumPartitionPagesPerSuperPage());
634   PA_DCHECK(slot_span_committed_size % SystemPageSize() == 0);
635   PA_DCHECK(slot_span_committed_size <= slot_span_reservation_size);
636 
637   uintptr_t adjusted_next_partition_page =
638       base::bits::AlignUp(root->next_partition_page, slot_span_alignment);
639   if (PA_UNLIKELY(adjusted_next_partition_page + slot_span_reservation_size >
640                   root->next_partition_page_end)) {
641     // AllocNewSuperPage() may crash (e.g. address space exhaustion), put data
642     // on stack.
643     PA_DEBUG_DATA_ON_STACK("slotsize", slot_size);
644     PA_DEBUG_DATA_ON_STACK("spansize", slot_span_reservation_size);
645 
646     // In this case, we can no longer hand out pages from the current super page
647     // allocation. Get a new super page.
648     if (!AllocNewSuperPage(root, flags)) {
649       return nullptr;
650     }
651     // AllocNewSuperPage() updates root->next_partition_page, re-query.
652     adjusted_next_partition_page =
653         base::bits::AlignUp(root->next_partition_page, slot_span_alignment);
654     PA_CHECK(adjusted_next_partition_page + slot_span_reservation_size <=
655              root->next_partition_page_end);
656   }
657 
658   auto* gap_start_page =
659       PartitionPageMetadata::FromAddr(root->next_partition_page);
660   auto* gap_end_page =
661       PartitionPageMetadata::FromAddr(adjusted_next_partition_page);
662   for (auto* page = gap_start_page; page < gap_end_page; ++page) {
663     PA_DCHECK(!page->is_valid);
664     page->has_valid_span_after_this = 1;
665   }
666   root->next_partition_page =
667       adjusted_next_partition_page + slot_span_reservation_size;
668 
669   uintptr_t slot_span_start = adjusted_next_partition_page;
670   auto* slot_span = &gap_end_page->slot_span_metadata;
671   InitializeSlotSpan(slot_span);
672   // Now that slot span is initialized, it's safe to call FromSlotStart.
673   PA_DCHECK(slot_span == SlotSpanMetadata::FromSlotStart(slot_span_start));
674 
675   // System pages in the super page come in a decommited state. Commit them
676   // before vending them back.
677   // If lazy commit is enabled, pages will be committed when provisioning slots,
678   // in ProvisionMoreSlotsAndAllocOne(), not here.
679   if (!kUseLazyCommit) {
680     PA_DEBUG_DATA_ON_STACK("slotsize", slot_size);
681     PA_DEBUG_DATA_ON_STACK("spansize", slot_span_reservation_size);
682     PA_DEBUG_DATA_ON_STACK("spancmt", slot_span_committed_size);
683 
684     root->RecommitSystemPagesForData(
685         slot_span_start, slot_span_committed_size,
686         PageAccessibilityDisposition::kRequireUpdate,
687         slot_size <= kMaxMemoryTaggingSize);
688   }
689 
690   PA_CHECK(get_slots_per_span() <= kMaxSlotsPerSlotSpan);
691 
692   // Double check that we had enough space in the super page for the new slot
693   // span.
694   PA_DCHECK(root->next_partition_page <= root->next_partition_page_end);
695 
696   return slot_span;
697 }
698 
AllocNewSuperPageSpan(PartitionRoot * root,size_t super_page_count,AllocFlags flags)699 uintptr_t PartitionBucket::AllocNewSuperPageSpan(PartitionRoot* root,
700                                                  size_t super_page_count,
701                                                  AllocFlags flags) {
702   PA_CHECK(super_page_count > 0);
703   PA_CHECK(super_page_count <=
704            std::numeric_limits<size_t>::max() / kSuperPageSize);
705   // Need a new super page. We want to allocate super pages in a contiguous
706   // address region as much as possible. This is important for not causing
707   // page table bloat and not fragmenting address spaces in 32 bit
708   // architectures.
709   uintptr_t requested_address = root->next_super_page;
710   pool_handle pool = root->ChoosePool();
711   uintptr_t super_page_span_start = ReserveMemoryFromPool(
712       pool, requested_address, super_page_count * kSuperPageSize);
713   if (PA_UNLIKELY(!super_page_span_start)) {
714     if (ContainsFlags(flags, AllocFlags::kReturnNull)) {
715       return 0;
716     }
717 
718     // Didn't manage to get a new uncommitted super page -> address space issue.
719     ::partition_alloc::internal::ScopedUnlockGuard unlock{
720         PartitionRootLock(root)};
721     PartitionOutOfMemoryMappingFailure(root, kSuperPageSize);
722   }
723 
724   uintptr_t super_page_span_end =
725       super_page_span_start + super_page_count * kSuperPageSize;
726   for (uintptr_t super_page = super_page_span_start;
727        super_page < super_page_span_end; super_page += kSuperPageSize) {
728     InitializeSuperPage(root, super_page, 0);
729   }
730   return super_page_span_start;
731 }
732 
733 PA_ALWAYS_INLINE uintptr_t
AllocNewSuperPage(PartitionRoot * root,AllocFlags flags)734 PartitionBucket::AllocNewSuperPage(PartitionRoot* root, AllocFlags flags) {
735   auto super_page = AllocNewSuperPageSpan(root, 1, flags);
736   if (PA_UNLIKELY(!super_page)) {
737     // If the `kReturnNull` flag isn't set and the allocation attempt fails,
738     // `AllocNewSuperPageSpan` should've failed with an OOM crash.
739     PA_DCHECK(ContainsFlags(flags, AllocFlags::kReturnNull));
740     return 0;
741   }
742   return SuperPagePayloadBegin(super_page, root->IsQuarantineAllowed());
743 }
744 
745 PA_ALWAYS_INLINE uintptr_t
InitializeSuperPage(PartitionRoot * root,uintptr_t super_page,uintptr_t requested_address)746 PartitionBucket::InitializeSuperPage(PartitionRoot* root,
747                                      uintptr_t super_page,
748                                      uintptr_t requested_address) {
749   *ReservationOffsetPointer(super_page) = kOffsetTagNormalBuckets;
750 
751   root->total_size_of_super_pages.fetch_add(kSuperPageSize,
752                                             std::memory_order_relaxed);
753 
754   root->next_super_page = super_page + kSuperPageSize;
755   uintptr_t state_bitmap =
756       super_page + PartitionPageSize() +
757       (is_direct_mapped() ? 0 : ReservedFreeSlotBitmapSize());
758 #if BUILDFLAG(USE_STARSCAN)
759   PA_DCHECK(SuperPageStateBitmapAddr(super_page) == state_bitmap);
760   const size_t state_bitmap_reservation_size =
761       root->IsQuarantineAllowed() ? ReservedStateBitmapSize() : 0;
762   const size_t state_bitmap_size_to_commit =
763       root->IsQuarantineAllowed() ? CommittedStateBitmapSize() : 0;
764   PA_DCHECK(state_bitmap_reservation_size % PartitionPageSize() == 0);
765   PA_DCHECK(state_bitmap_size_to_commit % SystemPageSize() == 0);
766   PA_DCHECK(state_bitmap_size_to_commit <= state_bitmap_reservation_size);
767   uintptr_t payload = state_bitmap + state_bitmap_reservation_size;
768 #else
769   uintptr_t payload = state_bitmap;
770 #endif  // BUILDFLAG(USE_STARSCAN)
771 
772   root->next_partition_page = payload;
773   root->next_partition_page_end = root->next_super_page - PartitionPageSize();
774   PA_DCHECK(payload ==
775             SuperPagePayloadBegin(super_page, root->IsQuarantineAllowed()));
776   PA_DCHECK(root->next_partition_page_end == SuperPagePayloadEnd(super_page));
777 
778   // Keep the first partition page in the super page inaccessible to serve as a
779   // guard page, except an "island" in the middle where we put page metadata and
780   // also a tiny amount of extent metadata.
781   {
782     ScopedSyscallTimer timer{root};
783     RecommitSystemPages(super_page + SystemPageSize(), SystemPageSize(),
784 #if PA_CONFIG(ENABLE_SHADOW_METADATA)
785                         root->PageAccessibilityWithThreadIsolationIfEnabled(
786                             PageAccessibilityConfiguration::kRead),
787 #else
788                         root->PageAccessibilityWithThreadIsolationIfEnabled(
789                             PageAccessibilityConfiguration::kReadWrite),
790 #endif
791                         PageAccessibilityDisposition::kRequireUpdate);
792   }
793 
794   if (root->ChoosePool() == kBRPPoolHandle) {
795     // Allocate a system page for BRP ref-count table.
796     ScopedSyscallTimer timer{root};
797     RecommitSystemPages(super_page + SystemPageSize() * 2, SystemPageSize(),
798                         root->PageAccessibilityWithThreadIsolationIfEnabled(
799                             PageAccessibilityConfiguration::kReadWrite),
800                         PageAccessibilityDisposition::kRequireUpdate);
801   }
802 
803 #if PA_CONFIG(ENABLE_SHADOW_METADATA)
804   {
805     ScopedSyscallTimer timer{root};
806     RecommitSystemPages(ShadowMetadataStart(super_page, root->ChoosePool()),
807                         SystemPageSize(),
808                         root->PageAccessibilityWithThreadIsolationIfEnabled(
809                             PageAccessibilityConfiguration::kReadWrite),
810                         PageAccessibilityDisposition::kRequireUpdate);
811   }
812 #endif
813 
814   // If we were after a specific address, but didn't get it, assume that
815   // the system chose a lousy address. Here most OS'es have a default
816   // algorithm that isn't randomized. For example, most Linux
817   // distributions will allocate the mapping directly before the last
818   // successful mapping, which is far from random. So we just get fresh
819   // randomness for the next mapping attempt.
820   if (requested_address && requested_address != super_page) {
821     root->next_super_page = 0;
822   }
823 
824   // We allocated a new super page so update super page metadata.
825   // First check if this is a new extent or not.
826   auto* latest_extent = PartitionSuperPageToExtent(super_page);
827   // By storing the root in every extent metadata object, we have a fast way
828   // to go from a pointer within the partition to the root object.
829   latest_extent->root = root;
830   // Most new extents will be part of a larger extent, and these two fields
831   // are unused, but we initialize them to 0 so that we get a clear signal
832   // in case they are accidentally used.
833   latest_extent->number_of_consecutive_super_pages = 0;
834   latest_extent->next = nullptr;
835   latest_extent->number_of_nonempty_slot_spans = 0;
836 
837   PartitionSuperPageExtentEntry* current_extent = root->current_extent;
838   const bool is_new_extent = super_page != requested_address;
839   if (PA_UNLIKELY(is_new_extent)) {
840     if (PA_UNLIKELY(!current_extent)) {
841       PA_DCHECK(!root->first_extent);
842       root->first_extent = latest_extent;
843     } else {
844       PA_DCHECK(current_extent->number_of_consecutive_super_pages);
845       current_extent->next = latest_extent;
846     }
847     root->current_extent = latest_extent;
848     latest_extent->number_of_consecutive_super_pages = 1;
849   } else {
850     // We allocated next to an existing extent so just nudge the size up a
851     // little.
852     PA_DCHECK(current_extent->number_of_consecutive_super_pages);
853     ++current_extent->number_of_consecutive_super_pages;
854     PA_DCHECK(payload > SuperPagesBeginFromExtent(current_extent) &&
855               payload < SuperPagesEndFromExtent(current_extent));
856   }
857 
858   // If PCScan is used, commit the state bitmap. Otherwise, leave it uncommitted
859   // and let PartitionRoot::RegisterScannableRoot() commit it when needed. Make
860   // sure to register the super-page after it has been fully initialized.
861   // Otherwise, the concurrent scanner may try to access |extent->root| which
862   // could be not initialized yet.
863 #if BUILDFLAG(USE_STARSCAN)
864   if (root->IsQuarantineEnabled()) {
865     {
866       ScopedSyscallTimer timer{root};
867       RecommitSystemPages(state_bitmap, state_bitmap_size_to_commit,
868                           root->PageAccessibilityWithThreadIsolationIfEnabled(
869                               PageAccessibilityConfiguration::kReadWrite),
870                           PageAccessibilityDisposition::kRequireUpdate);
871     }
872     PCScan::RegisterNewSuperPage(root, super_page);
873   }
874 #endif  // BUILDFLAG(USE_STARSCAN)
875 
876 #if BUILDFLAG(USE_FREESLOT_BITMAP)
877   // Commit the pages for freeslot bitmap.
878   if (!is_direct_mapped()) {
879     uintptr_t freeslot_bitmap_addr = super_page + PartitionPageSize();
880     PA_DCHECK(SuperPageFreeSlotBitmapAddr(super_page) == freeslot_bitmap_addr);
881     ScopedSyscallTimer timer{root};
882     RecommitSystemPages(freeslot_bitmap_addr, CommittedFreeSlotBitmapSize(),
883                         root->PageAccessibilityWithThreadIsolationIfEnabled(
884                             PageAccessibilityConfiguration::kReadWrite),
885                         PageAccessibilityDisposition::kRequireUpdate);
886   }
887 #endif
888 
889   return payload;
890 }
891 
InitializeSlotSpan(SlotSpanMetadata * slot_span)892 PA_ALWAYS_INLINE void PartitionBucket::InitializeSlotSpan(
893     SlotSpanMetadata* slot_span) {
894   new (slot_span) SlotSpanMetadata(this);
895 
896   slot_span->Reset();
897 
898   uint16_t num_partition_pages = get_pages_per_slot_span();
899   auto* page_metadata = reinterpret_cast<PartitionPageMetadata*>(slot_span);
900   for (uint16_t i = 0; i < num_partition_pages; ++i, ++page_metadata) {
901     PA_DCHECK(i <= PartitionPageMetadata::kMaxSlotSpanMetadataOffset);
902     page_metadata->slot_span_metadata_offset = i;
903     page_metadata->is_valid = true;
904   }
905 }
906 
907 PA_ALWAYS_INLINE uintptr_t
ProvisionMoreSlotsAndAllocOne(PartitionRoot * root,AllocFlags flags,SlotSpanMetadata * slot_span)908 PartitionBucket::ProvisionMoreSlotsAndAllocOne(PartitionRoot* root,
909                                                AllocFlags flags,
910                                                SlotSpanMetadata* slot_span) {
911   PA_DCHECK(slot_span != SlotSpanMetadata::get_sentinel_slot_span());
912   size_t num_slots = slot_span->num_unprovisioned_slots;
913   PA_DCHECK(num_slots);
914   PA_DCHECK(num_slots <= get_slots_per_span());
915   // We should only get here when _every_ slot is either used or unprovisioned.
916   // (The third possible state is "on the freelist". If we have a non-empty
917   // freelist, we should not get here.)
918   PA_DCHECK(num_slots + slot_span->num_allocated_slots == get_slots_per_span());
919   // Similarly, make explicitly sure that the freelist is empty.
920   PA_DCHECK(!slot_span->get_freelist_head());
921   PA_DCHECK(!slot_span->is_full());
922 
923   uintptr_t slot_span_start = SlotSpanMetadata::ToSlotSpanStart(slot_span);
924   // If we got here, the first unallocated slot is either partially or fully on
925   // an uncommitted page. If the latter, it must be at the start of that page.
926   uintptr_t return_slot =
927       slot_span_start + (slot_size * slot_span->num_allocated_slots);
928   uintptr_t next_slot = return_slot + slot_size;
929   uintptr_t commit_start = base::bits::AlignUp(return_slot, SystemPageSize());
930   PA_DCHECK(next_slot > commit_start);
931   uintptr_t commit_end = base::bits::AlignUp(next_slot, SystemPageSize());
932   // If the slot was partially committed, |return_slot| and |next_slot| fall
933   // in different pages. If the slot was fully uncommitted, |return_slot| points
934   // to the page start and |next_slot| doesn't, thus only the latter gets
935   // rounded up.
936   PA_DCHECK(commit_end > commit_start);
937 
938   // If lazy commit is enabled, meaning system pages in the slot span come
939   // in an initially decommitted state, commit them here.
940   // Note, we can't use PageAccessibilityDisposition::kAllowKeepForPerf, because
941   // we have no knowledge which pages have been committed before (it doesn't
942   // matter on Windows anyway).
943   if (kUseLazyCommit) {
944     const bool ok = root->TryRecommitSystemPagesForDataLocked(
945         commit_start, commit_end - commit_start,
946         PageAccessibilityDisposition::kRequireUpdate,
947         slot_size <= kMaxMemoryTaggingSize);
948     if (!ok) {
949       if (!ContainsFlags(flags, AllocFlags::kReturnNull)) {
950         ScopedUnlockGuard unlock{PartitionRootLock(root)};
951         PartitionOutOfMemoryCommitFailure(root, slot_size);
952       }
953       return 0;
954     }
955   }
956 
957   // The slot being returned is considered allocated.
958   slot_span->num_allocated_slots++;
959   // Round down, because a slot that doesn't fully fit in the new page(s) isn't
960   // provisioned.
961   size_t slots_to_provision = (commit_end - return_slot) / slot_size;
962   slot_span->num_unprovisioned_slots -= slots_to_provision;
963   PA_DCHECK(slot_span->num_allocated_slots +
964                 slot_span->num_unprovisioned_slots <=
965             get_slots_per_span());
966 
967 #if BUILDFLAG(HAS_MEMORY_TAGGING)
968   const bool use_tagging =
969       root->IsMemoryTaggingEnabled() && slot_size <= kMaxMemoryTaggingSize;
970   if (PA_LIKELY(use_tagging)) {
971     // Ensure the MTE-tag of the memory pointed by |return_slot| is unguessable.
972     TagMemoryRangeRandomly(return_slot, slot_size);
973   }
974 #endif  // BUILDFLAG(HAS_MEMORY_TAGGING)
975   // Add all slots that fit within so far committed pages to the free list.
976   PartitionFreelistEntry* prev_entry = nullptr;
977   uintptr_t next_slot_end = next_slot + slot_size;
978   size_t free_list_entries_added = 0;
979 
980   const auto* freelist_dispatcher = root->get_freelist_dispatcher();
981 
982   while (next_slot_end <= commit_end) {
983     void* next_slot_ptr;
984 #if BUILDFLAG(HAS_MEMORY_TAGGING)
985     if (PA_LIKELY(use_tagging)) {
986       // Ensure the MTE-tag of the memory pointed by other provisioned slot is
987       // unguessable. They will be returned to the app as is, and the MTE-tag
988       // will only change upon calling Free().
989       next_slot_ptr = TagMemoryRangeRandomly(next_slot, slot_size);
990     } else {
991       // No MTE-tagging for larger slots, just cast.
992       next_slot_ptr = reinterpret_cast<void*>(next_slot);
993     }
994 #else  // BUILDFLAG(HAS_MEMORY_TAGGING)
995     next_slot_ptr = reinterpret_cast<void*>(next_slot);
996 #endif
997 
998     auto* entry = freelist_dispatcher->EmplaceAndInitNull(next_slot_ptr);
999 
1000     if (!slot_span->get_freelist_head()) {
1001       PA_DCHECK(!prev_entry);
1002       PA_DCHECK(!free_list_entries_added);
1003       slot_span->SetFreelistHead(entry);
1004     } else {
1005       PA_DCHECK(free_list_entries_added);
1006       freelist_dispatcher->SetNext(prev_entry, entry);
1007     }
1008 #if BUILDFLAG(USE_FREESLOT_BITMAP)
1009     FreeSlotBitmapMarkSlotAsFree(next_slot);
1010 #endif
1011     next_slot = next_slot_end;
1012     next_slot_end = next_slot + slot_size;
1013     prev_entry = entry;
1014 #if BUILDFLAG(PA_DCHECK_IS_ON)
1015     free_list_entries_added++;
1016 #endif
1017   }
1018 
1019 #if BUILDFLAG(USE_FREESLOT_BITMAP)
1020   FreeSlotBitmapMarkSlotAsFree(return_slot);
1021 #endif
1022 
1023 #if BUILDFLAG(PA_DCHECK_IS_ON)
1024   // The only provisioned slot not added to the free list is the one being
1025   // returned.
1026   PA_DCHECK(slots_to_provision == free_list_entries_added + 1);
1027   // We didn't necessarily provision more than one slot (e.g. if |slot_size|
1028   // is large), meaning that |slot_span->freelist_head| can be nullptr.
1029   if (slot_span->get_freelist_head()) {
1030     PA_DCHECK(free_list_entries_added);
1031     freelist_dispatcher->CheckFreeList(slot_span->get_freelist_head(),
1032                                        slot_size);
1033   }
1034 #endif
1035 
1036   // We had no free slots, and created some (potentially 0) in sorted order.
1037   slot_span->set_freelist_sorted();
1038 
1039   return return_slot;
1040 }
1041 
SetNewActiveSlotSpan()1042 bool PartitionBucket::SetNewActiveSlotSpan() {
1043   SlotSpanMetadata* slot_span = active_slot_spans_head;
1044   if (slot_span == SlotSpanMetadata::get_sentinel_slot_span()) {
1045     return false;
1046   }
1047 
1048   SlotSpanMetadata* next_slot_span;
1049 
1050   // The goal here is to find a suitable slot span in the active list. Suitable
1051   // slot spans are |is_active()|, i.e. they either have (a) freelist entries,
1052   // or (b) unprovisioned free space. The first case is preferable, since it
1053   // doesn't cost a system call, and doesn't cause new memory to become dirty.
1054   //
1055   // While looking for a new slot span, active list maintenance is performed,
1056   // that is:
1057   // - Empty and decommitted slot spans are moved to their respective lists.
1058   // - Full slot spans are removed from the active list but are not moved
1059   //   anywhere. They could be tracked in a separate list, but this would
1060   //   increase cost non trivially. Indeed, a full slot span is likely to become
1061   //   non-full at some point (due to a free() hitting it). Since we only have
1062   //   space in the metadata for a single linked list pointer, removing the
1063   //   newly-non-full slot span from the "full" list would require walking it
1064   //   (to know what's before it in the full list).
1065   //
1066   // Since we prefer slot spans with provisioned freelist entries, maintenance
1067   // happens in two stages:
1068   // 1. Walk the list to find candidates. Each of the skipped slot span is moved
1069   //    to either:
1070   //   - one of the long-lived lists: empty, decommitted
1071   //   - the temporary "active slots spans with no freelist entry" list
1072   //   - Nowhere for full slot spans.
1073   // 2. Once we have a candidate:
1074   //   - Set it as the new active list head
1075   //   - Reattach the temporary list
1076   //
1077   // Note that in most cases, the whole list will not be walked and maintained
1078   // at this stage.
1079 
1080   SlotSpanMetadata* to_provision_head = nullptr;
1081   SlotSpanMetadata* to_provision_tail = nullptr;
1082 
1083   for (; slot_span; slot_span = next_slot_span) {
1084     next_slot_span = slot_span->next_slot_span;
1085     PA_DCHECK(slot_span->bucket == this);
1086     PA_DCHECK(slot_span != empty_slot_spans_head);
1087     PA_DCHECK(slot_span != decommitted_slot_spans_head);
1088 
1089     if (slot_span->is_active()) {
1090       // Has provisioned slots.
1091       if (slot_span->get_freelist_head()) {
1092         // Will use this slot span, no need to go further.
1093         break;
1094       } else {
1095         // Keeping head and tail because we don't want to reverse the list.
1096         if (!to_provision_head) {
1097           to_provision_head = slot_span;
1098         }
1099         if (to_provision_tail) {
1100           to_provision_tail->next_slot_span = slot_span;
1101         }
1102         to_provision_tail = slot_span;
1103         slot_span->next_slot_span = nullptr;
1104       }
1105     } else if (slot_span->is_empty()) {
1106       slot_span->next_slot_span = empty_slot_spans_head;
1107       empty_slot_spans_head = slot_span;
1108     } else if (PA_LIKELY(slot_span->is_decommitted())) {
1109       slot_span->next_slot_span = decommitted_slot_spans_head;
1110       decommitted_slot_spans_head = slot_span;
1111     } else {
1112       PA_DCHECK(slot_span->is_full());
1113       // Move this slot span... nowhere, and also mark it as full. We need it
1114       // marked so that free'ing can tell, and move it back into the active
1115       // list.
1116       slot_span->marked_full = 1;
1117       ++num_full_slot_spans;
1118       // Overflow. Most likely a correctness issue in the code.  It is in theory
1119       // possible that the number of full slot spans really reaches (1 << 24),
1120       // but this is very unlikely (and not possible with most pool settings).
1121       PA_CHECK(num_full_slot_spans);
1122       // Not necessary but might help stop accidents.
1123       slot_span->next_slot_span = nullptr;
1124     }
1125   }
1126 
1127   bool usable_active_list_head = false;
1128   // Found an active slot span with provisioned entries on the freelist.
1129   if (slot_span) {
1130     usable_active_list_head = true;
1131     // We have active slot spans with unprovisioned entries. Re-attach them into
1132     // the active list, past the span with freelist entries.
1133     if (to_provision_head) {
1134       auto* next = slot_span->next_slot_span;
1135       slot_span->next_slot_span = to_provision_head;
1136       to_provision_tail->next_slot_span = next;
1137     }
1138     active_slot_spans_head = slot_span;
1139   } else if (to_provision_head) {
1140     usable_active_list_head = true;
1141     // Need to provision new slots.
1142     active_slot_spans_head = to_provision_head;
1143   } else {
1144     // Active list is now empty.
1145     active_slot_spans_head =
1146         SlotSpanMetadata::get_sentinel_slot_span_non_const();
1147   }
1148 
1149   return usable_active_list_head;
1150 }
1151 
MaintainActiveList()1152 void PartitionBucket::MaintainActiveList() {
1153   SlotSpanMetadata* slot_span = active_slot_spans_head;
1154   if (slot_span == SlotSpanMetadata::get_sentinel_slot_span()) {
1155     return;
1156   }
1157 
1158   SlotSpanMetadata* new_active_slot_spans_head = nullptr;
1159   SlotSpanMetadata* new_active_slot_spans_tail = nullptr;
1160 
1161   SlotSpanMetadata* next_slot_span;
1162   for (; slot_span; slot_span = next_slot_span) {
1163     next_slot_span = slot_span->next_slot_span;
1164 
1165     if (slot_span->is_active()) {
1166       // Ordering in the active slot span list matters, don't reverse it.
1167       if (!new_active_slot_spans_head) {
1168         new_active_slot_spans_head = slot_span;
1169       }
1170       if (new_active_slot_spans_tail) {
1171         new_active_slot_spans_tail->next_slot_span = slot_span;
1172       }
1173       new_active_slot_spans_tail = slot_span;
1174       slot_span->next_slot_span = nullptr;
1175     } else if (slot_span->is_empty()) {
1176       // For the empty and decommitted lists, LIFO ordering makes sense (since
1177       // it would lead to reusing memory which has been touched relatively
1178       // recently, which only matters for committed spans though).
1179       slot_span->next_slot_span = empty_slot_spans_head;
1180       empty_slot_spans_head = slot_span;
1181     } else if (slot_span->is_decommitted()) {
1182       slot_span->next_slot_span = decommitted_slot_spans_head;
1183       decommitted_slot_spans_head = slot_span;
1184     } else {
1185       // Full slot spans are not tracked, just accounted for.
1186       PA_DCHECK(slot_span->is_full());
1187       slot_span->marked_full = 1;
1188       ++num_full_slot_spans;
1189       PA_CHECK(num_full_slot_spans);  // Overflow.
1190       slot_span->next_slot_span = nullptr;
1191     }
1192   }
1193 
1194   if (!new_active_slot_spans_head) {
1195     new_active_slot_spans_head =
1196         SlotSpanMetadata::get_sentinel_slot_span_non_const();
1197   }
1198   active_slot_spans_head = new_active_slot_spans_head;
1199 }
1200 
SortSmallerSlotSpanFreeLists()1201 void PartitionBucket::SortSmallerSlotSpanFreeLists() {
1202   for (auto* slot_span = active_slot_spans_head; slot_span;
1203        slot_span = slot_span->next_slot_span) {
1204     // No need to sort the freelist if it's already sorted. Note that if the
1205     // freelist is sorted, this means that it didn't change at all since the
1206     // last call. This may be a good signal to shrink it if possible (if an
1207     // entire OS page is free, we can decommit it).
1208     //
1209     // Besides saving CPU, this also avoids touching memory of fully idle slot
1210     // spans, which may required paging.
1211     if (slot_span->num_allocated_slots > 0 &&
1212         !slot_span->freelist_is_sorted()) {
1213       slot_span->SortFreelist();
1214     }
1215   }
1216 }
1217 
PA_COMPONENT_EXPORT(PARTITION_ALLOC)1218 PA_COMPONENT_EXPORT(PARTITION_ALLOC)
1219 bool CompareSlotSpans(SlotSpanMetadata* a, SlotSpanMetadata* b) {
1220   auto criteria_tuple = [](SlotSpanMetadata const* a) {
1221     size_t freelist_length = a->GetFreelistLength();
1222     // The criteria are, in order (hence the lexicographic comparison below):
1223     // 1. Prefer slot spans with freelist entries. The ones without freelist
1224     //    entries would be skipped in SetNewActiveSlotSpan() anyway.
1225     // 2. Then the ones with the fewest freelist entries. They are either close
1226     //    to being full (for the provisioned memory), or close to being pushed
1227     //    at the end of the list (since they would not have freelist entries
1228     //    anymore, and would either fall into the first case, or be skipped by
1229     //    SetNewActiveSlotSpan()).
1230     // 3. The ones with the fewer unprovisioned slots, meaning that they are
1231     //    close to being completely full.
1232     //
1233     // Note that this sorting order is not necessarily the best one when slot
1234     // spans are partially provisioned. From local testing, in steady-state,
1235     // most slot spans are entirely provisioned (or decommitted), which may be a
1236     // consequence of the lack of partial slot span decommit, or of fairly
1237     // effective fragmentation avoidance heuristics. Make sure to evaluate
1238     // whether an alternative sorting order (sorting according to freelist size
1239     // + unprovisioned slots) makes more sense.
1240     return std::tuple<bool, size_t, size_t>{
1241         freelist_length == 0, freelist_length, a->num_unprovisioned_slots};
1242   };
1243 
1244   return criteria_tuple(a) < criteria_tuple(b);
1245 }
1246 
SortActiveSlotSpans()1247 void PartitionBucket::SortActiveSlotSpans() {
1248   // Sorting up to |kMaxSlotSpansToSort| slot spans. This is capped for two
1249   // reasons:
1250   // - Limiting execution time
1251   // - Current code cannot allocate.
1252   //
1253   // In practice though, it's rare to have that many active slot spans.
1254   SlotSpanMetadata* active_spans_array[kMaxSlotSpansToSort];
1255   size_t index = 0;
1256   SlotSpanMetadata* overflow_spans_start = nullptr;
1257 
1258   for (auto* slot_span = active_slot_spans_head; slot_span;
1259        slot_span = slot_span->next_slot_span) {
1260     if (index < kMaxSlotSpansToSort) {
1261       active_spans_array[index++] = slot_span;
1262     } else {
1263       // Starting from this one, not sorting the slot spans.
1264       overflow_spans_start = slot_span;
1265       break;
1266     }
1267   }
1268 
1269   // We sort the active slot spans so that allocations are preferably serviced
1270   // from the fullest ones. This way we hope to reduce fragmentation by keeping
1271   // as few slot spans as full as possible.
1272   //
1273   // With perfect information on allocation lifespan, we would be able to pack
1274   // allocations and get almost no fragmentation. This is obviously not the
1275   // case, so we have partially full SlotSpans. Nevertheless, as a heuristic we
1276   // want to:
1277   // - Keep almost-empty slot spans as empty as possible
1278   // - Keep mostly-full slot spans as full as possible
1279   //
1280   // The first part is done in the hope that future free()s will make these
1281   // slot spans completely empty, allowing us to reclaim them. To that end, sort
1282   // SlotSpans periodically so that the fullest ones are preferred.
1283   //
1284   // std::sort() is not completely guaranteed to never allocate memory. However,
1285   // it may not throw std::bad_alloc, which constrains the implementation. In
1286   // addition, this is protected by the reentrancy guard, so we would detect
1287   // such an allocation.
1288   std::sort(active_spans_array, active_spans_array + index, CompareSlotSpans);
1289 
1290   active_slot_spans_head = overflow_spans_start;
1291 
1292   // Reverse order, since we insert at the head of the list.
1293   for (int i = index - 1; i >= 0; i--) {
1294     if (active_spans_array[i] == SlotSpanMetadata::get_sentinel_slot_span()) {
1295       // The sentinel is const, don't try to write to it.
1296       PA_DCHECK(active_slot_spans_head == nullptr);
1297     } else {
1298       active_spans_array[i]->next_slot_span = active_slot_spans_head;
1299     }
1300     active_slot_spans_head = active_spans_array[i];
1301   }
1302 }
1303 
SlowPathAlloc(PartitionRoot * root,AllocFlags flags,size_t raw_size,size_t slot_span_alignment,SlotSpanMetadata ** slot_span,bool * is_already_zeroed)1304 uintptr_t PartitionBucket::SlowPathAlloc(PartitionRoot* root,
1305                                          AllocFlags flags,
1306                                          size_t raw_size,
1307                                          size_t slot_span_alignment,
1308                                          SlotSpanMetadata** slot_span,
1309                                          bool* is_already_zeroed) {
1310   PA_DCHECK((slot_span_alignment >= PartitionPageSize()) &&
1311             std::has_single_bit(slot_span_alignment));
1312 
1313   // The slow path is called when the freelist is empty. The only exception is
1314   // when a higher-order alignment is requested, in which case the freelist
1315   // logic is bypassed and we go directly for slot span allocation.
1316   bool allocate_aligned_slot_span = slot_span_alignment > PartitionPageSize();
1317   PA_DCHECK(!active_slot_spans_head->get_freelist_head() ||
1318             allocate_aligned_slot_span);
1319 
1320   SlotSpanMetadata* new_slot_span = nullptr;
1321   // |new_slot_span->bucket| will always be |this|, except when |this| is the
1322   // sentinel bucket, which is used to signal a direct mapped allocation.  In
1323   // this case |new_bucket| will be set properly later. This avoids a read for
1324   // most allocations.
1325   PartitionBucket* new_bucket = this;
1326   *is_already_zeroed = false;
1327 
1328   // For the PartitionRoot::Alloc() API, we have a bunch of buckets
1329   // marked as special cases. We bounce them through to the slow path so that
1330   // we can still have a blazing fast hot path due to lack of corner-case
1331   // branches.
1332   //
1333   // Note: The ordering of the conditionals matter! In particular,
1334   // SetNewActiveSlotSpan() has a side-effect even when returning
1335   // false where it sweeps the active list and may move things into the empty or
1336   // decommitted lists which affects the subsequent conditional.
1337   if (PA_UNLIKELY(is_direct_mapped())) {
1338     PA_DCHECK(raw_size > kMaxBucketed);
1339     PA_DCHECK(this == &root->sentinel_bucket);
1340     PA_DCHECK(active_slot_spans_head ==
1341               SlotSpanMetadata::get_sentinel_slot_span());
1342 
1343     // No fast path for direct-mapped allocations.
1344     if (ContainsFlags(flags, AllocFlags::kFastPathOrReturnNull)) {
1345       return 0;
1346     }
1347 
1348     new_slot_span =
1349         PartitionDirectMap(root, flags, raw_size, slot_span_alignment);
1350     if (new_slot_span) {
1351       new_bucket = new_slot_span->bucket;
1352     }
1353     // Memory from PageAllocator is always zeroed.
1354     *is_already_zeroed = true;
1355   } else if (PA_LIKELY(!allocate_aligned_slot_span && SetNewActiveSlotSpan())) {
1356     // First, did we find an active slot span in the active list?
1357     new_slot_span = active_slot_spans_head;
1358     PA_DCHECK(new_slot_span->is_active());
1359   } else if (PA_LIKELY(!allocate_aligned_slot_span &&
1360                        (empty_slot_spans_head != nullptr ||
1361                         decommitted_slot_spans_head != nullptr))) {
1362     // Second, look in our lists of empty and decommitted slot spans.
1363     // Check empty slot spans first, which are preferred, but beware that an
1364     // empty slot span might have been decommitted.
1365     while (PA_LIKELY((new_slot_span = empty_slot_spans_head) != nullptr)) {
1366       PA_DCHECK(new_slot_span->bucket == this);
1367       PA_DCHECK(new_slot_span->is_empty() || new_slot_span->is_decommitted());
1368       empty_slot_spans_head = new_slot_span->next_slot_span;
1369       // Accept the empty slot span unless it got decommitted.
1370       if (new_slot_span->get_freelist_head()) {
1371         new_slot_span->next_slot_span = nullptr;
1372         new_slot_span->ToSuperPageExtent()
1373             ->IncrementNumberOfNonemptySlotSpans();
1374 
1375         // Re-activating an empty slot span, update accounting.
1376         size_t dirty_size = base::bits::AlignUp(
1377             new_slot_span->GetProvisionedSize(), SystemPageSize());
1378         PA_DCHECK(root->empty_slot_spans_dirty_bytes >= dirty_size);
1379         root->empty_slot_spans_dirty_bytes -= dirty_size;
1380 
1381         break;
1382       }
1383       PA_DCHECK(new_slot_span->is_decommitted());
1384       new_slot_span->next_slot_span = decommitted_slot_spans_head;
1385       decommitted_slot_spans_head = new_slot_span;
1386     }
1387     if (PA_UNLIKELY(!new_slot_span) &&
1388         PA_LIKELY(decommitted_slot_spans_head != nullptr)) {
1389       // Commit can be expensive, don't do it.
1390       if (ContainsFlags(flags, AllocFlags::kFastPathOrReturnNull)) {
1391         return 0;
1392       }
1393 
1394       new_slot_span = decommitted_slot_spans_head;
1395       PA_DCHECK(new_slot_span->bucket == this);
1396       PA_DCHECK(new_slot_span->is_decommitted());
1397 
1398       // If lazy commit is enabled, pages will be recommitted when provisioning
1399       // slots, in ProvisionMoreSlotsAndAllocOne(), not here.
1400       if (!kUseLazyCommit) {
1401         uintptr_t slot_span_start =
1402             SlotSpanMetadata::ToSlotSpanStart(new_slot_span);
1403         // Since lazy commit isn't used, we have a guarantee that all slot span
1404         // pages have been previously committed, and then decommitted using
1405         // PageAccessibilityDisposition::kAllowKeepForPerf, so use the
1406         // same option as an optimization.
1407         const bool ok = root->TryRecommitSystemPagesForDataLocked(
1408             slot_span_start, new_slot_span->bucket->get_bytes_per_span(),
1409             PageAccessibilityDisposition::kAllowKeepForPerf,
1410             slot_size <= kMaxMemoryTaggingSize);
1411         if (!ok) {
1412           if (!ContainsFlags(flags, AllocFlags::kReturnNull)) {
1413             ScopedUnlockGuard unlock{PartitionRootLock(root)};
1414             PartitionOutOfMemoryCommitFailure(
1415                 root, new_slot_span->bucket->get_bytes_per_span());
1416           }
1417           return 0;
1418         }
1419       }
1420 
1421       decommitted_slot_spans_head = new_slot_span->next_slot_span;
1422       new_slot_span->Reset();
1423       *is_already_zeroed = DecommittedMemoryIsAlwaysZeroed();
1424     }
1425     PA_DCHECK(new_slot_span);
1426   } else {
1427     // Getting a new slot span is expensive, don't do it.
1428     if (ContainsFlags(flags, AllocFlags::kFastPathOrReturnNull)) {
1429       return 0;
1430     }
1431 
1432     // Third. If we get here, we need a brand new slot span.
1433     // TODO(bartekn): For single-slot slot spans, we can use rounded raw_size
1434     // as slot_span_committed_size.
1435     new_slot_span = AllocNewSlotSpan(root, flags, slot_span_alignment);
1436     // New memory from PageAllocator is always zeroed.
1437     *is_already_zeroed = true;
1438   }
1439 
1440   // Bail if we had a memory allocation failure.
1441   if (PA_UNLIKELY(!new_slot_span)) {
1442     PA_DCHECK(active_slot_spans_head ==
1443               SlotSpanMetadata::get_sentinel_slot_span());
1444     if (ContainsFlags(flags, AllocFlags::kReturnNull)) {
1445       return 0;
1446     }
1447     // See comment in PartitionDirectMap() for unlocking.
1448     ScopedUnlockGuard unlock{PartitionRootLock(root)};
1449     root->OutOfMemory(raw_size);
1450     PA_IMMEDIATE_CRASH();  // Not required, kept as documentation.
1451   }
1452   *slot_span = new_slot_span;
1453 
1454   PA_DCHECK(new_bucket != &root->sentinel_bucket);
1455   new_bucket->active_slot_spans_head = new_slot_span;
1456   if (new_slot_span->CanStoreRawSize()) {
1457     new_slot_span->SetRawSize(raw_size);
1458   }
1459 
1460   // If we found an active slot span with free slots, or an empty slot span, we
1461   // have a usable freelist head.
1462   if (PA_LIKELY(new_slot_span->get_freelist_head() != nullptr)) {
1463     const PartitionFreelistDispatcher* freelist_dispatcher =
1464         root->get_freelist_dispatcher();
1465     PartitionFreelistEntry* entry =
1466         new_slot_span->PopForAlloc(new_bucket->slot_size, freelist_dispatcher);
1467     // We may have set *is_already_zeroed to true above, make sure that the
1468     // freelist entry doesn't contain data. Either way, it wouldn't be a good
1469     // idea to let users see our internal data.
1470     uintptr_t slot_start = freelist_dispatcher->ClearForAllocation(entry);
1471     return slot_start;
1472   }
1473 
1474   // Otherwise, we need to provision more slots by committing more pages. Build
1475   // the free list for the newly provisioned slots.
1476   PA_DCHECK(new_slot_span->num_unprovisioned_slots);
1477   return ProvisionMoreSlotsAndAllocOne(root, flags, new_slot_span);
1478 }
1479 
AllocNewSuperPageSpanForGwpAsan(PartitionRoot * root,size_t super_page_count,AllocFlags flags)1480 uintptr_t PartitionBucket::AllocNewSuperPageSpanForGwpAsan(
1481     PartitionRoot* root,
1482     size_t super_page_count,
1483     AllocFlags flags) {
1484   return AllocNewSuperPageSpan(root, super_page_count, flags);
1485 }
1486 
InitializeSlotSpanForGwpAsan(SlotSpanMetadata * slot_span)1487 void PartitionBucket::InitializeSlotSpanForGwpAsan(
1488     SlotSpanMetadata* slot_span) {
1489   InitializeSlotSpan(slot_span);
1490 }
1491 
1492 }  // namespace partition_alloc::internal
1493