xref: /aosp_15_r20/external/armnn/src/backends/tosaCommon/operatorMappings/ConcatOperator.cpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "ConcatOperator.hpp"
7 
ConvertConcatToTosaOperator(const Layer * layer,const std::vector<const TensorInfo * > & inputs,const std::vector<const TensorInfo * > & outputs,const OriginsDescriptor * concatDescriptor)8 TosaSerializationBasicBlock* ConvertConcatToTosaOperator(const Layer* layer,
9                                                          const std::vector<const TensorInfo*>& inputs,
10                                                          const std::vector<const TensorInfo*>& outputs,
11                                                          const OriginsDescriptor* concatDescriptor)
12 {
13     auto numInputs = inputs.size();
14     std::vector<std::string> inputNames;
15     inputNames.reserve(numInputs);
16     std::string outputName = std::string("output0_");
17     std::string blockName  = std::string("Op_CONCAT_block_") + GetUniqueTosaMappingID();
18 
19     // Set input names for validation purposes only.
20     if (layer == nullptr)
21     {
22         for (uint32_t i = 0; i < numInputs; ++i)
23         {
24             inputNames.push_back("input"+ std::to_string(i) +"_");
25         }
26     }
27     // If a layer is present then the block will be used for execution, so input and output names need to be determined
28     // using the previous and following layers so the graph is connected correctly. For validation this doesn't matter.
29     else
30     {
31         // Get the layers connected to the input slots and determine unique tensor names.
32         for (uint32_t i = 0; i < numInputs; ++i)
33         {
34             Layer& connectedLayer = layer->GetInputSlot(i).GetConnectedOutputSlot()->GetOwningLayer();
35 
36             std::string inputName = GenerateUniqueName(connectedLayer, i);
37             inputNames.push_back(inputName);
38         }
39 
40         // Determine unique output tensor name.
41         outputName = GenerateUniqueOutputName(*layer, 0);
42     }
43 
44     auto axis = static_cast<int32_t>(concatDescriptor->GetConcatAxis());
45     TosaAxisAttribute attribute(axis);
46 
47     TosaSerializationOperator* op = new TosaSerializationOperator(Op_CONCAT,
48                                                                   Attribute_AxisAttribute,
49                                                                   &attribute,
50                                                                   inputNames,
51                                                                   {outputName});
52 
53     std::vector<TosaSerializationTensor*> tensors;
54     tensors.reserve(numInputs);
55 
56     for (uint32_t i = 0; i < numInputs; ++i)
57     {
58         // Only add input tensors for validation or when the connected layer is an input layer.
59         // As there can't be duplicate tensors and intermediate or constant tensors are created separately.
60         if(inputNames[i].find("input") != std::string::npos)
61         {
62             std::vector<int32_t> inputShape = GetTosaTensorShape(inputs[i]->GetShape());
63             DType inputDType = ArmNNToDType(inputs[i]->GetDataType());
64             tensors.push_back(new TosaSerializationTensor(inputNames[i], inputShape, inputDType, {}));
65         }
66     }
67 
68     std::vector<int32_t> outputShape0 = GetTosaTensorShape(outputs[0]->GetShape());
69     DType outputDType0 = ArmNNToDType(outputs[0]->GetDataType());
70 
71     TosaSerializationTensor* outputTensor0 = new TosaSerializationTensor(outputName, outputShape0, outputDType0, {});
72     tensors.push_back(outputTensor0);
73 
74     // operatorInputNames/operatorOutputNames ends up being the same as
75     // blockInputNames/blockOutputNames for one-to-one ArmNN to TOSA mappings
76     return new TosaSerializationBasicBlock(blockName,     // name
77                                            {op},          // operators
78                                            tensors,       // tensors
79                                            inputNames,    // inputs
80                                            {outputName}); // outputs
81 }