xref: /aosp_15_r20/external/armnn/src/backends/tosaCommon/operatorMappings/Conv2dOperator.cpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "Conv2dOperator.hpp"
7 
ConvertConv2dToTosaOperator(const Layer * layer,const std::vector<const TensorInfo * > & inputs,const std::vector<const TensorInfo * > & outputs,const Convolution2dDescriptor * conv2dDescriptor)8 TosaSerializationBasicBlock* ConvertConv2dToTosaOperator(const Layer* layer,
9                                                          const std::vector<const TensorInfo*>& inputs,
10                                                          const std::vector<const TensorInfo*>& outputs,
11                                                          const Convolution2dDescriptor* conv2dDescriptor)
12 {
13     std::vector<std::string> inputNames;
14     std::string outputName = std::string("output0_");
15     std::string blockName  = std::string("Op_CONV2D_block_") + GetUniqueTosaMappingID();
16 
17     // Set input names for validation purposes only.
18     if(layer == nullptr)
19     {
20         inputNames.emplace_back("input0_");
21         inputNames.emplace_back("input1_");
22         if(conv2dDescriptor->m_BiasEnabled)
23         {
24             inputNames.emplace_back("input2_");
25         }
26     }
27     // If a layer is present then the block will be used for execution, so input and output names need to be
28     // determined using the previous and following layers so the graph is connected correctly.
29     // For validation this doesn't matter.
30     else
31     {
32         // Get the layer connected to the input slot and determine unique tensor names.
33         for (uint32_t i = 0; i < inputs.size(); ++i)
34         {
35             Layer& connectedLayer = layer->GetInputSlot(i).GetConnectedOutputSlot()->GetOwningLayer();
36 
37             std::string inputName = GenerateUniqueName(connectedLayer, i);
38             inputNames.push_back(inputName);
39         }
40 
41         // Determine unique output tensor name.
42         outputName = GenerateUniqueOutputName(*layer, 0);
43     }
44 
45     std::vector<TosaSerializationTensor*> tensors;
46     std::vector<TosaSerializationOperator*> operators;
47 
48     // Setup input Tensor
49     // Only add tensor if connected layer is an input layer.
50     // As intermediate or constant tensors will be created separately.
51     // There also can't be duplicate tensors.
52     if(inputNames[0].find("input0_") != std::string::npos)
53     {
54         std::vector<int32_t> inputShape0 = GetTosaTensorShape(inputs[0]->GetShape());
55         DType inputDType0 = ArmNNToDType(inputs[0]->GetDataType());
56 
57         tensors.push_back(new TosaSerializationTensor(inputNames[0], inputShape0, inputDType0, {}));
58     }
59 
60     // Only add input tensors if weights and bias are not constant or if running validation.
61     // Constant tensors will be created in the ConvertConstantToTosaOperator function.
62     if(!inputs[1]->IsConstant() || layer == nullptr)
63     {
64         std::vector<int32_t> inputShape1 = GetTosaTensorShape(inputs[1]->GetShape());
65         DType inputDType1 = ArmNNToDType(inputs[1]->GetDataType());
66 
67         tensors.push_back(new TosaSerializationTensor(inputNames[1], inputShape1, inputDType1, {}));
68     }
69 
70     if(conv2dDescriptor->m_BiasEnabled)
71     {
72         if(!inputs[2]->IsConstant() || layer == nullptr)
73         {
74             std::vector<int32_t> inputShape2 = GetTosaTensorShape(inputs[2]->GetShape());
75             DType inputDType2 = ArmNNToDType(inputs[2]->GetDataType());
76 
77             tensors.push_back(new TosaSerializationTensor(inputNames[2], inputShape2, inputDType2, {}));
78         }
79     }
80     else
81     {
82         // If bias is disabled, create a constant bias of 0 as three inputs are required.
83         std::string constantName = std::string("constant_") + GetUniqueTosaMappingID();
84 
85         operators.push_back(new TosaSerializationOperator(Op_CONST, Attribute_NONE, nullptr, {}, {constantName}));
86 
87         // The size of the bias must match the channels dimension, so get the correct index.
88         unsigned int index = (conv2dDescriptor->m_DataLayout == DataLayout::NHWC) ? 3 : 1;
89 
90         std::vector<uint8_t> uint8Data;
91         std::vector<float> data(outputs[0]->GetShape()[index], 0.0f);
92 
93         TosaSerializationHandler::ConvertF32toU8(data, uint8Data);
94 
95         tensors.push_back(new TosaSerializationTensor(constantName,
96                                                       {static_cast<int32_t>(outputs[0]->GetShape()[index])},
97                                                       DType_FP32,
98                                                       uint8Data));
99         inputNames.emplace_back(constantName);
100     }
101 
102     // Setup Output Tensor
103     std::vector<int32_t> outputShape0 = GetTosaTensorShape(outputs[0]->GetShape());
104     DType outputDType0 = ArmNNToDType(outputs[0]->GetDataType());
105 
106     tensors.push_back(new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));
107 
108     // Set up CONV2D operator
109     std::vector<int> pad = {static_cast<int>(conv2dDescriptor->m_PadTop),
110                             static_cast<int>(conv2dDescriptor->m_PadBottom),
111                             static_cast<int>(conv2dDescriptor->m_PadLeft),
112                             static_cast<int>(conv2dDescriptor->m_PadRight)};
113     std::vector<int> stride = {static_cast<int>(conv2dDescriptor->m_StrideY),
114                                static_cast<int>(conv2dDescriptor->m_StrideX)};
115     std::vector<int> dilation = {static_cast<int>(conv2dDescriptor->m_DilationY),
116                                  static_cast<int>(conv2dDescriptor->m_DilationX)};
117     TosaConvAttribute attribute(pad, stride, dilation, 0, 0, ArmNNToDType(inputs[0]->GetDataType()));
118 
119     auto* op = new TosaSerializationOperator(Op_CONV2D,
120                                              Attribute_ConvAttribute,
121                                              &attribute,
122                                              inputNames,
123                                              {outputName});
124     operators.push_back(op);
125 
126     // operatorInputNames/operatorOutputNames ends up being the same as
127     // blockInputNames/blockOutputNames for one-to-one ArmNN to TOSA mappings
128     return new TosaSerializationBasicBlock(blockName,     // name
129                                            operators,     // operators
130                                            tensors,       // tensors
131                                            inputNames,    // inputs
132                                            {outputName}); // outputs
133 }