xref: /aosp_15_r20/external/armnn/src/backends/tosaCommon/operatorMappings/SliceOperator.cpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "SliceOperator.hpp"
7 
ConvertSliceToTosaOperator(const Layer * layer,const std::vector<const TensorInfo * > & inputs,const std::vector<const TensorInfo * > & outputs,const SliceDescriptor * sliceDescriptor)8 TosaSerializationBasicBlock* ConvertSliceToTosaOperator(const Layer* layer,
9                                                         const std::vector<const TensorInfo*>& inputs,
10                                                         const std::vector<const TensorInfo*>& outputs,
11                                                         const SliceDescriptor* sliceDescriptor)
12 {
13     std::string inputName = std::string("input0_");
14     std::string outputName = std::string("output0_");
15     std::string blockName  = std::string("Op_SLICE_block_") + GetUniqueTosaMappingID();
16 
17     // If a layer is present then the block will be used for execution, so input and output names need to be determined
18     // using the previous and following layers so the graph is connected correctly. For validation this doesn't matter.
19     if(layer != nullptr)
20     {
21         // Get the layers connected to the input slots and determine unique tensor names.
22         Layer& connectedLayer = layer->GetInputSlot(0).GetConnectedOutputSlot()->GetOwningLayer();
23         inputName = GenerateUniqueName(connectedLayer, 0);
24 
25         // Determine unique output tensor name.
26         outputName = GenerateUniqueOutputName(*layer, 0);
27     }
28 
29     std::vector<int32_t> begin(sliceDescriptor->m_Begin.begin(), sliceDescriptor->m_Begin.end());
30     std::vector<int32_t> size(sliceDescriptor->m_Size.begin(), sliceDescriptor->m_Size.end());
31 
32     TosaSliceAttribute attribute(begin, size);
33 
34     auto* op = new TosaSerializationOperator(Op_SLICE,
35                                              Attribute_SliceAttribute,
36                                              &attribute,
37                                              {inputName},
38                                              {outputName});
39 
40     std::vector<TosaSerializationTensor*> tensors;
41 
42     // Only add input tensors if connected layer is an input layer.
43     // As intermediate or constant tensors will be created separately.
44     // There also can't be duplicate tensor.
45     if(inputName.find("input0_") != std::string::npos)
46     {
47         std::vector<int32_t> inputShape = GetTosaTensorShape(inputs[0]->GetShape());
48         DType inputDType = ArmNNToDType(inputs[0]->GetDataType());
49 
50         tensors.push_back(new TosaSerializationTensor(inputName, inputShape, inputDType, {}));
51     }
52 
53     std::vector<int32_t> outputShape = GetTosaTensorShape(outputs[0]->GetShape());
54     DType outputDType = ArmNNToDType(outputs[0]->GetDataType());
55 
56     tensors.push_back(new TosaSerializationTensor(outputName, outputShape, outputDType, {}));
57 
58     // operatorInputNames/operatorOutputNames ends up being the same as
59     // blockInputNames/blockOutputNames for one-to-one ArmNN to TOSA mappings
60     return new TosaSerializationBasicBlock(blockName, // name
61                                            {op}, // operators
62                                            tensors, // tensors
63                                            {inputName}, // inputs
64                                            {outputName}); // outputs
65 }