xref: /aosp_15_r20/external/armnn/src/backends/tosaCommon/operatorMappings/TransposeOperator.cpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "TransposeOperator.hpp"
7 
ConvertTransposeToTosaOperator(const Layer * layer,const std::vector<const TensorInfo * > & inputs,const std::vector<const TensorInfo * > & outputs,const TransposeDescriptor * transposeDescriptor)8 TosaSerializationBasicBlock* ConvertTransposeToTosaOperator(const Layer* layer,
9                                                             const std::vector<const TensorInfo*>& inputs,
10                                                             const std::vector<const TensorInfo*>& outputs,
11                                                             const TransposeDescriptor* transposeDescriptor)
12 {
13     std::string input0Name = std::string("input0_");
14     std::string outputName = std::string("output0_");
15     std::string blockName  = std::string("Op_TRANSPOSE_block_") + GetUniqueTosaMappingID();
16 
17     // If a layer is present then the block will be used for execution, so input and output names need to be determined
18     // using the previous and following layers so the graph is connected correctly. For validation this doesn't matter.
19     if(layer != nullptr)
20     {
21         // Get the layers connected to the input slot and determine unique tensor name.
22         Layer& connectedLayer0 = layer->GetInputSlot(0).GetConnectedOutputSlot()->GetOwningLayer();
23         input0Name = GenerateUniqueName(connectedLayer0, 0);
24 
25         // Determine unique output tensor name.
26         outputName = GenerateUniqueOutputName(*layer, 0);
27     }
28 
29     std::vector<int32_t> mappings(transposeDescriptor->m_DimMappings.begin(),
30                                   transposeDescriptor->m_DimMappings.end());
31     TosaTransposeAttribute attribute(mappings);
32 
33     auto* op = new TosaSerializationOperator(Op_TRANSPOSE,
34                                              Attribute_TransposeAttribute,
35                                              &attribute,
36                                              {input0Name},
37                                              {outputName});
38 
39 
40     std::vector<TosaSerializationTensor*> tensors;
41 
42     // Only add input tensors if connected layer is an input layer.
43     // As intermediate or constant tensors will be created separately.
44     // There also can't be duplicate tensor.
45     if(input0Name.find("input0_") != std::string::npos)
46     {
47         std::vector<int32_t> inputShape0 = GetTosaTensorShape(inputs[0]->GetShape());
48         DType inputDType0 = ArmNNToDType(inputs[0]->GetDataType());
49 
50         tensors.push_back(new TosaSerializationTensor(input0Name, inputShape0, inputDType0, {}));
51     }
52 
53     std::vector<int32_t> outputShape0 = GetTosaTensorShape(outputs[0]->GetShape());
54     DType outputDType0 = ArmNNToDType(outputs[0]->GetDataType());
55 
56     tensors.push_back(new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));
57 
58     // operatorInputNames/operatorOutputNames ends up being the same as
59     // blockInputNames/blockOutputNames for one-to-one ArmNN to TOSA mappings
60     return new TosaSerializationBasicBlock(blockName, // name
61                                            {op}, // operators
62                                            tensors, // tensors
63                                            {input0Name}, // inputs
64                                            {outputName}); // outputs
65 }