xref: /aosp_15_r20/external/webrtc/common_audio/resampler/sinc_resampler_unittest.cc (revision d9f758449e529ab9291ac668be2861e7a55c2422)
1 /*
2  *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 // Modified from the Chromium original:
12 // src/media/base/sinc_resampler_unittest.cc
13 
14 // MSVC++ requires this to be set before any other includes to get M_PI.
15 #define _USE_MATH_DEFINES
16 
17 #include "common_audio/resampler/sinc_resampler.h"
18 
19 #include <math.h>
20 
21 #include <algorithm>
22 #include <memory>
23 #include <tuple>
24 
25 #include "common_audio/resampler/sinusoidal_linear_chirp_source.h"
26 #include "rtc_base/system/arch.h"
27 #include "rtc_base/time_utils.h"
28 #include "system_wrappers/include/cpu_features_wrapper.h"
29 #include "test/gmock.h"
30 #include "test/gtest.h"
31 
32 using ::testing::_;
33 
34 namespace webrtc {
35 
36 static const double kSampleRateRatio = 192000.0 / 44100.0;
37 static const double kKernelInterpolationFactor = 0.5;
38 
39 // Helper class to ensure ChunkedResample() functions properly.
40 class MockSource : public SincResamplerCallback {
41  public:
42   MOCK_METHOD(void, Run, (size_t frames, float* destination), (override));
43 };
44 
ACTION(ClearBuffer)45 ACTION(ClearBuffer) {
46   memset(arg1, 0, arg0 * sizeof(float));
47 }
48 
ACTION(FillBuffer)49 ACTION(FillBuffer) {
50   // Value chosen arbitrarily such that SincResampler resamples it to something
51   // easily representable on all platforms; e.g., using kSampleRateRatio this
52   // becomes 1.81219.
53   memset(arg1, 64, arg0 * sizeof(float));
54 }
55 
56 // Test requesting multiples of ChunkSize() frames results in the proper number
57 // of callbacks.
TEST(SincResamplerTest,ChunkedResample)58 TEST(SincResamplerTest, ChunkedResample) {
59   MockSource mock_source;
60 
61   // Choose a high ratio of input to output samples which will result in quick
62   // exhaustion of SincResampler's internal buffers.
63   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
64                           &mock_source);
65 
66   static const int kChunks = 2;
67   size_t max_chunk_size = resampler.ChunkSize() * kChunks;
68   std::unique_ptr<float[]> resampled_destination(new float[max_chunk_size]);
69 
70   // Verify requesting ChunkSize() frames causes a single callback.
71   EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(ClearBuffer());
72   resampler.Resample(resampler.ChunkSize(), resampled_destination.get());
73 
74   // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
75   ::testing::Mock::VerifyAndClear(&mock_source);
76   EXPECT_CALL(mock_source, Run(_, _))
77       .Times(kChunks)
78       .WillRepeatedly(ClearBuffer());
79   resampler.Resample(max_chunk_size, resampled_destination.get());
80 }
81 
82 // Test flush resets the internal state properly.
TEST(SincResamplerTest,Flush)83 TEST(SincResamplerTest, Flush) {
84   MockSource mock_source;
85   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
86                           &mock_source);
87   std::unique_ptr<float[]> resampled_destination(
88       new float[resampler.ChunkSize()]);
89 
90   // Fill the resampler with junk data.
91   EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(FillBuffer());
92   resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
93   ASSERT_NE(resampled_destination[0], 0);
94 
95   // Flush and request more data, which should all be zeros now.
96   resampler.Flush();
97   ::testing::Mock::VerifyAndClear(&mock_source);
98   EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(ClearBuffer());
99   resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
100   for (size_t i = 0; i < resampler.ChunkSize() / 2; ++i)
101     ASSERT_FLOAT_EQ(resampled_destination[i], 0);
102 }
103 
104 // Test flush resets the internal state properly.
TEST(SincResamplerTest,DISABLED_SetRatioBench)105 TEST(SincResamplerTest, DISABLED_SetRatioBench) {
106   MockSource mock_source;
107   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
108                           &mock_source);
109 
110   int64_t start = rtc::TimeNanos();
111   for (int i = 1; i < 10000; ++i)
112     resampler.SetRatio(1.0 / i);
113   double total_time_c_us =
114       (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
115   printf("SetRatio() took %.2fms.\n", total_time_c_us / 1000);
116 }
117 
118 // Ensure various optimized Convolve() methods return the same value.  Only run
119 // this test if other optimized methods exist, otherwise the default Convolve()
120 // will be tested by the parameterized SincResampler tests below.
TEST(SincResamplerTest,Convolve)121 TEST(SincResamplerTest, Convolve) {
122 #if defined(WEBRTC_ARCH_X86_FAMILY)
123   ASSERT_TRUE(GetCPUInfo(kSSE2));
124 #elif defined(WEBRTC_ARCH_ARM_V7)
125   ASSERT_TRUE(GetCPUFeaturesARM() & kCPUFeatureNEON);
126 #endif
127 
128   // Initialize a dummy resampler.
129   MockSource mock_source;
130   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
131                           &mock_source);
132 
133   // The optimized Convolve methods are slightly more precise than Convolve_C(),
134   // so comparison must be done using an epsilon.
135   static const double kEpsilon = 0.00000005;
136 
137   // Use a kernel from SincResampler as input and kernel data, this has the
138   // benefit of already being properly sized and aligned for Convolve_SSE().
139   double result = resampler.Convolve_C(
140       resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
141       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
142   double result2 = resampler.convolve_proc_(
143       resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
144       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
145   EXPECT_NEAR(result2, result, kEpsilon);
146 
147   // Test Convolve() w/ unaligned input pointer.
148   result = resampler.Convolve_C(
149       resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
150       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
151   result2 = resampler.convolve_proc_(
152       resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
153       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
154   EXPECT_NEAR(result2, result, kEpsilon);
155 }
156 
157 // Benchmark for the various Convolve() methods.  Make sure to build with
158 // branding=Chrome so that RTC_DCHECKs are compiled out when benchmarking.
159 // Original benchmarks were run with --convolve-iterations=50000000.
TEST(SincResamplerTest,ConvolveBenchmark)160 TEST(SincResamplerTest, ConvolveBenchmark) {
161   // Initialize a dummy resampler.
162   MockSource mock_source;
163   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
164                           &mock_source);
165 
166   // Retrieve benchmark iterations from command line.
167   // TODO(ajm): Reintroduce this as a command line option.
168   const int kConvolveIterations = 1000000;
169 
170   printf("Benchmarking %d iterations:\n", kConvolveIterations);
171 
172   // Benchmark Convolve_C().
173   int64_t start = rtc::TimeNanos();
174   for (int i = 0; i < kConvolveIterations; ++i) {
175     resampler.Convolve_C(
176         resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
177         resampler.kernel_storage_.get(), kKernelInterpolationFactor);
178   }
179   double total_time_c_us =
180       (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
181   printf("Convolve_C took %.2fms.\n", total_time_c_us / 1000);
182 
183 #if defined(WEBRTC_ARCH_X86_FAMILY)
184   ASSERT_TRUE(GetCPUInfo(kSSE2));
185 #elif defined(WEBRTC_ARCH_ARM_V7)
186   ASSERT_TRUE(GetCPUFeaturesARM() & kCPUFeatureNEON);
187 #endif
188 
189   // Benchmark with unaligned input pointer.
190   start = rtc::TimeNanos();
191   for (int j = 0; j < kConvolveIterations; ++j) {
192     resampler.convolve_proc_(
193         resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
194         resampler.kernel_storage_.get(), kKernelInterpolationFactor);
195   }
196   double total_time_optimized_unaligned_us =
197       (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
198   printf(
199       "convolve_proc_(unaligned) took %.2fms; which is %.2fx "
200       "faster than Convolve_C.\n",
201       total_time_optimized_unaligned_us / 1000,
202       total_time_c_us / total_time_optimized_unaligned_us);
203 
204   // Benchmark with aligned input pointer.
205   start = rtc::TimeNanos();
206   for (int j = 0; j < kConvolveIterations; ++j) {
207     resampler.convolve_proc_(
208         resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
209         resampler.kernel_storage_.get(), kKernelInterpolationFactor);
210   }
211   double total_time_optimized_aligned_us =
212       (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
213   printf(
214       "convolve_proc_ (aligned) took %.2fms; which is %.2fx "
215       "faster than Convolve_C and %.2fx faster than "
216       "convolve_proc_ (unaligned).\n",
217       total_time_optimized_aligned_us / 1000,
218       total_time_c_us / total_time_optimized_aligned_us,
219       total_time_optimized_unaligned_us / total_time_optimized_aligned_us);
220 }
221 
222 typedef std::tuple<int, int, double, double> SincResamplerTestData;
223 class SincResamplerTest
224     : public ::testing::TestWithParam<SincResamplerTestData> {
225  public:
SincResamplerTest()226   SincResamplerTest()
227       : input_rate_(std::get<0>(GetParam())),
228         output_rate_(std::get<1>(GetParam())),
229         rms_error_(std::get<2>(GetParam())),
230         low_freq_error_(std::get<3>(GetParam())) {}
231 
~SincResamplerTest()232   virtual ~SincResamplerTest() {}
233 
234  protected:
235   int input_rate_;
236   int output_rate_;
237   double rms_error_;
238   double low_freq_error_;
239 };
240 
241 // Tests resampling using a given input and output sample rate.
TEST_P(SincResamplerTest,Resample)242 TEST_P(SincResamplerTest, Resample) {
243   // Make comparisons using one second of data.
244   static const double kTestDurationSecs = 1;
245   const size_t input_samples =
246       static_cast<size_t>(kTestDurationSecs * input_rate_);
247   const size_t output_samples =
248       static_cast<size_t>(kTestDurationSecs * output_rate_);
249 
250   // Nyquist frequency for the input sampling rate.
251   const double input_nyquist_freq = 0.5 * input_rate_;
252 
253   // Source for data to be resampled.
254   SinusoidalLinearChirpSource resampler_source(input_rate_, input_samples,
255                                                input_nyquist_freq, 0);
256 
257   const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
258   SincResampler resampler(io_ratio, SincResampler::kDefaultRequestSize,
259                           &resampler_source);
260 
261   // Force an update to the sample rate ratio to ensure dynamic sample rate
262   // changes are working correctly.
263   std::unique_ptr<float[]> kernel(new float[SincResampler::kKernelStorageSize]);
264   memcpy(kernel.get(), resampler.get_kernel_for_testing(),
265          SincResampler::kKernelStorageSize);
266   resampler.SetRatio(M_PI);
267   ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
268                       SincResampler::kKernelStorageSize));
269   resampler.SetRatio(io_ratio);
270   ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
271                       SincResampler::kKernelStorageSize));
272 
273   // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
274   // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
275   std::unique_ptr<float[]> resampled_destination(new float[output_samples]);
276   std::unique_ptr<float[]> pure_destination(new float[output_samples]);
277 
278   // Generate resampled signal.
279   resampler.Resample(output_samples, resampled_destination.get());
280 
281   // Generate pure signal.
282   SinusoidalLinearChirpSource pure_source(output_rate_, output_samples,
283                                           input_nyquist_freq, 0);
284   pure_source.Run(output_samples, pure_destination.get());
285 
286   // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
287   // we refer to as low and high.
288   static const double kLowFrequencyNyquistRange = 0.7;
289   static const double kHighFrequencyNyquistRange = 0.9;
290 
291   // Calculate Root-Mean-Square-Error and maximum error for the resampling.
292   double sum_of_squares = 0;
293   double low_freq_max_error = 0;
294   double high_freq_max_error = 0;
295   int minimum_rate = std::min(input_rate_, output_rate_);
296   double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
297   double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
298   for (size_t i = 0; i < output_samples; ++i) {
299     double error = fabs(resampled_destination[i] - pure_destination[i]);
300 
301     if (pure_source.Frequency(i) < low_frequency_range) {
302       if (error > low_freq_max_error)
303         low_freq_max_error = error;
304     } else if (pure_source.Frequency(i) < high_frequency_range) {
305       if (error > high_freq_max_error)
306         high_freq_max_error = error;
307     }
308     // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
309 
310     sum_of_squares += error * error;
311   }
312 
313   double rms_error = sqrt(sum_of_squares / output_samples);
314 
315 // Convert each error to dbFS.
316 #define DBFS(x) 20 * log10(x)
317   rms_error = DBFS(rms_error);
318   low_freq_max_error = DBFS(low_freq_max_error);
319   high_freq_max_error = DBFS(high_freq_max_error);
320 
321   EXPECT_LE(rms_error, rms_error_);
322   EXPECT_LE(low_freq_max_error, low_freq_error_);
323 
324   // All conversions currently have a high frequency error around -6 dbFS.
325   static const double kHighFrequencyMaxError = -6.02;
326   EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
327 }
328 
329 // Almost all conversions have an RMS error of around -14 dbFS.
330 static const double kResamplingRMSError = -14.58;
331 
332 // Thresholds chosen arbitrarily based on what each resampling reported during
333 // testing.  All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
334 INSTANTIATE_TEST_SUITE_P(
335     SincResamplerTest,
336     SincResamplerTest,
337     ::testing::Values(
338         // To 22.05kHz
339         std::make_tuple(8000, 22050, kResamplingRMSError, -62.73),
340         std::make_tuple(11025, 22050, kResamplingRMSError, -72.19),
341         std::make_tuple(16000, 22050, kResamplingRMSError, -62.54),
342         std::make_tuple(22050, 22050, kResamplingRMSError, -73.53),
343         std::make_tuple(32000, 22050, kResamplingRMSError, -46.45),
344         std::make_tuple(44100, 22050, kResamplingRMSError, -28.49),
345         std::make_tuple(48000, 22050, -15.01, -25.56),
346         std::make_tuple(96000, 22050, -18.49, -13.42),
347         std::make_tuple(192000, 22050, -20.50, -9.23),
348 
349         // To 44.1kHz
350         std::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
351         std::make_tuple(11025, 44100, kResamplingRMSError, -72.19),
352         std::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
353         std::make_tuple(22050, 44100, kResamplingRMSError, -73.53),
354         std::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
355         std::make_tuple(44100, 44100, kResamplingRMSError, -73.52),
356         std::make_tuple(48000, 44100, -15.01, -64.04),
357         std::make_tuple(96000, 44100, -18.49, -25.51),
358         std::make_tuple(192000, 44100, -20.50, -13.31),
359 
360         // To 48kHz
361         std::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
362         std::make_tuple(11025, 48000, kResamplingRMSError, -62.61),
363         std::make_tuple(16000, 48000, kResamplingRMSError, -63.95),
364         std::make_tuple(22050, 48000, kResamplingRMSError, -62.42),
365         std::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
366         std::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
367         std::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
368         std::make_tuple(96000, 48000, -18.40, -28.44),
369         std::make_tuple(192000, 48000, -20.43, -14.11),
370 
371         // To 96kHz
372         std::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
373         std::make_tuple(11025, 96000, kResamplingRMSError, -62.61),
374         std::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
375         std::make_tuple(22050, 96000, kResamplingRMSError, -62.42),
376         std::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
377         std::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
378         std::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
379         std::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
380         std::make_tuple(192000, 96000, kResamplingRMSError, -28.41),
381 
382         // To 192kHz
383         std::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
384         std::make_tuple(11025, 192000, kResamplingRMSError, -62.61),
385         std::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
386         std::make_tuple(22050, 192000, kResamplingRMSError, -62.42),
387         std::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
388         std::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
389         std::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
390         std::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
391         std::make_tuple(192000, 192000, kResamplingRMSError, -73.52)));
392 
393 }  // namespace webrtc
394