xref: /aosp_15_r20/external/tensorflow/tensorflow/lite/delegates/coreml/builders/mul_op_builder.cc (revision b6fb3261f9314811a0f4371741dbb8839866f948)
1 /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #include "tensorflow/lite/delegates/coreml/builders/mul_op_builder.h"
16 
17 #include <memory>
18 #include <string>
19 
20 #include "tensorflow/lite/c/builtin_op_data.h"
21 #include "tensorflow/lite/c/common.h"
22 #include "tensorflow/lite/delegates/coreml/builders/activation_layer_builder.h"
23 #include "tensorflow/lite/delegates/coreml/builders/op_factory.h"
24 #include "tensorflow/lite/delegates/coreml/builders/op_validator.h"
25 #include "tensorflow/lite/delegates/coreml/builders/util.h"
26 #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
27 #include "tensorflow/lite/kernels/internal/types.h"
28 #include "tensorflow/lite/kernels/kernel_util.h"
29 
30 namespace tflite {
31 namespace delegates {
32 namespace coreml {
DebugName()33 const std::string& MulOpBuilder::DebugName() {
34   if (debug_name_.empty()) SetDebugName("MulOpBuilder", node_id_);
35   return debug_name_;
36 }
37 
Build()38 CoreML::Specification::NeuralNetworkLayer* MulOpBuilder::Build() {
39   if (layer_ == nullptr) {
40     layer_ = std::make_unique<CoreML::Specification::NeuralNetworkLayer>();
41   }
42   // MultiplyLayerParams only has limited broadcasting support. For example:
43   // [B, 1, 1, 1], [B, C, 1, 1], [B, 1, H, W], [B, C, H, W]. other shapes
44   // will make broadcasting fail.
45   layer_->set_name(DebugName());
46   layer_->mutable_multiply();
47   if (alpha_ != 1.0f) {
48     layer_->mutable_multiply()->set_alpha(alpha_);
49   }
50 
51   return layer_.release();
52 }
53 
PopulateSubgraph(TfLiteContext * context)54 TfLiteStatus MulOpBuilder::PopulateSubgraph(TfLiteContext* context) {
55   TfLiteMulParams* params = reinterpret_cast<TfLiteMulParams*>(builtin_data_);
56 
57   TfLiteFusedActivation activation = params->activation;
58   if (activation == kTfLiteActNone) {
59     builder_output_ = AddOutput();
60   } else {
61     ActivationLayerBuilder* activation_builder =
62         reinterpret_cast<ActivationLayerBuilder*>(
63             graph_builder_->AddBuilder(CreateActivationLayerBuilder, nullptr));
64     activation_builder->SetActivation(activation);
65     activation_builder->AddInput(AddOutput());
66     activation_builder->PopulateSubgraph(context);
67     builder_output_ = activation_builder->GetOutput(context);
68   }
69   return kTfLiteOk;
70 }
71 
RegisterInputs(const TfLiteIntArray * inputs,TfLiteContext * context)72 TfLiteStatus MulOpBuilder::RegisterInputs(const TfLiteIntArray* inputs,
73                                           TfLiteContext* context) {
74   // TFL MUL op always has 2 inputs.
75   if (inputs->size != 2) {
76     TF_LITE_KERNEL_LOG(context, "Wrong # of inputs to mul!.");
77     return kTfLiteError;
78   }
79   const auto* input_0 = &context->tensors[inputs->data[0]];
80   const auto* input_1 = &context->tensors[inputs->data[1]];
81   // store constant, scalar value into MultiplyLayerParams directly.
82   if (IsConstantTensor(input_0) && NumElements(input_0) == 1) {
83     AddInput(inputs->data[1]);
84     SetAlpha(GetTensorData<float>(input_0)[0]);
85   } else if (IsConstantTensor(input_1) && NumElements(input_1) == 1) {
86     AddInput(inputs->data[0]);
87     SetAlpha(GetTensorData<float>(input_1)[0]);
88   } else {
89     AddInput(inputs->data[0]);
90     AddInput(inputs->data[1]);
91   }
92   return kTfLiteOk;
93 }
94 
RegisterOutputs(const TfLiteIntArray * outputs,TfLiteContext * context)95 TfLiteStatus MulOpBuilder::RegisterOutputs(const TfLiteIntArray* outputs,
96                                            TfLiteContext* context) {
97   if (outputs->size != 1) {
98     TF_LITE_KERNEL_LOG(context, "Wrong # of outputs to mul!.");
99     return kTfLiteError;
100   }
101   TensorID output_tensor = GetOutput(context);
102   if (output_tensor.NodeID() == -1) {
103     TF_LITE_KERNEL_LOG(context, "Failed to build output tensor.");
104     return kTfLiteError;
105   }
106   graph_builder_->AddTensorWithID(outputs->data[0], output_tensor);
107   return kTfLiteOk;
108 }
109 
SetAlpha(float alpha)110 void MulOpBuilder::SetAlpha(float alpha) { alpha_ = alpha; }
111 
CreateMulOpBuilder(GraphBuilder * graph_builder)112 OpBuilder* CreateMulOpBuilder(GraphBuilder* graph_builder) {
113   return new MulOpBuilder(graph_builder);
114 }
115 
116 }  // namespace coreml
117 }  // namespace delegates
118 }  // namespace tflite
119