1 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/compiler/mlir/xla/experimental/conv_emitter/conv_emitter_transforms.h"
17 
18 #include <iterator>
19 
20 #include "absl/algorithm/container.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "mlir/Dialect/Affine/IR/AffineOps.h"  // from @llvm-project
23 #include "mlir/Dialect/Affine/LoopUtils.h"  // from @llvm-project
24 #include "tensorflow/core/platform/logging.h"
25 
26 namespace xla {
27 namespace experimental {
28 
29 using mlir::OpBuilder;
30 
GetBoundAffineMapFrom(mlir::Operation * op)31 BoundAffineMap GetBoundAffineMapFrom(mlir::Operation* op) {
32   if (auto load = mlir::dyn_cast<mlir::AffineLoadOp>(op)) {
33     return {load.getAffineMap(),
34             std::vector<mlir::Value>(load.getMapOperands().begin(),
35                                      load.getMapOperands().end())};
36   } else if (auto store = mlir::dyn_cast<mlir::AffineStoreOp>(op)) {
37     return {store.getAffineMap(),
38             std::vector<mlir::Value>(store.getMapOperands().begin(),
39                                      store.getMapOperands().end())};
40   } else {
41     CHECK(false);
42   }
43 }
44 
CloneWithNewAffineMap(mlir::Operation * op,BoundAffineMap new_affine,OpBuilder builder)45 mlir::Operation* CloneWithNewAffineMap(mlir::Operation* op,
46                                        BoundAffineMap new_affine,
47                                        OpBuilder builder) {
48   if (auto load = mlir::dyn_cast<mlir::AffineLoadOp>(op)) {
49     return builder.create<mlir::AffineLoadOp>(
50         builder.getUnknownLoc(), load.getMemRef(), new_affine.affine_map,
51         new_affine.operands);
52   } else if (auto store = mlir::dyn_cast<mlir::AffineStoreOp>(op)) {
53     return builder.create<mlir::AffineStoreOp>(
54         builder.getUnknownLoc(), store.getValueToStore(), store.getMemRef(),
55         new_affine.affine_map, new_affine.operands);
56   } else {
57     CHECK(false);
58   }
59 }
60 
IsSimpleLoop(mlir::AffineForOp loop)61 bool IsSimpleLoop(mlir::AffineForOp loop) {
62   return loop.getLowerBoundMap().isSingleConstant() &&
63          loop.getLowerBoundMap().getSingleConstantResult() == 0 &&
64          loop.getStep() == 1 && loop.getUpperBoundMap().getNumResults() == 1 &&
65          std::next(loop.getRegion().begin()) == loop.getRegion().end();
66 }
67 
CreateNestedSimpleLoops(absl::Span<const int64_t> upper_bounds,OpBuilder builder)68 std::vector<mlir::AffineForOp> CreateNestedSimpleLoops(
69     absl::Span<const int64_t> upper_bounds, OpBuilder builder) {
70   std::vector<mlir::AffineForOp> loops;
71   loops.reserve(upper_bounds.size());
72   for (int64_t dim : upper_bounds) {
73     auto loop =
74         builder.create<mlir::AffineForOp>(builder.getUnknownLoc(), 0, dim);
75     loops.push_back(loop);
76     builder = OpBuilder::atBlockTerminator(loop.getBody());
77   }
78   return loops;
79 }
80 
SetBoundForSimpleLoop(mlir::AffineForOp loop,mlir::AffineExpr new_bound,OpBuilder builder)81 void SetBoundForSimpleLoop(mlir::AffineForOp loop, mlir::AffineExpr new_bound,
82                            OpBuilder builder) {
83   CHECK(IsSimpleLoop(loop));
84 
85   loop.setUpperBoundMap(mlir::AffineMap::get(
86       loop.getUpperBoundMap().getNumDims(),
87       loop.getUpperBoundMap().getNumSymbols(), {new_bound}));
88 }
89 
TileLoop(mlir::AffineForOp loop,int64_t size,mlir::AffineForOp target)90 mlir::AffineForOp TileLoop(mlir::AffineForOp loop, int64_t size,
91                            mlir::AffineForOp target) {
92   CHECK(IsSimpleLoop(loop));
93   CHECK(IsSimpleLoop(target));
94   {
95     llvm::SmallVector<mlir::AffineForOp, 4> all_loops;
96     getPerfectlyNestedLoops(all_loops, loop);
97     CHECK(absl::c_linear_search(all_loops, target));
98   }
99 
100   auto builder = OpBuilder::atBlockTerminator(target.getBody());
101 
102   auto inner_loop =
103       builder.create<mlir::AffineForOp>(builder.getUnknownLoc(), 0, size);
104   {
105     auto& inner_operations = inner_loop.getBody()->getOperations();
106     auto& target_operations = target.getBody()->getOperations();
107 
108     inner_operations.splice(inner_operations.begin(), target_operations,
109                             target_operations.begin(),
110                             std::prev(target_operations.end(), 2));
111 
112     mlir::AffineExpr length = loop.getUpperBoundMap().getResult(0);
113     CHECK_EQ(0, length.cast<mlir::AffineConstantExpr>().getValue() % size);
114     SetBoundForSimpleLoop(loop, length.ceilDiv(size), builder);
115   }
116 
117   for (auto& use :
118        llvm::make_early_inc_range(loop.getInductionVar().getUses())) {
119     mlir::Operation* owner = use.getOwner();
120     BoundAffineMap affine_map = GetBoundAffineMapFrom(owner);
121     unsigned new_dim = affine_map.operands.size();
122     affine_map.operands.push_back(inner_loop.getInductionVar());
123     std::vector<mlir::AffineExpr> replacements;
124     for (int i = 0; i < affine_map.affine_map.getNumDims(); i++) {
125       if (affine_map.operands[i] == loop.getInductionVar()) {
126         replacements.push_back(builder.getAffineDimExpr(i) * size +
127                                builder.getAffineDimExpr(new_dim));
128       } else {
129         replacements.push_back(builder.getAffineDimExpr(i));
130       }
131     }
132     affine_map.affine_map = affine_map.affine_map.replaceDimsAndSymbols(
133         replacements, {}, affine_map.operands.size(), 0);
134     auto new_op = CloneWithNewAffineMap(owner, affine_map, OpBuilder(owner));
135     owner->replaceAllUsesWith(new_op);
136     owner->erase();
137   }
138   return inner_loop;
139 }
140 
SinkPerfectlyNestedLoops(llvm::MutableArrayRef<mlir::AffineForOp> loops,int rotate_amount)141 void SinkPerfectlyNestedLoops(llvm::MutableArrayRef<mlir::AffineForOp> loops,
142                               int rotate_amount) {
143   CHECK_GE(rotate_amount, 0);
144   std::vector<unsigned> permutation(loops.size());
145   std::iota(permutation.begin(), permutation.end(), unsigned(0));
146   std::rotate(permutation.begin(),
147               permutation.begin() + loops.size() - rotate_amount,
148               permutation.end());
149   mlir::permuteLoops(loops, permutation);
150 }
151 
152 }  // namespace experimental
153 }  // namespace xla
154