1 //===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The code below implements dead store elimination using MemorySSA. It uses
10 // the following general approach: given a MemoryDef, walk upwards to find
11 // clobbering MemoryDefs that may be killed by the starting def. Then check
12 // that there are no uses that may read the location of the original MemoryDef
13 // in between both MemoryDefs. A bit more concretely:
14 //
15 // For all MemoryDefs StartDef:
16 // 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking
17 // upwards.
18 // 2. Check that there are no reads between MaybeDeadAccess and the StartDef by
19 // checking all uses starting at MaybeDeadAccess and walking until we see
20 // StartDef.
21 // 3. For each found CurrentDef, check that:
22 // 1. There are no barrier instructions between CurrentDef and StartDef (like
23 // throws or stores with ordering constraints).
24 // 2. StartDef is executed whenever CurrentDef is executed.
25 // 3. StartDef completely overwrites CurrentDef.
26 // 4. Erase CurrentDef from the function and MemorySSA.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
31 #include "llvm/ADT/APInt.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/MapVector.h"
34 #include "llvm/ADT/PostOrderIterator.h"
35 #include "llvm/ADT/SetVector.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringRef.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/CaptureTracking.h"
43 #include "llvm/Analysis/CodeMetrics.h"
44 #include "llvm/Analysis/GlobalsModRef.h"
45 #include "llvm/Analysis/LoopInfo.h"
46 #include "llvm/Analysis/MemoryBuiltins.h"
47 #include "llvm/Analysis/MemoryLocation.h"
48 #include "llvm/Analysis/MemorySSA.h"
49 #include "llvm/Analysis/MemorySSAUpdater.h"
50 #include "llvm/Analysis/MustExecute.h"
51 #include "llvm/Analysis/PostDominators.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/Argument.h"
55 #include "llvm/IR/BasicBlock.h"
56 #include "llvm/IR/Constant.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DebugInfo.h"
60 #include "llvm/IR/Dominators.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/IRBuilder.h"
63 #include "llvm/IR/InstIterator.h"
64 #include "llvm/IR/InstrTypes.h"
65 #include "llvm/IR/Instruction.h"
66 #include "llvm/IR/Instructions.h"
67 #include "llvm/IR/IntrinsicInst.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/PassManager.h"
70 #include "llvm/IR/PatternMatch.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/InitializePasses.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/DebugCounter.h"
78 #include "llvm/Support/ErrorHandling.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
82 #include "llvm/Transforms/Utils/BuildLibCalls.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include <algorithm>
85 #include <cassert>
86 #include <cstdint>
87 #include <iterator>
88 #include <map>
89 #include <optional>
90 #include <utility>
91
92 using namespace llvm;
93 using namespace PatternMatch;
94
95 #define DEBUG_TYPE "dse"
96
97 STATISTIC(NumRemainingStores, "Number of stores remaining after DSE");
98 STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
99 STATISTIC(NumFastStores, "Number of stores deleted");
100 STATISTIC(NumFastOther, "Number of other instrs removed");
101 STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
102 STATISTIC(NumModifiedStores, "Number of stores modified");
103 STATISTIC(NumCFGChecks, "Number of stores modified");
104 STATISTIC(NumCFGTries, "Number of stores modified");
105 STATISTIC(NumCFGSuccess, "Number of stores modified");
106 STATISTIC(NumGetDomMemoryDefPassed,
107 "Number of times a valid candidate is returned from getDomMemoryDef");
108 STATISTIC(NumDomMemDefChecks,
109 "Number iterations check for reads in getDomMemoryDef");
110
111 DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa",
112 "Controls which MemoryDefs are eliminated.");
113
114 static cl::opt<bool>
115 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
116 cl::init(true), cl::Hidden,
117 cl::desc("Enable partial-overwrite tracking in DSE"));
118
119 static cl::opt<bool>
120 EnablePartialStoreMerging("enable-dse-partial-store-merging",
121 cl::init(true), cl::Hidden,
122 cl::desc("Enable partial store merging in DSE"));
123
124 static cl::opt<unsigned>
125 MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden,
126 cl::desc("The number of memory instructions to scan for "
127 "dead store elimination (default = 150)"));
128 static cl::opt<unsigned> MemorySSAUpwardsStepLimit(
129 "dse-memoryssa-walklimit", cl::init(90), cl::Hidden,
130 cl::desc("The maximum number of steps while walking upwards to find "
131 "MemoryDefs that may be killed (default = 90)"));
132
133 static cl::opt<unsigned> MemorySSAPartialStoreLimit(
134 "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden,
135 cl::desc("The maximum number candidates that only partially overwrite the "
136 "killing MemoryDef to consider"
137 " (default = 5)"));
138
139 static cl::opt<unsigned> MemorySSADefsPerBlockLimit(
140 "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden,
141 cl::desc("The number of MemoryDefs we consider as candidates to eliminated "
142 "other stores per basic block (default = 5000)"));
143
144 static cl::opt<unsigned> MemorySSASameBBStepCost(
145 "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden,
146 cl::desc(
147 "The cost of a step in the same basic block as the killing MemoryDef"
148 "(default = 1)"));
149
150 static cl::opt<unsigned>
151 MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5),
152 cl::Hidden,
153 cl::desc("The cost of a step in a different basic "
154 "block than the killing MemoryDef"
155 "(default = 5)"));
156
157 static cl::opt<unsigned> MemorySSAPathCheckLimit(
158 "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden,
159 cl::desc("The maximum number of blocks to check when trying to prove that "
160 "all paths to an exit go through a killing block (default = 50)"));
161
162 // This flags allows or disallows DSE to optimize MemorySSA during its
163 // traversal. Note that DSE optimizing MemorySSA may impact other passes
164 // downstream of the DSE invocation and can lead to issues not being
165 // reproducible in isolation (i.e. when MemorySSA is built from scratch). In
166 // those cases, the flag can be used to check if DSE's MemorySSA optimizations
167 // impact follow-up passes.
168 static cl::opt<bool>
169 OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(true), cl::Hidden,
170 cl::desc("Allow DSE to optimize memory accesses."));
171
172 //===----------------------------------------------------------------------===//
173 // Helper functions
174 //===----------------------------------------------------------------------===//
175 using OverlapIntervalsTy = std::map<int64_t, int64_t>;
176 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
177
178 /// Returns true if the end of this instruction can be safely shortened in
179 /// length.
isShortenableAtTheEnd(Instruction * I)180 static bool isShortenableAtTheEnd(Instruction *I) {
181 // Don't shorten stores for now
182 if (isa<StoreInst>(I))
183 return false;
184
185 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
186 switch (II->getIntrinsicID()) {
187 default: return false;
188 case Intrinsic::memset:
189 case Intrinsic::memcpy:
190 case Intrinsic::memcpy_element_unordered_atomic:
191 case Intrinsic::memset_element_unordered_atomic:
192 // Do shorten memory intrinsics.
193 // FIXME: Add memmove if it's also safe to transform.
194 return true;
195 }
196 }
197
198 // Don't shorten libcalls calls for now.
199
200 return false;
201 }
202
203 /// Returns true if the beginning of this instruction can be safely shortened
204 /// in length.
isShortenableAtTheBeginning(Instruction * I)205 static bool isShortenableAtTheBeginning(Instruction *I) {
206 // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
207 // easily done by offsetting the source address.
208 return isa<AnyMemSetInst>(I);
209 }
210
getPointerSize(const Value * V,const DataLayout & DL,const TargetLibraryInfo & TLI,const Function * F)211 static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
212 const TargetLibraryInfo &TLI,
213 const Function *F) {
214 uint64_t Size;
215 ObjectSizeOpts Opts;
216 Opts.NullIsUnknownSize = NullPointerIsDefined(F);
217
218 if (getObjectSize(V, Size, DL, &TLI, Opts))
219 return Size;
220 return MemoryLocation::UnknownSize;
221 }
222
223 namespace {
224
225 enum OverwriteResult {
226 OW_Begin,
227 OW_Complete,
228 OW_End,
229 OW_PartialEarlierWithFullLater,
230 OW_MaybePartial,
231 OW_None,
232 OW_Unknown
233 };
234
235 } // end anonymous namespace
236
237 /// Check if two instruction are masked stores that completely
238 /// overwrite one another. More specifically, \p KillingI has to
239 /// overwrite \p DeadI.
isMaskedStoreOverwrite(const Instruction * KillingI,const Instruction * DeadI,BatchAAResults & AA)240 static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI,
241 const Instruction *DeadI,
242 BatchAAResults &AA) {
243 const auto *KillingII = dyn_cast<IntrinsicInst>(KillingI);
244 const auto *DeadII = dyn_cast<IntrinsicInst>(DeadI);
245 if (KillingII == nullptr || DeadII == nullptr)
246 return OW_Unknown;
247 if (KillingII->getIntrinsicID() != DeadII->getIntrinsicID())
248 return OW_Unknown;
249 if (KillingII->getIntrinsicID() == Intrinsic::masked_store) {
250 // Type size.
251 VectorType *KillingTy =
252 cast<VectorType>(KillingII->getArgOperand(0)->getType());
253 VectorType *DeadTy = cast<VectorType>(DeadII->getArgOperand(0)->getType());
254 if (KillingTy->getScalarSizeInBits() != DeadTy->getScalarSizeInBits())
255 return OW_Unknown;
256 // Element count.
257 if (KillingTy->getElementCount() != DeadTy->getElementCount())
258 return OW_Unknown;
259 // Pointers.
260 Value *KillingPtr = KillingII->getArgOperand(1)->stripPointerCasts();
261 Value *DeadPtr = DeadII->getArgOperand(1)->stripPointerCasts();
262 if (KillingPtr != DeadPtr && !AA.isMustAlias(KillingPtr, DeadPtr))
263 return OW_Unknown;
264 // Masks.
265 // TODO: check that KillingII's mask is a superset of the DeadII's mask.
266 if (KillingII->getArgOperand(3) != DeadII->getArgOperand(3))
267 return OW_Unknown;
268 return OW_Complete;
269 }
270 return OW_Unknown;
271 }
272
273 /// Return 'OW_Complete' if a store to the 'KillingLoc' location completely
274 /// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the
275 /// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin'
276 /// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'.
277 /// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was
278 /// overwritten by a killing (smaller) store which doesn't write outside the big
279 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
280 /// NOTE: This function must only be called if both \p KillingLoc and \p
281 /// DeadLoc belong to the same underlying object with valid \p KillingOff and
282 /// \p DeadOff.
isPartialOverwrite(const MemoryLocation & KillingLoc,const MemoryLocation & DeadLoc,int64_t KillingOff,int64_t DeadOff,Instruction * DeadI,InstOverlapIntervalsTy & IOL)283 static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc,
284 const MemoryLocation &DeadLoc,
285 int64_t KillingOff, int64_t DeadOff,
286 Instruction *DeadI,
287 InstOverlapIntervalsTy &IOL) {
288 const uint64_t KillingSize = KillingLoc.Size.getValue();
289 const uint64_t DeadSize = DeadLoc.Size.getValue();
290 // We may now overlap, although the overlap is not complete. There might also
291 // be other incomplete overlaps, and together, they might cover the complete
292 // dead store.
293 // Note: The correctness of this logic depends on the fact that this function
294 // is not even called providing DepWrite when there are any intervening reads.
295 if (EnablePartialOverwriteTracking &&
296 KillingOff < int64_t(DeadOff + DeadSize) &&
297 int64_t(KillingOff + KillingSize) >= DeadOff) {
298
299 // Insert our part of the overlap into the map.
300 auto &IM = IOL[DeadI];
301 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", "
302 << int64_t(DeadOff + DeadSize) << ") KillingLoc ["
303 << KillingOff << ", " << int64_t(KillingOff + KillingSize)
304 << ")\n");
305
306 // Make sure that we only insert non-overlapping intervals and combine
307 // adjacent intervals. The intervals are stored in the map with the ending
308 // offset as the key (in the half-open sense) and the starting offset as
309 // the value.
310 int64_t KillingIntStart = KillingOff;
311 int64_t KillingIntEnd = KillingOff + KillingSize;
312
313 // Find any intervals ending at, or after, KillingIntStart which start
314 // before KillingIntEnd.
315 auto ILI = IM.lower_bound(KillingIntStart);
316 if (ILI != IM.end() && ILI->second <= KillingIntEnd) {
317 // This existing interval is overlapped with the current store somewhere
318 // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing
319 // intervals and adjusting our start and end.
320 KillingIntStart = std::min(KillingIntStart, ILI->second);
321 KillingIntEnd = std::max(KillingIntEnd, ILI->first);
322 ILI = IM.erase(ILI);
323
324 // Continue erasing and adjusting our end in case other previous
325 // intervals are also overlapped with the current store.
326 //
327 // |--- dead 1 ---| |--- dead 2 ---|
328 // |------- killing---------|
329 //
330 while (ILI != IM.end() && ILI->second <= KillingIntEnd) {
331 assert(ILI->second > KillingIntStart && "Unexpected interval");
332 KillingIntEnd = std::max(KillingIntEnd, ILI->first);
333 ILI = IM.erase(ILI);
334 }
335 }
336
337 IM[KillingIntEnd] = KillingIntStart;
338
339 ILI = IM.begin();
340 if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) {
341 LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc ["
342 << DeadOff << ", " << int64_t(DeadOff + DeadSize)
343 << ") Composite KillingLoc [" << ILI->second << ", "
344 << ILI->first << ")\n");
345 ++NumCompletePartials;
346 return OW_Complete;
347 }
348 }
349
350 // Check for a dead store which writes to all the memory locations that
351 // the killing store writes to.
352 if (EnablePartialStoreMerging && KillingOff >= DeadOff &&
353 int64_t(DeadOff + DeadSize) > KillingOff &&
354 uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) {
355 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff
356 << ", " << int64_t(DeadOff + DeadSize)
357 << ") by a killing store [" << KillingOff << ", "
358 << int64_t(KillingOff + KillingSize) << ")\n");
359 // TODO: Maybe come up with a better name?
360 return OW_PartialEarlierWithFullLater;
361 }
362
363 // Another interesting case is if the killing store overwrites the end of the
364 // dead store.
365 //
366 // |--dead--|
367 // |-- killing --|
368 //
369 // In this case we may want to trim the size of dead store to avoid
370 // generating stores to addresses which will definitely be overwritten killing
371 // store.
372 if (!EnablePartialOverwriteTracking &&
373 (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) &&
374 int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize)))
375 return OW_End;
376
377 // Finally, we also need to check if the killing store overwrites the
378 // beginning of the dead store.
379 //
380 // |--dead--|
381 // |-- killing --|
382 //
383 // In this case we may want to move the destination address and trim the size
384 // of dead store to avoid generating stores to addresses which will definitely
385 // be overwritten killing store.
386 if (!EnablePartialOverwriteTracking &&
387 (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) {
388 assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) &&
389 "Expect to be handled as OW_Complete");
390 return OW_Begin;
391 }
392 // Otherwise, they don't completely overlap.
393 return OW_Unknown;
394 }
395
396 /// Returns true if the memory which is accessed by the second instruction is not
397 /// modified between the first and the second instruction.
398 /// Precondition: Second instruction must be dominated by the first
399 /// instruction.
400 static bool
memoryIsNotModifiedBetween(Instruction * FirstI,Instruction * SecondI,BatchAAResults & AA,const DataLayout & DL,DominatorTree * DT)401 memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI,
402 BatchAAResults &AA, const DataLayout &DL,
403 DominatorTree *DT) {
404 // Do a backwards scan through the CFG from SecondI to FirstI. Look for
405 // instructions which can modify the memory location accessed by SecondI.
406 //
407 // While doing the walk keep track of the address to check. It might be
408 // different in different basic blocks due to PHI translation.
409 using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>;
410 SmallVector<BlockAddressPair, 16> WorkList;
411 // Keep track of the address we visited each block with. Bail out if we
412 // visit a block with different addresses.
413 DenseMap<BasicBlock *, Value *> Visited;
414
415 BasicBlock::iterator FirstBBI(FirstI);
416 ++FirstBBI;
417 BasicBlock::iterator SecondBBI(SecondI);
418 BasicBlock *FirstBB = FirstI->getParent();
419 BasicBlock *SecondBB = SecondI->getParent();
420 MemoryLocation MemLoc;
421 if (auto *MemSet = dyn_cast<MemSetInst>(SecondI))
422 MemLoc = MemoryLocation::getForDest(MemSet);
423 else
424 MemLoc = MemoryLocation::get(SecondI);
425
426 auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr);
427
428 // Start checking the SecondBB.
429 WorkList.push_back(
430 std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr)));
431 bool isFirstBlock = true;
432
433 // Check all blocks going backward until we reach the FirstBB.
434 while (!WorkList.empty()) {
435 BlockAddressPair Current = WorkList.pop_back_val();
436 BasicBlock *B = Current.first;
437 PHITransAddr &Addr = Current.second;
438 Value *Ptr = Addr.getAddr();
439
440 // Ignore instructions before FirstI if this is the FirstBB.
441 BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
442
443 BasicBlock::iterator EI;
444 if (isFirstBlock) {
445 // Ignore instructions after SecondI if this is the first visit of SecondBB.
446 assert(B == SecondBB && "first block is not the store block");
447 EI = SecondBBI;
448 isFirstBlock = false;
449 } else {
450 // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
451 // In this case we also have to look at instructions after SecondI.
452 EI = B->end();
453 }
454 for (; BI != EI; ++BI) {
455 Instruction *I = &*BI;
456 if (I->mayWriteToMemory() && I != SecondI)
457 if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr))))
458 return false;
459 }
460 if (B != FirstBB) {
461 assert(B != &FirstBB->getParent()->getEntryBlock() &&
462 "Should not hit the entry block because SI must be dominated by LI");
463 for (BasicBlock *Pred : predecessors(B)) {
464 PHITransAddr PredAddr = Addr;
465 if (PredAddr.NeedsPHITranslationFromBlock(B)) {
466 if (!PredAddr.IsPotentiallyPHITranslatable())
467 return false;
468 if (PredAddr.PHITranslateValue(B, Pred, DT, false))
469 return false;
470 }
471 Value *TranslatedPtr = PredAddr.getAddr();
472 auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr));
473 if (!Inserted.second) {
474 // We already visited this block before. If it was with a different
475 // address - bail out!
476 if (TranslatedPtr != Inserted.first->second)
477 return false;
478 // ... otherwise just skip it.
479 continue;
480 }
481 WorkList.push_back(std::make_pair(Pred, PredAddr));
482 }
483 }
484 }
485 return true;
486 }
487
shortenAssignment(Instruction * Inst,uint64_t OldOffsetInBits,uint64_t OldSizeInBits,uint64_t NewSizeInBits,bool IsOverwriteEnd)488 static void shortenAssignment(Instruction *Inst, uint64_t OldOffsetInBits,
489 uint64_t OldSizeInBits, uint64_t NewSizeInBits,
490 bool IsOverwriteEnd) {
491 DIExpression::FragmentInfo DeadFragment;
492 DeadFragment.SizeInBits = OldSizeInBits - NewSizeInBits;
493 DeadFragment.OffsetInBits =
494 OldOffsetInBits + (IsOverwriteEnd ? NewSizeInBits : 0);
495
496 auto CreateDeadFragExpr = [Inst, DeadFragment]() {
497 // FIXME: This should be using the DIExpression in the Alloca's dbg.assign
498 // for the variable, since that could also contain a fragment?
499 return *DIExpression::createFragmentExpression(
500 DIExpression::get(Inst->getContext(), std::nullopt),
501 DeadFragment.OffsetInBits, DeadFragment.SizeInBits);
502 };
503
504 // A DIAssignID to use so that the inserted dbg.assign intrinsics do not
505 // link to any instructions. Created in the loop below (once).
506 DIAssignID *LinkToNothing = nullptr;
507
508 // Insert an unlinked dbg.assign intrinsic for the dead fragment after each
509 // overlapping dbg.assign intrinsic.
510 for (auto *DAI : at::getAssignmentMarkers(Inst)) {
511 if (auto FragInfo = DAI->getExpression()->getFragmentInfo()) {
512 if (!DIExpression::fragmentsOverlap(*FragInfo, DeadFragment))
513 continue;
514 }
515
516 // Fragments overlap: insert a new dbg.assign for this dead part.
517 auto *NewAssign = cast<DbgAssignIntrinsic>(DAI->clone());
518 NewAssign->insertAfter(DAI);
519 if (!LinkToNothing)
520 LinkToNothing = DIAssignID::getDistinct(Inst->getContext());
521 NewAssign->setAssignId(LinkToNothing);
522 NewAssign->setExpression(CreateDeadFragExpr());
523 NewAssign->setKillAddress();
524 }
525 }
526
tryToShorten(Instruction * DeadI,int64_t & DeadStart,uint64_t & DeadSize,int64_t KillingStart,uint64_t KillingSize,bool IsOverwriteEnd)527 static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart,
528 uint64_t &DeadSize, int64_t KillingStart,
529 uint64_t KillingSize, bool IsOverwriteEnd) {
530 auto *DeadIntrinsic = cast<AnyMemIntrinsic>(DeadI);
531 Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne();
532
533 // We assume that memet/memcpy operates in chunks of the "largest" native
534 // type size and aligned on the same value. That means optimal start and size
535 // of memset/memcpy should be modulo of preferred alignment of that type. That
536 // is it there is no any sense in trying to reduce store size any further
537 // since any "extra" stores comes for free anyway.
538 // On the other hand, maximum alignment we can achieve is limited by alignment
539 // of initial store.
540
541 // TODO: Limit maximum alignment by preferred (or abi?) alignment of the
542 // "largest" native type.
543 // Note: What is the proper way to get that value?
544 // Should TargetTransformInfo::getRegisterBitWidth be used or anything else?
545 // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign);
546
547 int64_t ToRemoveStart = 0;
548 uint64_t ToRemoveSize = 0;
549 // Compute start and size of the region to remove. Make sure 'PrefAlign' is
550 // maintained on the remaining store.
551 if (IsOverwriteEnd) {
552 // Calculate required adjustment for 'KillingStart' in order to keep
553 // remaining store size aligned on 'PerfAlign'.
554 uint64_t Off =
555 offsetToAlignment(uint64_t(KillingStart - DeadStart), PrefAlign);
556 ToRemoveStart = KillingStart + Off;
557 if (DeadSize <= uint64_t(ToRemoveStart - DeadStart))
558 return false;
559 ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart);
560 } else {
561 ToRemoveStart = DeadStart;
562 assert(KillingSize >= uint64_t(DeadStart - KillingStart) &&
563 "Not overlapping accesses?");
564 ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart);
565 // Calculate required adjustment for 'ToRemoveSize'in order to keep
566 // start of the remaining store aligned on 'PerfAlign'.
567 uint64_t Off = offsetToAlignment(ToRemoveSize, PrefAlign);
568 if (Off != 0) {
569 if (ToRemoveSize <= (PrefAlign.value() - Off))
570 return false;
571 ToRemoveSize -= PrefAlign.value() - Off;
572 }
573 assert(isAligned(PrefAlign, ToRemoveSize) &&
574 "Should preserve selected alignment");
575 }
576
577 assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove");
578 assert(DeadSize > ToRemoveSize && "Can't remove more than original size");
579
580 uint64_t NewSize = DeadSize - ToRemoveSize;
581 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(DeadI)) {
582 // When shortening an atomic memory intrinsic, the newly shortened
583 // length must remain an integer multiple of the element size.
584 const uint32_t ElementSize = AMI->getElementSizeInBytes();
585 if (0 != NewSize % ElementSize)
586 return false;
587 }
588
589 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW "
590 << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI
591 << "\n KILLER [" << ToRemoveStart << ", "
592 << int64_t(ToRemoveStart + ToRemoveSize) << ")\n");
593
594 Value *DeadWriteLength = DeadIntrinsic->getLength();
595 Value *TrimmedLength = ConstantInt::get(DeadWriteLength->getType(), NewSize);
596 DeadIntrinsic->setLength(TrimmedLength);
597 DeadIntrinsic->setDestAlignment(PrefAlign);
598
599 if (!IsOverwriteEnd) {
600 Value *OrigDest = DeadIntrinsic->getRawDest();
601 Type *Int8PtrTy =
602 Type::getInt8PtrTy(DeadIntrinsic->getContext(),
603 OrigDest->getType()->getPointerAddressSpace());
604 Value *Dest = OrigDest;
605 if (OrigDest->getType() != Int8PtrTy)
606 Dest = CastInst::CreatePointerCast(OrigDest, Int8PtrTy, "", DeadI);
607 Value *Indices[1] = {
608 ConstantInt::get(DeadWriteLength->getType(), ToRemoveSize)};
609 Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds(
610 Type::getInt8Ty(DeadIntrinsic->getContext()), Dest, Indices, "", DeadI);
611 NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc());
612 if (NewDestGEP->getType() != OrigDest->getType())
613 NewDestGEP = CastInst::CreatePointerCast(NewDestGEP, OrigDest->getType(),
614 "", DeadI);
615 DeadIntrinsic->setDest(NewDestGEP);
616 }
617
618 // Update attached dbg.assign intrinsics. Assume 8-bit byte.
619 shortenAssignment(DeadI, DeadStart * 8, DeadSize * 8, NewSize * 8,
620 IsOverwriteEnd);
621
622 // Finally update start and size of dead access.
623 if (!IsOverwriteEnd)
624 DeadStart += ToRemoveSize;
625 DeadSize = NewSize;
626
627 return true;
628 }
629
tryToShortenEnd(Instruction * DeadI,OverlapIntervalsTy & IntervalMap,int64_t & DeadStart,uint64_t & DeadSize)630 static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap,
631 int64_t &DeadStart, uint64_t &DeadSize) {
632 if (IntervalMap.empty() || !isShortenableAtTheEnd(DeadI))
633 return false;
634
635 OverlapIntervalsTy::iterator OII = --IntervalMap.end();
636 int64_t KillingStart = OII->second;
637 uint64_t KillingSize = OII->first - KillingStart;
638
639 assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
640
641 if (KillingStart > DeadStart &&
642 // Note: "KillingStart - KillingStart" is known to be positive due to
643 // preceding check.
644 (uint64_t)(KillingStart - DeadStart) < DeadSize &&
645 // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to
646 // be non negative due to preceding checks.
647 KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) {
648 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
649 true)) {
650 IntervalMap.erase(OII);
651 return true;
652 }
653 }
654 return false;
655 }
656
tryToShortenBegin(Instruction * DeadI,OverlapIntervalsTy & IntervalMap,int64_t & DeadStart,uint64_t & DeadSize)657 static bool tryToShortenBegin(Instruction *DeadI,
658 OverlapIntervalsTy &IntervalMap,
659 int64_t &DeadStart, uint64_t &DeadSize) {
660 if (IntervalMap.empty() || !isShortenableAtTheBeginning(DeadI))
661 return false;
662
663 OverlapIntervalsTy::iterator OII = IntervalMap.begin();
664 int64_t KillingStart = OII->second;
665 uint64_t KillingSize = OII->first - KillingStart;
666
667 assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
668
669 if (KillingStart <= DeadStart &&
670 // Note: "DeadStart - KillingStart" is known to be non negative due to
671 // preceding check.
672 KillingSize > (uint64_t)(DeadStart - KillingStart)) {
673 // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to
674 // be positive due to preceding checks.
675 assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize &&
676 "Should have been handled as OW_Complete");
677 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
678 false)) {
679 IntervalMap.erase(OII);
680 return true;
681 }
682 }
683 return false;
684 }
685
686 static Constant *
tryToMergePartialOverlappingStores(StoreInst * KillingI,StoreInst * DeadI,int64_t KillingOffset,int64_t DeadOffset,const DataLayout & DL,BatchAAResults & AA,DominatorTree * DT)687 tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI,
688 int64_t KillingOffset, int64_t DeadOffset,
689 const DataLayout &DL, BatchAAResults &AA,
690 DominatorTree *DT) {
691
692 if (DeadI && isa<ConstantInt>(DeadI->getValueOperand()) &&
693 DL.typeSizeEqualsStoreSize(DeadI->getValueOperand()->getType()) &&
694 KillingI && isa<ConstantInt>(KillingI->getValueOperand()) &&
695 DL.typeSizeEqualsStoreSize(KillingI->getValueOperand()->getType()) &&
696 memoryIsNotModifiedBetween(DeadI, KillingI, AA, DL, DT)) {
697 // If the store we find is:
698 // a) partially overwritten by the store to 'Loc'
699 // b) the killing store is fully contained in the dead one and
700 // c) they both have a constant value
701 // d) none of the two stores need padding
702 // Merge the two stores, replacing the dead store's value with a
703 // merge of both values.
704 // TODO: Deal with other constant types (vectors, etc), and probably
705 // some mem intrinsics (if needed)
706
707 APInt DeadValue = cast<ConstantInt>(DeadI->getValueOperand())->getValue();
708 APInt KillingValue =
709 cast<ConstantInt>(KillingI->getValueOperand())->getValue();
710 unsigned KillingBits = KillingValue.getBitWidth();
711 assert(DeadValue.getBitWidth() > KillingValue.getBitWidth());
712 KillingValue = KillingValue.zext(DeadValue.getBitWidth());
713
714 // Offset of the smaller store inside the larger store
715 unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8;
716 unsigned LShiftAmount =
717 DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits
718 : BitOffsetDiff;
719 APInt Mask = APInt::getBitsSet(DeadValue.getBitWidth(), LShiftAmount,
720 LShiftAmount + KillingBits);
721 // Clear the bits we'll be replacing, then OR with the smaller
722 // store, shifted appropriately.
723 APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount);
724 LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Dead: " << *DeadI
725 << "\n Killing: " << *KillingI
726 << "\n Merged Value: " << Merged << '\n');
727 return ConstantInt::get(DeadI->getValueOperand()->getType(), Merged);
728 }
729 return nullptr;
730 }
731
732 namespace {
733 // Returns true if \p I is an intrisnic that does not read or write memory.
isNoopIntrinsic(Instruction * I)734 bool isNoopIntrinsic(Instruction *I) {
735 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
736 switch (II->getIntrinsicID()) {
737 case Intrinsic::lifetime_start:
738 case Intrinsic::lifetime_end:
739 case Intrinsic::invariant_end:
740 case Intrinsic::launder_invariant_group:
741 case Intrinsic::assume:
742 return true;
743 case Intrinsic::dbg_addr:
744 case Intrinsic::dbg_declare:
745 case Intrinsic::dbg_label:
746 case Intrinsic::dbg_value:
747 llvm_unreachable("Intrinsic should not be modeled in MemorySSA");
748 default:
749 return false;
750 }
751 }
752 return false;
753 }
754
755 // Check if we can ignore \p D for DSE.
canSkipDef(MemoryDef * D,bool DefVisibleToCaller)756 bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) {
757 Instruction *DI = D->getMemoryInst();
758 // Calls that only access inaccessible memory cannot read or write any memory
759 // locations we consider for elimination.
760 if (auto *CB = dyn_cast<CallBase>(DI))
761 if (CB->onlyAccessesInaccessibleMemory())
762 return true;
763
764 // We can eliminate stores to locations not visible to the caller across
765 // throwing instructions.
766 if (DI->mayThrow() && !DefVisibleToCaller)
767 return true;
768
769 // We can remove the dead stores, irrespective of the fence and its ordering
770 // (release/acquire/seq_cst). Fences only constraints the ordering of
771 // already visible stores, it does not make a store visible to other
772 // threads. So, skipping over a fence does not change a store from being
773 // dead.
774 if (isa<FenceInst>(DI))
775 return true;
776
777 // Skip intrinsics that do not really read or modify memory.
778 if (isNoopIntrinsic(DI))
779 return true;
780
781 return false;
782 }
783
784 struct DSEState {
785 Function &F;
786 AliasAnalysis &AA;
787 EarliestEscapeInfo EI;
788
789 /// The single BatchAA instance that is used to cache AA queries. It will
790 /// not be invalidated over the whole run. This is safe, because:
791 /// 1. Only memory writes are removed, so the alias cache for memory
792 /// locations remains valid.
793 /// 2. No new instructions are added (only instructions removed), so cached
794 /// information for a deleted value cannot be accessed by a re-used new
795 /// value pointer.
796 BatchAAResults BatchAA;
797
798 MemorySSA &MSSA;
799 DominatorTree &DT;
800 PostDominatorTree &PDT;
801 const TargetLibraryInfo &TLI;
802 const DataLayout &DL;
803 const LoopInfo &LI;
804
805 // Whether the function contains any irreducible control flow, useful for
806 // being accurately able to detect loops.
807 bool ContainsIrreducibleLoops;
808
809 // All MemoryDefs that potentially could kill other MemDefs.
810 SmallVector<MemoryDef *, 64> MemDefs;
811 // Any that should be skipped as they are already deleted
812 SmallPtrSet<MemoryAccess *, 4> SkipStores;
813 // Keep track whether a given object is captured before return or not.
814 DenseMap<const Value *, bool> CapturedBeforeReturn;
815 // Keep track of all of the objects that are invisible to the caller after
816 // the function returns.
817 DenseMap<const Value *, bool> InvisibleToCallerAfterRet;
818 // Keep track of blocks with throwing instructions not modeled in MemorySSA.
819 SmallPtrSet<BasicBlock *, 16> ThrowingBlocks;
820 // Post-order numbers for each basic block. Used to figure out if memory
821 // accesses are executed before another access.
822 DenseMap<BasicBlock *, unsigned> PostOrderNumbers;
823 // Values that are only used with assumes. Used to refine pointer escape
824 // analysis.
825 SmallPtrSet<const Value *, 32> EphValues;
826
827 /// Keep track of instructions (partly) overlapping with killing MemoryDefs per
828 /// basic block.
829 MapVector<BasicBlock *, InstOverlapIntervalsTy> IOLs;
830 // Check if there are root nodes that are terminated by UnreachableInst.
831 // Those roots pessimize post-dominance queries. If there are such roots,
832 // fall back to CFG scan starting from all non-unreachable roots.
833 bool AnyUnreachableExit;
834
835 // Whether or not we should iterate on removing dead stores at the end of the
836 // function due to removing a store causing a previously captured pointer to
837 // no longer be captured.
838 bool ShouldIterateEndOfFunctionDSE;
839
840 // Class contains self-reference, make sure it's not copied/moved.
841 DSEState(const DSEState &) = delete;
842 DSEState &operator=(const DSEState &) = delete;
843
DSEState__anonb46230070311::DSEState844 DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT,
845 PostDominatorTree &PDT, AssumptionCache &AC,
846 const TargetLibraryInfo &TLI, const LoopInfo &LI)
847 : F(F), AA(AA), EI(DT, LI, EphValues), BatchAA(AA, &EI), MSSA(MSSA),
848 DT(DT), PDT(PDT), TLI(TLI), DL(F.getParent()->getDataLayout()), LI(LI) {
849 // Collect blocks with throwing instructions not modeled in MemorySSA and
850 // alloc-like objects.
851 unsigned PO = 0;
852 for (BasicBlock *BB : post_order(&F)) {
853 PostOrderNumbers[BB] = PO++;
854 for (Instruction &I : *BB) {
855 MemoryAccess *MA = MSSA.getMemoryAccess(&I);
856 if (I.mayThrow() && !MA)
857 ThrowingBlocks.insert(I.getParent());
858
859 auto *MD = dyn_cast_or_null<MemoryDef>(MA);
860 if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit &&
861 (getLocForWrite(&I) || isMemTerminatorInst(&I)))
862 MemDefs.push_back(MD);
863 }
864 }
865
866 // Treat byval or inalloca arguments the same as Allocas, stores to them are
867 // dead at the end of the function.
868 for (Argument &AI : F.args())
869 if (AI.hasPassPointeeByValueCopyAttr())
870 InvisibleToCallerAfterRet.insert({&AI, true});
871
872 // Collect whether there is any irreducible control flow in the function.
873 ContainsIrreducibleLoops = mayContainIrreducibleControl(F, &LI);
874
875 AnyUnreachableExit = any_of(PDT.roots(), [](const BasicBlock *E) {
876 return isa<UnreachableInst>(E->getTerminator());
877 });
878
879 CodeMetrics::collectEphemeralValues(&F, &AC, EphValues);
880 }
881
strengthenLocationSize__anonb46230070311::DSEState882 LocationSize strengthenLocationSize(const Instruction *I,
883 LocationSize Size) const {
884 if (auto *CB = dyn_cast<CallBase>(I)) {
885 LibFunc F;
886 if (TLI.getLibFunc(*CB, F) && TLI.has(F) &&
887 (F == LibFunc_memset_chk || F == LibFunc_memcpy_chk)) {
888 // Use the precise location size specified by the 3rd argument
889 // for determining KillingI overwrites DeadLoc if it is a memset_chk
890 // instruction. memset_chk will write either the amount specified as 3rd
891 // argument or the function will immediately abort and exit the program.
892 // NOTE: AA may determine NoAlias if it can prove that the access size
893 // is larger than the allocation size due to that being UB. To avoid
894 // returning potentially invalid NoAlias results by AA, limit the use of
895 // the precise location size to isOverwrite.
896 if (const auto *Len = dyn_cast<ConstantInt>(CB->getArgOperand(2)))
897 return LocationSize::precise(Len->getZExtValue());
898 }
899 }
900 return Size;
901 }
902
903 /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p
904 /// KillingI instruction) completely overwrites a store to the 'DeadLoc'
905 /// location (by \p DeadI instruction).
906 /// Return OW_MaybePartial if \p KillingI does not completely overwrite
907 /// \p DeadI, but they both write to the same underlying object. In that
908 /// case, use isPartialOverwrite to check if \p KillingI partially overwrites
909 /// \p DeadI. Returns 'OR_None' if \p KillingI is known to not overwrite the
910 /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined.
isOverwrite__anonb46230070311::DSEState911 OverwriteResult isOverwrite(const Instruction *KillingI,
912 const Instruction *DeadI,
913 const MemoryLocation &KillingLoc,
914 const MemoryLocation &DeadLoc,
915 int64_t &KillingOff, int64_t &DeadOff) {
916 // AliasAnalysis does not always account for loops. Limit overwrite checks
917 // to dependencies for which we can guarantee they are independent of any
918 // loops they are in.
919 if (!isGuaranteedLoopIndependent(DeadI, KillingI, DeadLoc))
920 return OW_Unknown;
921
922 LocationSize KillingLocSize =
923 strengthenLocationSize(KillingI, KillingLoc.Size);
924 const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts();
925 const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts();
926 const Value *DeadUndObj = getUnderlyingObject(DeadPtr);
927 const Value *KillingUndObj = getUnderlyingObject(KillingPtr);
928
929 // Check whether the killing store overwrites the whole object, in which
930 // case the size/offset of the dead store does not matter.
931 if (DeadUndObj == KillingUndObj && KillingLocSize.isPrecise()) {
932 uint64_t KillingUndObjSize = getPointerSize(KillingUndObj, DL, TLI, &F);
933 if (KillingUndObjSize != MemoryLocation::UnknownSize &&
934 KillingUndObjSize == KillingLocSize.getValue())
935 return OW_Complete;
936 }
937
938 // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
939 // get imprecise values here, though (except for unknown sizes).
940 if (!KillingLocSize.isPrecise() || !DeadLoc.Size.isPrecise()) {
941 // In case no constant size is known, try to an IR values for the number
942 // of bytes written and check if they match.
943 const auto *KillingMemI = dyn_cast<MemIntrinsic>(KillingI);
944 const auto *DeadMemI = dyn_cast<MemIntrinsic>(DeadI);
945 if (KillingMemI && DeadMemI) {
946 const Value *KillingV = KillingMemI->getLength();
947 const Value *DeadV = DeadMemI->getLength();
948 if (KillingV == DeadV && BatchAA.isMustAlias(DeadLoc, KillingLoc))
949 return OW_Complete;
950 }
951
952 // Masked stores have imprecise locations, but we can reason about them
953 // to some extent.
954 return isMaskedStoreOverwrite(KillingI, DeadI, BatchAA);
955 }
956
957 const uint64_t KillingSize = KillingLocSize.getValue();
958 const uint64_t DeadSize = DeadLoc.Size.getValue();
959
960 // Query the alias information
961 AliasResult AAR = BatchAA.alias(KillingLoc, DeadLoc);
962
963 // If the start pointers are the same, we just have to compare sizes to see if
964 // the killing store was larger than the dead store.
965 if (AAR == AliasResult::MustAlias) {
966 // Make sure that the KillingSize size is >= the DeadSize size.
967 if (KillingSize >= DeadSize)
968 return OW_Complete;
969 }
970
971 // If we hit a partial alias we may have a full overwrite
972 if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) {
973 int32_t Off = AAR.getOffset();
974 if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize)
975 return OW_Complete;
976 }
977
978 // If we can't resolve the same pointers to the same object, then we can't
979 // analyze them at all.
980 if (DeadUndObj != KillingUndObj) {
981 // Non aliasing stores to different objects don't overlap. Note that
982 // if the killing store is known to overwrite whole object (out of
983 // bounds access overwrites whole object as well) then it is assumed to
984 // completely overwrite any store to the same object even if they don't
985 // actually alias (see next check).
986 if (AAR == AliasResult::NoAlias)
987 return OW_None;
988 return OW_Unknown;
989 }
990
991 // Okay, we have stores to two completely different pointers. Try to
992 // decompose the pointer into a "base + constant_offset" form. If the base
993 // pointers are equal, then we can reason about the two stores.
994 DeadOff = 0;
995 KillingOff = 0;
996 const Value *DeadBasePtr =
997 GetPointerBaseWithConstantOffset(DeadPtr, DeadOff, DL);
998 const Value *KillingBasePtr =
999 GetPointerBaseWithConstantOffset(KillingPtr, KillingOff, DL);
1000
1001 // If the base pointers still differ, we have two completely different
1002 // stores.
1003 if (DeadBasePtr != KillingBasePtr)
1004 return OW_Unknown;
1005
1006 // The killing access completely overlaps the dead store if and only if
1007 // both start and end of the dead one is "inside" the killing one:
1008 // |<->|--dead--|<->|
1009 // |-----killing------|
1010 // Accesses may overlap if and only if start of one of them is "inside"
1011 // another one:
1012 // |<->|--dead--|<-------->|
1013 // |-------killing--------|
1014 // OR
1015 // |-------dead-------|
1016 // |<->|---killing---|<----->|
1017 //
1018 // We have to be careful here as *Off is signed while *.Size is unsigned.
1019
1020 // Check if the dead access starts "not before" the killing one.
1021 if (DeadOff >= KillingOff) {
1022 // If the dead access ends "not after" the killing access then the
1023 // dead one is completely overwritten by the killing one.
1024 if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize)
1025 return OW_Complete;
1026 // If start of the dead access is "before" end of the killing access
1027 // then accesses overlap.
1028 else if ((uint64_t)(DeadOff - KillingOff) < KillingSize)
1029 return OW_MaybePartial;
1030 }
1031 // If start of the killing access is "before" end of the dead access then
1032 // accesses overlap.
1033 else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) {
1034 return OW_MaybePartial;
1035 }
1036
1037 // Can reach here only if accesses are known not to overlap.
1038 return OW_None;
1039 }
1040
isInvisibleToCallerAfterRet__anonb46230070311::DSEState1041 bool isInvisibleToCallerAfterRet(const Value *V) {
1042 if (isa<AllocaInst>(V))
1043 return true;
1044 auto I = InvisibleToCallerAfterRet.insert({V, false});
1045 if (I.second) {
1046 if (!isInvisibleToCallerOnUnwind(V)) {
1047 I.first->second = false;
1048 } else if (isNoAliasCall(V)) {
1049 I.first->second = !PointerMayBeCaptured(V, true, false, EphValues);
1050 }
1051 }
1052 return I.first->second;
1053 }
1054
isInvisibleToCallerOnUnwind__anonb46230070311::DSEState1055 bool isInvisibleToCallerOnUnwind(const Value *V) {
1056 bool RequiresNoCaptureBeforeUnwind;
1057 if (!isNotVisibleOnUnwind(V, RequiresNoCaptureBeforeUnwind))
1058 return false;
1059 if (!RequiresNoCaptureBeforeUnwind)
1060 return true;
1061
1062 auto I = CapturedBeforeReturn.insert({V, true});
1063 if (I.second)
1064 // NOTE: This could be made more precise by PointerMayBeCapturedBefore
1065 // with the killing MemoryDef. But we refrain from doing so for now to
1066 // limit compile-time and this does not cause any changes to the number
1067 // of stores removed on a large test set in practice.
1068 I.first->second = PointerMayBeCaptured(V, false, true, EphValues);
1069 return !I.first->second;
1070 }
1071
getLocForWrite__anonb46230070311::DSEState1072 std::optional<MemoryLocation> getLocForWrite(Instruction *I) const {
1073 if (!I->mayWriteToMemory())
1074 return std::nullopt;
1075
1076 if (auto *CB = dyn_cast<CallBase>(I))
1077 return MemoryLocation::getForDest(CB, TLI);
1078
1079 return MemoryLocation::getOrNone(I);
1080 }
1081
1082 /// Assuming this instruction has a dead analyzable write, can we delete
1083 /// this instruction?
isRemovable__anonb46230070311::DSEState1084 bool isRemovable(Instruction *I) {
1085 assert(getLocForWrite(I) && "Must have analyzable write");
1086
1087 // Don't remove volatile/atomic stores.
1088 if (StoreInst *SI = dyn_cast<StoreInst>(I))
1089 return SI->isUnordered();
1090
1091 if (auto *CB = dyn_cast<CallBase>(I)) {
1092 // Don't remove volatile memory intrinsics.
1093 if (auto *MI = dyn_cast<MemIntrinsic>(CB))
1094 return !MI->isVolatile();
1095
1096 // Never remove dead lifetime intrinsics, e.g. because they are followed
1097 // by a free.
1098 if (CB->isLifetimeStartOrEnd())
1099 return false;
1100
1101 return CB->use_empty() && CB->willReturn() && CB->doesNotThrow() &&
1102 !CB->isTerminator();
1103 }
1104
1105 return false;
1106 }
1107
1108 /// Returns true if \p UseInst completely overwrites \p DefLoc
1109 /// (stored by \p DefInst).
isCompleteOverwrite__anonb46230070311::DSEState1110 bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst,
1111 Instruction *UseInst) {
1112 // UseInst has a MemoryDef associated in MemorySSA. It's possible for a
1113 // MemoryDef to not write to memory, e.g. a volatile load is modeled as a
1114 // MemoryDef.
1115 if (!UseInst->mayWriteToMemory())
1116 return false;
1117
1118 if (auto *CB = dyn_cast<CallBase>(UseInst))
1119 if (CB->onlyAccessesInaccessibleMemory())
1120 return false;
1121
1122 int64_t InstWriteOffset, DepWriteOffset;
1123 if (auto CC = getLocForWrite(UseInst))
1124 return isOverwrite(UseInst, DefInst, *CC, DefLoc, InstWriteOffset,
1125 DepWriteOffset) == OW_Complete;
1126 return false;
1127 }
1128
1129 /// Returns true if \p Def is not read before returning from the function.
isWriteAtEndOfFunction__anonb46230070311::DSEState1130 bool isWriteAtEndOfFunction(MemoryDef *Def) {
1131 LLVM_DEBUG(dbgs() << " Check if def " << *Def << " ("
1132 << *Def->getMemoryInst()
1133 << ") is at the end the function \n");
1134
1135 auto MaybeLoc = getLocForWrite(Def->getMemoryInst());
1136 if (!MaybeLoc) {
1137 LLVM_DEBUG(dbgs() << " ... could not get location for write.\n");
1138 return false;
1139 }
1140
1141 SmallVector<MemoryAccess *, 4> WorkList;
1142 SmallPtrSet<MemoryAccess *, 8> Visited;
1143 auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) {
1144 if (!Visited.insert(Acc).second)
1145 return;
1146 for (Use &U : Acc->uses())
1147 WorkList.push_back(cast<MemoryAccess>(U.getUser()));
1148 };
1149 PushMemUses(Def);
1150 for (unsigned I = 0; I < WorkList.size(); I++) {
1151 if (WorkList.size() >= MemorySSAScanLimit) {
1152 LLVM_DEBUG(dbgs() << " ... hit exploration limit.\n");
1153 return false;
1154 }
1155
1156 MemoryAccess *UseAccess = WorkList[I];
1157 if (isa<MemoryPhi>(UseAccess)) {
1158 // AliasAnalysis does not account for loops. Limit elimination to
1159 // candidates for which we can guarantee they always store to the same
1160 // memory location.
1161 if (!isGuaranteedLoopInvariant(MaybeLoc->Ptr))
1162 return false;
1163
1164 PushMemUses(cast<MemoryPhi>(UseAccess));
1165 continue;
1166 }
1167 // TODO: Checking for aliasing is expensive. Consider reducing the amount
1168 // of times this is called and/or caching it.
1169 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
1170 if (isReadClobber(*MaybeLoc, UseInst)) {
1171 LLVM_DEBUG(dbgs() << " ... hit read clobber " << *UseInst << ".\n");
1172 return false;
1173 }
1174
1175 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess))
1176 PushMemUses(UseDef);
1177 }
1178 return true;
1179 }
1180
1181 /// If \p I is a memory terminator like llvm.lifetime.end or free, return a
1182 /// pair with the MemoryLocation terminated by \p I and a boolean flag
1183 /// indicating whether \p I is a free-like call.
1184 std::optional<std::pair<MemoryLocation, bool>>
getLocForTerminator__anonb46230070311::DSEState1185 getLocForTerminator(Instruction *I) const {
1186 uint64_t Len;
1187 Value *Ptr;
1188 if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len),
1189 m_Value(Ptr))))
1190 return {std::make_pair(MemoryLocation(Ptr, Len), false)};
1191
1192 if (auto *CB = dyn_cast<CallBase>(I)) {
1193 if (Value *FreedOp = getFreedOperand(CB, &TLI))
1194 return {std::make_pair(MemoryLocation::getAfter(FreedOp), true)};
1195 }
1196
1197 return std::nullopt;
1198 }
1199
1200 /// Returns true if \p I is a memory terminator instruction like
1201 /// llvm.lifetime.end or free.
isMemTerminatorInst__anonb46230070311::DSEState1202 bool isMemTerminatorInst(Instruction *I) const {
1203 auto *CB = dyn_cast<CallBase>(I);
1204 return CB && (CB->getIntrinsicID() == Intrinsic::lifetime_end ||
1205 getFreedOperand(CB, &TLI) != nullptr);
1206 }
1207
1208 /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from
1209 /// instruction \p AccessI.
isMemTerminator__anonb46230070311::DSEState1210 bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI,
1211 Instruction *MaybeTerm) {
1212 std::optional<std::pair<MemoryLocation, bool>> MaybeTermLoc =
1213 getLocForTerminator(MaybeTerm);
1214
1215 if (!MaybeTermLoc)
1216 return false;
1217
1218 // If the terminator is a free-like call, all accesses to the underlying
1219 // object can be considered terminated.
1220 if (getUnderlyingObject(Loc.Ptr) !=
1221 getUnderlyingObject(MaybeTermLoc->first.Ptr))
1222 return false;
1223
1224 auto TermLoc = MaybeTermLoc->first;
1225 if (MaybeTermLoc->second) {
1226 const Value *LocUO = getUnderlyingObject(Loc.Ptr);
1227 return BatchAA.isMustAlias(TermLoc.Ptr, LocUO);
1228 }
1229 int64_t InstWriteOffset = 0;
1230 int64_t DepWriteOffset = 0;
1231 return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, InstWriteOffset,
1232 DepWriteOffset) == OW_Complete;
1233 }
1234
1235 // Returns true if \p Use may read from \p DefLoc.
isReadClobber__anonb46230070311::DSEState1236 bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) {
1237 if (isNoopIntrinsic(UseInst))
1238 return false;
1239
1240 // Monotonic or weaker atomic stores can be re-ordered and do not need to be
1241 // treated as read clobber.
1242 if (auto SI = dyn_cast<StoreInst>(UseInst))
1243 return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic);
1244
1245 if (!UseInst->mayReadFromMemory())
1246 return false;
1247
1248 if (auto *CB = dyn_cast<CallBase>(UseInst))
1249 if (CB->onlyAccessesInaccessibleMemory())
1250 return false;
1251
1252 return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc));
1253 }
1254
1255 /// Returns true if a dependency between \p Current and \p KillingDef is
1256 /// guaranteed to be loop invariant for the loops that they are in. Either
1257 /// because they are known to be in the same block, in the same loop level or
1258 /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation
1259 /// during execution of the containing function.
isGuaranteedLoopIndependent__anonb46230070311::DSEState1260 bool isGuaranteedLoopIndependent(const Instruction *Current,
1261 const Instruction *KillingDef,
1262 const MemoryLocation &CurrentLoc) {
1263 // If the dependency is within the same block or loop level (being careful
1264 // of irreducible loops), we know that AA will return a valid result for the
1265 // memory dependency. (Both at the function level, outside of any loop,
1266 // would also be valid but we currently disable that to limit compile time).
1267 if (Current->getParent() == KillingDef->getParent())
1268 return true;
1269 const Loop *CurrentLI = LI.getLoopFor(Current->getParent());
1270 if (!ContainsIrreducibleLoops && CurrentLI &&
1271 CurrentLI == LI.getLoopFor(KillingDef->getParent()))
1272 return true;
1273 // Otherwise check the memory location is invariant to any loops.
1274 return isGuaranteedLoopInvariant(CurrentLoc.Ptr);
1275 }
1276
1277 /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
1278 /// loop. In particular, this guarantees that it only references a single
1279 /// MemoryLocation during execution of the containing function.
isGuaranteedLoopInvariant__anonb46230070311::DSEState1280 bool isGuaranteedLoopInvariant(const Value *Ptr) {
1281 Ptr = Ptr->stripPointerCasts();
1282 if (auto *GEP = dyn_cast<GEPOperator>(Ptr))
1283 if (GEP->hasAllConstantIndices())
1284 Ptr = GEP->getPointerOperand()->stripPointerCasts();
1285
1286 if (auto *I = dyn_cast<Instruction>(Ptr)) {
1287 return I->getParent()->isEntryBlock() ||
1288 (!ContainsIrreducibleLoops && !LI.getLoopFor(I->getParent()));
1289 }
1290 return true;
1291 }
1292
1293 // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess,
1294 // with no read access between them or on any other path to a function exit
1295 // block if \p KillingLoc is not accessible after the function returns. If
1296 // there is no such MemoryDef, return std::nullopt. The returned value may not
1297 // (completely) overwrite \p KillingLoc. Currently we bail out when we
1298 // encounter an aliasing MemoryUse (read).
1299 std::optional<MemoryAccess *>
getDomMemoryDef__anonb46230070311::DSEState1300 getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess,
1301 const MemoryLocation &KillingLoc, const Value *KillingUndObj,
1302 unsigned &ScanLimit, unsigned &WalkerStepLimit,
1303 bool IsMemTerm, unsigned &PartialLimit) {
1304 if (ScanLimit == 0 || WalkerStepLimit == 0) {
1305 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n");
1306 return std::nullopt;
1307 }
1308
1309 MemoryAccess *Current = StartAccess;
1310 Instruction *KillingI = KillingDef->getMemoryInst();
1311 LLVM_DEBUG(dbgs() << " trying to get dominating access\n");
1312
1313 // Only optimize defining access of KillingDef when directly starting at its
1314 // defining access. The defining access also must only access KillingLoc. At
1315 // the moment we only support instructions with a single write location, so
1316 // it should be sufficient to disable optimizations for instructions that
1317 // also read from memory.
1318 bool CanOptimize = OptimizeMemorySSA &&
1319 KillingDef->getDefiningAccess() == StartAccess &&
1320 !KillingI->mayReadFromMemory();
1321
1322 // Find the next clobbering Mod access for DefLoc, starting at StartAccess.
1323 std::optional<MemoryLocation> CurrentLoc;
1324 for (;; Current = cast<MemoryDef>(Current)->getDefiningAccess()) {
1325 LLVM_DEBUG({
1326 dbgs() << " visiting " << *Current;
1327 if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current))
1328 dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst()
1329 << ")";
1330 dbgs() << "\n";
1331 });
1332
1333 // Reached TOP.
1334 if (MSSA.isLiveOnEntryDef(Current)) {
1335 LLVM_DEBUG(dbgs() << " ... found LiveOnEntryDef\n");
1336 if (CanOptimize && Current != KillingDef->getDefiningAccess())
1337 // The first clobbering def is... none.
1338 KillingDef->setOptimized(Current);
1339 return std::nullopt;
1340 }
1341
1342 // Cost of a step. Accesses in the same block are more likely to be valid
1343 // candidates for elimination, hence consider them cheaper.
1344 unsigned StepCost = KillingDef->getBlock() == Current->getBlock()
1345 ? MemorySSASameBBStepCost
1346 : MemorySSAOtherBBStepCost;
1347 if (WalkerStepLimit <= StepCost) {
1348 LLVM_DEBUG(dbgs() << " ... hit walker step limit\n");
1349 return std::nullopt;
1350 }
1351 WalkerStepLimit -= StepCost;
1352
1353 // Return for MemoryPhis. They cannot be eliminated directly and the
1354 // caller is responsible for traversing them.
1355 if (isa<MemoryPhi>(Current)) {
1356 LLVM_DEBUG(dbgs() << " ... found MemoryPhi\n");
1357 return Current;
1358 }
1359
1360 // Below, check if CurrentDef is a valid candidate to be eliminated by
1361 // KillingDef. If it is not, check the next candidate.
1362 MemoryDef *CurrentDef = cast<MemoryDef>(Current);
1363 Instruction *CurrentI = CurrentDef->getMemoryInst();
1364
1365 if (canSkipDef(CurrentDef, !isInvisibleToCallerOnUnwind(KillingUndObj))) {
1366 CanOptimize = false;
1367 continue;
1368 }
1369
1370 // Before we try to remove anything, check for any extra throwing
1371 // instructions that block us from DSEing
1372 if (mayThrowBetween(KillingI, CurrentI, KillingUndObj)) {
1373 LLVM_DEBUG(dbgs() << " ... skip, may throw!\n");
1374 return std::nullopt;
1375 }
1376
1377 // Check for anything that looks like it will be a barrier to further
1378 // removal
1379 if (isDSEBarrier(KillingUndObj, CurrentI)) {
1380 LLVM_DEBUG(dbgs() << " ... skip, barrier\n");
1381 return std::nullopt;
1382 }
1383
1384 // If Current is known to be on path that reads DefLoc or is a read
1385 // clobber, bail out, as the path is not profitable. We skip this check
1386 // for intrinsic calls, because the code knows how to handle memcpy
1387 // intrinsics.
1388 if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(KillingLoc, CurrentI))
1389 return std::nullopt;
1390
1391 // Quick check if there are direct uses that are read-clobbers.
1392 if (any_of(Current->uses(), [this, &KillingLoc, StartAccess](Use &U) {
1393 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser()))
1394 return !MSSA.dominates(StartAccess, UseOrDef) &&
1395 isReadClobber(KillingLoc, UseOrDef->getMemoryInst());
1396 return false;
1397 })) {
1398 LLVM_DEBUG(dbgs() << " ... found a read clobber\n");
1399 return std::nullopt;
1400 }
1401
1402 // If Current does not have an analyzable write location or is not
1403 // removable, skip it.
1404 CurrentLoc = getLocForWrite(CurrentI);
1405 if (!CurrentLoc || !isRemovable(CurrentI)) {
1406 CanOptimize = false;
1407 continue;
1408 }
1409
1410 // AliasAnalysis does not account for loops. Limit elimination to
1411 // candidates for which we can guarantee they always store to the same
1412 // memory location and not located in different loops.
1413 if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) {
1414 LLVM_DEBUG(dbgs() << " ... not guaranteed loop independent\n");
1415 CanOptimize = false;
1416 continue;
1417 }
1418
1419 if (IsMemTerm) {
1420 // If the killing def is a memory terminator (e.g. lifetime.end), check
1421 // the next candidate if the current Current does not write the same
1422 // underlying object as the terminator.
1423 if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) {
1424 CanOptimize = false;
1425 continue;
1426 }
1427 } else {
1428 int64_t KillingOffset = 0;
1429 int64_t DeadOffset = 0;
1430 auto OR = isOverwrite(KillingI, CurrentI, KillingLoc, *CurrentLoc,
1431 KillingOffset, DeadOffset);
1432 if (CanOptimize) {
1433 // CurrentDef is the earliest write clobber of KillingDef. Use it as
1434 // optimized access. Do not optimize if CurrentDef is already the
1435 // defining access of KillingDef.
1436 if (CurrentDef != KillingDef->getDefiningAccess() &&
1437 (OR == OW_Complete || OR == OW_MaybePartial))
1438 KillingDef->setOptimized(CurrentDef);
1439
1440 // Once a may-aliasing def is encountered do not set an optimized
1441 // access.
1442 if (OR != OW_None)
1443 CanOptimize = false;
1444 }
1445
1446 // If Current does not write to the same object as KillingDef, check
1447 // the next candidate.
1448 if (OR == OW_Unknown || OR == OW_None)
1449 continue;
1450 else if (OR == OW_MaybePartial) {
1451 // If KillingDef only partially overwrites Current, check the next
1452 // candidate if the partial step limit is exceeded. This aggressively
1453 // limits the number of candidates for partial store elimination,
1454 // which are less likely to be removable in the end.
1455 if (PartialLimit <= 1) {
1456 WalkerStepLimit -= 1;
1457 LLVM_DEBUG(dbgs() << " ... reached partial limit ... continue with next access\n");
1458 continue;
1459 }
1460 PartialLimit -= 1;
1461 }
1462 }
1463 break;
1464 };
1465
1466 // Accesses to objects accessible after the function returns can only be
1467 // eliminated if the access is dead along all paths to the exit. Collect
1468 // the blocks with killing (=completely overwriting MemoryDefs) and check if
1469 // they cover all paths from MaybeDeadAccess to any function exit.
1470 SmallPtrSet<Instruction *, 16> KillingDefs;
1471 KillingDefs.insert(KillingDef->getMemoryInst());
1472 MemoryAccess *MaybeDeadAccess = Current;
1473 MemoryLocation MaybeDeadLoc = *CurrentLoc;
1474 Instruction *MaybeDeadI = cast<MemoryDef>(MaybeDeadAccess)->getMemoryInst();
1475 LLVM_DEBUG(dbgs() << " Checking for reads of " << *MaybeDeadAccess << " ("
1476 << *MaybeDeadI << ")\n");
1477
1478 SmallSetVector<MemoryAccess *, 32> WorkList;
1479 auto PushMemUses = [&WorkList](MemoryAccess *Acc) {
1480 for (Use &U : Acc->uses())
1481 WorkList.insert(cast<MemoryAccess>(U.getUser()));
1482 };
1483 PushMemUses(MaybeDeadAccess);
1484
1485 // Check if DeadDef may be read.
1486 for (unsigned I = 0; I < WorkList.size(); I++) {
1487 MemoryAccess *UseAccess = WorkList[I];
1488
1489 LLVM_DEBUG(dbgs() << " " << *UseAccess);
1490 // Bail out if the number of accesses to check exceeds the scan limit.
1491 if (ScanLimit < (WorkList.size() - I)) {
1492 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n");
1493 return std::nullopt;
1494 }
1495 --ScanLimit;
1496 NumDomMemDefChecks++;
1497
1498 if (isa<MemoryPhi>(UseAccess)) {
1499 if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) {
1500 return DT.properlyDominates(KI->getParent(),
1501 UseAccess->getBlock());
1502 })) {
1503 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n");
1504 continue;
1505 }
1506 LLVM_DEBUG(dbgs() << "\n ... adding PHI uses\n");
1507 PushMemUses(UseAccess);
1508 continue;
1509 }
1510
1511 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
1512 LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n");
1513
1514 if (any_of(KillingDefs, [this, UseInst](Instruction *KI) {
1515 return DT.dominates(KI, UseInst);
1516 })) {
1517 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n");
1518 continue;
1519 }
1520
1521 // A memory terminator kills all preceeding MemoryDefs and all succeeding
1522 // MemoryAccesses. We do not have to check it's users.
1523 if (isMemTerminator(MaybeDeadLoc, MaybeDeadI, UseInst)) {
1524 LLVM_DEBUG(
1525 dbgs()
1526 << " ... skipping, memterminator invalidates following accesses\n");
1527 continue;
1528 }
1529
1530 if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) {
1531 LLVM_DEBUG(dbgs() << " ... adding uses of intrinsic\n");
1532 PushMemUses(UseAccess);
1533 continue;
1534 }
1535
1536 if (UseInst->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj)) {
1537 LLVM_DEBUG(dbgs() << " ... found throwing instruction\n");
1538 return std::nullopt;
1539 }
1540
1541 // Uses which may read the original MemoryDef mean we cannot eliminate the
1542 // original MD. Stop walk.
1543 if (isReadClobber(MaybeDeadLoc, UseInst)) {
1544 LLVM_DEBUG(dbgs() << " ... found read clobber\n");
1545 return std::nullopt;
1546 }
1547
1548 // If this worklist walks back to the original memory access (and the
1549 // pointer is not guarenteed loop invariant) then we cannot assume that a
1550 // store kills itself.
1551 if (MaybeDeadAccess == UseAccess &&
1552 !isGuaranteedLoopInvariant(MaybeDeadLoc.Ptr)) {
1553 LLVM_DEBUG(dbgs() << " ... found not loop invariant self access\n");
1554 return std::nullopt;
1555 }
1556 // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check
1557 // if it reads the memory location.
1558 // TODO: It would probably be better to check for self-reads before
1559 // calling the function.
1560 if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) {
1561 LLVM_DEBUG(dbgs() << " ... skipping killing def/dom access\n");
1562 continue;
1563 }
1564
1565 // Check all uses for MemoryDefs, except for defs completely overwriting
1566 // the original location. Otherwise we have to check uses of *all*
1567 // MemoryDefs we discover, including non-aliasing ones. Otherwise we might
1568 // miss cases like the following
1569 // 1 = Def(LoE) ; <----- DeadDef stores [0,1]
1570 // 2 = Def(1) ; (2, 1) = NoAlias, stores [2,3]
1571 // Use(2) ; MayAlias 2 *and* 1, loads [0, 3].
1572 // (The Use points to the *first* Def it may alias)
1573 // 3 = Def(1) ; <---- Current (3, 2) = NoAlias, (3,1) = MayAlias,
1574 // stores [0,1]
1575 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) {
1576 if (isCompleteOverwrite(MaybeDeadLoc, MaybeDeadI, UseInst)) {
1577 BasicBlock *MaybeKillingBlock = UseInst->getParent();
1578 if (PostOrderNumbers.find(MaybeKillingBlock)->second <
1579 PostOrderNumbers.find(MaybeDeadAccess->getBlock())->second) {
1580 if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
1581 LLVM_DEBUG(dbgs()
1582 << " ... found killing def " << *UseInst << "\n");
1583 KillingDefs.insert(UseInst);
1584 }
1585 } else {
1586 LLVM_DEBUG(dbgs()
1587 << " ... found preceeding def " << *UseInst << "\n");
1588 return std::nullopt;
1589 }
1590 } else
1591 PushMemUses(UseDef);
1592 }
1593 }
1594
1595 // For accesses to locations visible after the function returns, make sure
1596 // that the location is dead (=overwritten) along all paths from
1597 // MaybeDeadAccess to the exit.
1598 if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
1599 SmallPtrSet<BasicBlock *, 16> KillingBlocks;
1600 for (Instruction *KD : KillingDefs)
1601 KillingBlocks.insert(KD->getParent());
1602 assert(!KillingBlocks.empty() &&
1603 "Expected at least a single killing block");
1604
1605 // Find the common post-dominator of all killing blocks.
1606 BasicBlock *CommonPred = *KillingBlocks.begin();
1607 for (BasicBlock *BB : llvm::drop_begin(KillingBlocks)) {
1608 if (!CommonPred)
1609 break;
1610 CommonPred = PDT.findNearestCommonDominator(CommonPred, BB);
1611 }
1612
1613 // If the common post-dominator does not post-dominate MaybeDeadAccess,
1614 // there is a path from MaybeDeadAccess to an exit not going through a
1615 // killing block.
1616 if (!PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) {
1617 if (!AnyUnreachableExit)
1618 return std::nullopt;
1619
1620 // Fall back to CFG scan starting at all non-unreachable roots if not
1621 // all paths to the exit go through CommonPred.
1622 CommonPred = nullptr;
1623 }
1624
1625 // If CommonPred itself is in the set of killing blocks, we're done.
1626 if (KillingBlocks.count(CommonPred))
1627 return {MaybeDeadAccess};
1628
1629 SetVector<BasicBlock *> WorkList;
1630 // If CommonPred is null, there are multiple exits from the function.
1631 // They all have to be added to the worklist.
1632 if (CommonPred)
1633 WorkList.insert(CommonPred);
1634 else
1635 for (BasicBlock *R : PDT.roots()) {
1636 if (!isa<UnreachableInst>(R->getTerminator()))
1637 WorkList.insert(R);
1638 }
1639
1640 NumCFGTries++;
1641 // Check if all paths starting from an exit node go through one of the
1642 // killing blocks before reaching MaybeDeadAccess.
1643 for (unsigned I = 0; I < WorkList.size(); I++) {
1644 NumCFGChecks++;
1645 BasicBlock *Current = WorkList[I];
1646 if (KillingBlocks.count(Current))
1647 continue;
1648 if (Current == MaybeDeadAccess->getBlock())
1649 return std::nullopt;
1650
1651 // MaybeDeadAccess is reachable from the entry, so we don't have to
1652 // explore unreachable blocks further.
1653 if (!DT.isReachableFromEntry(Current))
1654 continue;
1655
1656 for (BasicBlock *Pred : predecessors(Current))
1657 WorkList.insert(Pred);
1658
1659 if (WorkList.size() >= MemorySSAPathCheckLimit)
1660 return std::nullopt;
1661 }
1662 NumCFGSuccess++;
1663 }
1664
1665 // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is
1666 // potentially dead.
1667 return {MaybeDeadAccess};
1668 }
1669
1670 // Delete dead memory defs
deleteDeadInstruction__anonb46230070311::DSEState1671 void deleteDeadInstruction(Instruction *SI) {
1672 MemorySSAUpdater Updater(&MSSA);
1673 SmallVector<Instruction *, 32> NowDeadInsts;
1674 NowDeadInsts.push_back(SI);
1675 --NumFastOther;
1676
1677 while (!NowDeadInsts.empty()) {
1678 Instruction *DeadInst = NowDeadInsts.pop_back_val();
1679 ++NumFastOther;
1680
1681 // Try to preserve debug information attached to the dead instruction.
1682 salvageDebugInfo(*DeadInst);
1683 salvageKnowledge(DeadInst);
1684
1685 // Remove the Instruction from MSSA.
1686 if (MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst)) {
1687 if (MemoryDef *MD = dyn_cast<MemoryDef>(MA)) {
1688 SkipStores.insert(MD);
1689 if (auto *SI = dyn_cast<StoreInst>(MD->getMemoryInst())) {
1690 if (SI->getValueOperand()->getType()->isPointerTy()) {
1691 const Value *UO = getUnderlyingObject(SI->getValueOperand());
1692 if (CapturedBeforeReturn.erase(UO))
1693 ShouldIterateEndOfFunctionDSE = true;
1694 InvisibleToCallerAfterRet.erase(UO);
1695 }
1696 }
1697 }
1698
1699 Updater.removeMemoryAccess(MA);
1700 }
1701
1702 auto I = IOLs.find(DeadInst->getParent());
1703 if (I != IOLs.end())
1704 I->second.erase(DeadInst);
1705 // Remove its operands
1706 for (Use &O : DeadInst->operands())
1707 if (Instruction *OpI = dyn_cast<Instruction>(O)) {
1708 O = nullptr;
1709 if (isInstructionTriviallyDead(OpI, &TLI))
1710 NowDeadInsts.push_back(OpI);
1711 }
1712
1713 EI.removeInstruction(DeadInst);
1714 DeadInst->eraseFromParent();
1715 }
1716 }
1717
1718 // Check for any extra throws between \p KillingI and \p DeadI that block
1719 // DSE. This only checks extra maythrows (those that aren't MemoryDef's).
1720 // MemoryDef that may throw are handled during the walk from one def to the
1721 // next.
mayThrowBetween__anonb46230070311::DSEState1722 bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI,
1723 const Value *KillingUndObj) {
1724 // First see if we can ignore it by using the fact that KillingI is an
1725 // alloca/alloca like object that is not visible to the caller during
1726 // execution of the function.
1727 if (KillingUndObj && isInvisibleToCallerOnUnwind(KillingUndObj))
1728 return false;
1729
1730 if (KillingI->getParent() == DeadI->getParent())
1731 return ThrowingBlocks.count(KillingI->getParent());
1732 return !ThrowingBlocks.empty();
1733 }
1734
1735 // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following
1736 // instructions act as barriers:
1737 // * A memory instruction that may throw and \p KillingI accesses a non-stack
1738 // object.
1739 // * Atomic stores stronger that monotonic.
isDSEBarrier__anonb46230070311::DSEState1740 bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) {
1741 // If DeadI may throw it acts as a barrier, unless we are to an
1742 // alloca/alloca like object that does not escape.
1743 if (DeadI->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj))
1744 return true;
1745
1746 // If DeadI is an atomic load/store stronger than monotonic, do not try to
1747 // eliminate/reorder it.
1748 if (DeadI->isAtomic()) {
1749 if (auto *LI = dyn_cast<LoadInst>(DeadI))
1750 return isStrongerThanMonotonic(LI->getOrdering());
1751 if (auto *SI = dyn_cast<StoreInst>(DeadI))
1752 return isStrongerThanMonotonic(SI->getOrdering());
1753 if (auto *ARMW = dyn_cast<AtomicRMWInst>(DeadI))
1754 return isStrongerThanMonotonic(ARMW->getOrdering());
1755 if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(DeadI))
1756 return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) ||
1757 isStrongerThanMonotonic(CmpXchg->getFailureOrdering());
1758 llvm_unreachable("other instructions should be skipped in MemorySSA");
1759 }
1760 return false;
1761 }
1762
1763 /// Eliminate writes to objects that are not visible in the caller and are not
1764 /// accessed before returning from the function.
eliminateDeadWritesAtEndOfFunction__anonb46230070311::DSEState1765 bool eliminateDeadWritesAtEndOfFunction() {
1766 bool MadeChange = false;
1767 LLVM_DEBUG(
1768 dbgs()
1769 << "Trying to eliminate MemoryDefs at the end of the function\n");
1770 do {
1771 ShouldIterateEndOfFunctionDSE = false;
1772 for (MemoryDef *Def : llvm::reverse(MemDefs)) {
1773 if (SkipStores.contains(Def))
1774 continue;
1775
1776 Instruction *DefI = Def->getMemoryInst();
1777 auto DefLoc = getLocForWrite(DefI);
1778 if (!DefLoc || !isRemovable(DefI))
1779 continue;
1780
1781 // NOTE: Currently eliminating writes at the end of a function is
1782 // limited to MemoryDefs with a single underlying object, to save
1783 // compile-time. In practice it appears the case with multiple
1784 // underlying objects is very uncommon. If it turns out to be important,
1785 // we can use getUnderlyingObjects here instead.
1786 const Value *UO = getUnderlyingObject(DefLoc->Ptr);
1787 if (!isInvisibleToCallerAfterRet(UO))
1788 continue;
1789
1790 if (isWriteAtEndOfFunction(Def)) {
1791 // See through pointer-to-pointer bitcasts
1792 LLVM_DEBUG(dbgs() << " ... MemoryDef is not accessed until the end "
1793 "of the function\n");
1794 deleteDeadInstruction(DefI);
1795 ++NumFastStores;
1796 MadeChange = true;
1797 }
1798 }
1799 } while (ShouldIterateEndOfFunctionDSE);
1800 return MadeChange;
1801 }
1802
1803 /// If we have a zero initializing memset following a call to malloc,
1804 /// try folding it into a call to calloc.
tryFoldIntoCalloc__anonb46230070311::DSEState1805 bool tryFoldIntoCalloc(MemoryDef *Def, const Value *DefUO) {
1806 Instruction *DefI = Def->getMemoryInst();
1807 MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI);
1808 if (!MemSet)
1809 // TODO: Could handle zero store to small allocation as well.
1810 return false;
1811 Constant *StoredConstant = dyn_cast<Constant>(MemSet->getValue());
1812 if (!StoredConstant || !StoredConstant->isNullValue())
1813 return false;
1814
1815 if (!isRemovable(DefI))
1816 // The memset might be volatile..
1817 return false;
1818
1819 if (F.hasFnAttribute(Attribute::SanitizeMemory) ||
1820 F.hasFnAttribute(Attribute::SanitizeAddress) ||
1821 F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
1822 F.getName() == "calloc")
1823 return false;
1824 auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(DefUO));
1825 if (!Malloc)
1826 return false;
1827 auto *InnerCallee = Malloc->getCalledFunction();
1828 if (!InnerCallee)
1829 return false;
1830 LibFunc Func;
1831 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
1832 Func != LibFunc_malloc)
1833 return false;
1834
1835 auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) {
1836 // Check for br(icmp ptr, null), truebb, falsebb) pattern at the end
1837 // of malloc block
1838 auto *MallocBB = Malloc->getParent(),
1839 *MemsetBB = Memset->getParent();
1840 if (MallocBB == MemsetBB)
1841 return true;
1842 auto *Ptr = Memset->getArgOperand(0);
1843 auto *TI = MallocBB->getTerminator();
1844 ICmpInst::Predicate Pred;
1845 BasicBlock *TrueBB, *FalseBB;
1846 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Ptr), m_Zero()), TrueBB,
1847 FalseBB)))
1848 return false;
1849 if (Pred != ICmpInst::ICMP_EQ || MemsetBB != FalseBB)
1850 return false;
1851 return true;
1852 };
1853
1854 if (Malloc->getOperand(0) != MemSet->getLength())
1855 return false;
1856 if (!shouldCreateCalloc(Malloc, MemSet) ||
1857 !DT.dominates(Malloc, MemSet) ||
1858 !memoryIsNotModifiedBetween(Malloc, MemSet, BatchAA, DL, &DT))
1859 return false;
1860 IRBuilder<> IRB(Malloc);
1861 Type *SizeTTy = Malloc->getArgOperand(0)->getType();
1862 auto *Calloc = emitCalloc(ConstantInt::get(SizeTTy, 1),
1863 Malloc->getArgOperand(0), IRB, TLI);
1864 if (!Calloc)
1865 return false;
1866 MemorySSAUpdater Updater(&MSSA);
1867 auto *LastDef =
1868 cast<MemoryDef>(Updater.getMemorySSA()->getMemoryAccess(Malloc));
1869 auto *NewAccess =
1870 Updater.createMemoryAccessAfter(cast<Instruction>(Calloc), LastDef,
1871 LastDef);
1872 auto *NewAccessMD = cast<MemoryDef>(NewAccess);
1873 Updater.insertDef(NewAccessMD, /*RenameUses=*/true);
1874 Updater.removeMemoryAccess(Malloc);
1875 Malloc->replaceAllUsesWith(Calloc);
1876 Malloc->eraseFromParent();
1877 return true;
1878 }
1879
1880 /// \returns true if \p Def is a no-op store, either because it
1881 /// directly stores back a loaded value or stores zero to a calloced object.
storeIsNoop__anonb46230070311::DSEState1882 bool storeIsNoop(MemoryDef *Def, const Value *DefUO) {
1883 Instruction *DefI = Def->getMemoryInst();
1884 StoreInst *Store = dyn_cast<StoreInst>(DefI);
1885 MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI);
1886 Constant *StoredConstant = nullptr;
1887 if (Store)
1888 StoredConstant = dyn_cast<Constant>(Store->getOperand(0));
1889 else if (MemSet)
1890 StoredConstant = dyn_cast<Constant>(MemSet->getValue());
1891 else
1892 return false;
1893
1894 if (!isRemovable(DefI))
1895 return false;
1896
1897 if (StoredConstant) {
1898 Constant *InitC =
1899 getInitialValueOfAllocation(DefUO, &TLI, StoredConstant->getType());
1900 // If the clobbering access is LiveOnEntry, no instructions between them
1901 // can modify the memory location.
1902 if (InitC && InitC == StoredConstant)
1903 return MSSA.isLiveOnEntryDef(
1904 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def, BatchAA));
1905 }
1906
1907 if (!Store)
1908 return false;
1909
1910 if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) {
1911 if (LoadI->getPointerOperand() == Store->getOperand(1)) {
1912 // Get the defining access for the load.
1913 auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess();
1914 // Fast path: the defining accesses are the same.
1915 if (LoadAccess == Def->getDefiningAccess())
1916 return true;
1917
1918 // Look through phi accesses. Recursively scan all phi accesses by
1919 // adding them to a worklist. Bail when we run into a memory def that
1920 // does not match LoadAccess.
1921 SetVector<MemoryAccess *> ToCheck;
1922 MemoryAccess *Current =
1923 MSSA.getWalker()->getClobberingMemoryAccess(Def, BatchAA);
1924 // We don't want to bail when we run into the store memory def. But,
1925 // the phi access may point to it. So, pretend like we've already
1926 // checked it.
1927 ToCheck.insert(Def);
1928 ToCheck.insert(Current);
1929 // Start at current (1) to simulate already having checked Def.
1930 for (unsigned I = 1; I < ToCheck.size(); ++I) {
1931 Current = ToCheck[I];
1932 if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) {
1933 // Check all the operands.
1934 for (auto &Use : PhiAccess->incoming_values())
1935 ToCheck.insert(cast<MemoryAccess>(&Use));
1936 continue;
1937 }
1938
1939 // If we found a memory def, bail. This happens when we have an
1940 // unrelated write in between an otherwise noop store.
1941 assert(isa<MemoryDef>(Current) &&
1942 "Only MemoryDefs should reach here.");
1943 // TODO: Skip no alias MemoryDefs that have no aliasing reads.
1944 // We are searching for the definition of the store's destination.
1945 // So, if that is the same definition as the load, then this is a
1946 // noop. Otherwise, fail.
1947 if (LoadAccess != Current)
1948 return false;
1949 }
1950 return true;
1951 }
1952 }
1953
1954 return false;
1955 }
1956
removePartiallyOverlappedStores__anonb46230070311::DSEState1957 bool removePartiallyOverlappedStores(InstOverlapIntervalsTy &IOL) {
1958 bool Changed = false;
1959 for (auto OI : IOL) {
1960 Instruction *DeadI = OI.first;
1961 MemoryLocation Loc = *getLocForWrite(DeadI);
1962 assert(isRemovable(DeadI) && "Expect only removable instruction");
1963
1964 const Value *Ptr = Loc.Ptr->stripPointerCasts();
1965 int64_t DeadStart = 0;
1966 uint64_t DeadSize = Loc.Size.getValue();
1967 GetPointerBaseWithConstantOffset(Ptr, DeadStart, DL);
1968 OverlapIntervalsTy &IntervalMap = OI.second;
1969 Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize);
1970 if (IntervalMap.empty())
1971 continue;
1972 Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize);
1973 }
1974 return Changed;
1975 }
1976
1977 /// Eliminates writes to locations where the value that is being written
1978 /// is already stored at the same location.
eliminateRedundantStoresOfExistingValues__anonb46230070311::DSEState1979 bool eliminateRedundantStoresOfExistingValues() {
1980 bool MadeChange = false;
1981 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the "
1982 "already existing value\n");
1983 for (auto *Def : MemDefs) {
1984 if (SkipStores.contains(Def) || MSSA.isLiveOnEntryDef(Def))
1985 continue;
1986
1987 Instruction *DefInst = Def->getMemoryInst();
1988 auto MaybeDefLoc = getLocForWrite(DefInst);
1989 if (!MaybeDefLoc || !isRemovable(DefInst))
1990 continue;
1991
1992 MemoryDef *UpperDef;
1993 // To conserve compile-time, we avoid walking to the next clobbering def.
1994 // Instead, we just try to get the optimized access, if it exists. DSE
1995 // will try to optimize defs during the earlier traversal.
1996 if (Def->isOptimized())
1997 UpperDef = dyn_cast<MemoryDef>(Def->getOptimized());
1998 else
1999 UpperDef = dyn_cast<MemoryDef>(Def->getDefiningAccess());
2000 if (!UpperDef || MSSA.isLiveOnEntryDef(UpperDef))
2001 continue;
2002
2003 Instruction *UpperInst = UpperDef->getMemoryInst();
2004 auto IsRedundantStore = [&]() {
2005 if (DefInst->isIdenticalTo(UpperInst))
2006 return true;
2007 if (auto *MemSetI = dyn_cast<MemSetInst>(UpperInst)) {
2008 if (auto *SI = dyn_cast<StoreInst>(DefInst)) {
2009 // MemSetInst must have a write location.
2010 MemoryLocation UpperLoc = *getLocForWrite(UpperInst);
2011 int64_t InstWriteOffset = 0;
2012 int64_t DepWriteOffset = 0;
2013 auto OR = isOverwrite(UpperInst, DefInst, UpperLoc, *MaybeDefLoc,
2014 InstWriteOffset, DepWriteOffset);
2015 Value *StoredByte = isBytewiseValue(SI->getValueOperand(), DL);
2016 return StoredByte && StoredByte == MemSetI->getOperand(1) &&
2017 OR == OW_Complete;
2018 }
2019 }
2020 return false;
2021 };
2022
2023 if (!IsRedundantStore() || isReadClobber(*MaybeDefLoc, DefInst))
2024 continue;
2025 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *DefInst
2026 << '\n');
2027 deleteDeadInstruction(DefInst);
2028 NumRedundantStores++;
2029 MadeChange = true;
2030 }
2031 return MadeChange;
2032 }
2033 };
2034
eliminateDeadStores(Function & F,AliasAnalysis & AA,MemorySSA & MSSA,DominatorTree & DT,PostDominatorTree & PDT,AssumptionCache & AC,const TargetLibraryInfo & TLI,const LoopInfo & LI)2035 static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA,
2036 DominatorTree &DT, PostDominatorTree &PDT,
2037 AssumptionCache &AC,
2038 const TargetLibraryInfo &TLI,
2039 const LoopInfo &LI) {
2040 bool MadeChange = false;
2041
2042 MSSA.ensureOptimizedUses();
2043 DSEState State(F, AA, MSSA, DT, PDT, AC, TLI, LI);
2044 // For each store:
2045 for (unsigned I = 0; I < State.MemDefs.size(); I++) {
2046 MemoryDef *KillingDef = State.MemDefs[I];
2047 if (State.SkipStores.count(KillingDef))
2048 continue;
2049 Instruction *KillingI = KillingDef->getMemoryInst();
2050
2051 std::optional<MemoryLocation> MaybeKillingLoc;
2052 if (State.isMemTerminatorInst(KillingI)) {
2053 if (auto KillingLoc = State.getLocForTerminator(KillingI))
2054 MaybeKillingLoc = KillingLoc->first;
2055 } else {
2056 MaybeKillingLoc = State.getLocForWrite(KillingI);
2057 }
2058
2059 if (!MaybeKillingLoc) {
2060 LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for "
2061 << *KillingI << "\n");
2062 continue;
2063 }
2064 MemoryLocation KillingLoc = *MaybeKillingLoc;
2065 assert(KillingLoc.Ptr && "KillingLoc should not be null");
2066 const Value *KillingUndObj = getUnderlyingObject(KillingLoc.Ptr);
2067 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by "
2068 << *KillingDef << " (" << *KillingI << ")\n");
2069
2070 unsigned ScanLimit = MemorySSAScanLimit;
2071 unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit;
2072 unsigned PartialLimit = MemorySSAPartialStoreLimit;
2073 // Worklist of MemoryAccesses that may be killed by KillingDef.
2074 SetVector<MemoryAccess *> ToCheck;
2075 ToCheck.insert(KillingDef->getDefiningAccess());
2076
2077 bool Shortend = false;
2078 bool IsMemTerm = State.isMemTerminatorInst(KillingI);
2079 // Check if MemoryAccesses in the worklist are killed by KillingDef.
2080 for (unsigned I = 0; I < ToCheck.size(); I++) {
2081 MemoryAccess *Current = ToCheck[I];
2082 if (State.SkipStores.count(Current))
2083 continue;
2084
2085 std::optional<MemoryAccess *> MaybeDeadAccess = State.getDomMemoryDef(
2086 KillingDef, Current, KillingLoc, KillingUndObj, ScanLimit,
2087 WalkerStepLimit, IsMemTerm, PartialLimit);
2088
2089 if (!MaybeDeadAccess) {
2090 LLVM_DEBUG(dbgs() << " finished walk\n");
2091 continue;
2092 }
2093
2094 MemoryAccess *DeadAccess = *MaybeDeadAccess;
2095 LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess);
2096 if (isa<MemoryPhi>(DeadAccess)) {
2097 LLVM_DEBUG(dbgs() << "\n ... adding incoming values to worklist\n");
2098 for (Value *V : cast<MemoryPhi>(DeadAccess)->incoming_values()) {
2099 MemoryAccess *IncomingAccess = cast<MemoryAccess>(V);
2100 BasicBlock *IncomingBlock = IncomingAccess->getBlock();
2101 BasicBlock *PhiBlock = DeadAccess->getBlock();
2102
2103 // We only consider incoming MemoryAccesses that come before the
2104 // MemoryPhi. Otherwise we could discover candidates that do not
2105 // strictly dominate our starting def.
2106 if (State.PostOrderNumbers[IncomingBlock] >
2107 State.PostOrderNumbers[PhiBlock])
2108 ToCheck.insert(IncomingAccess);
2109 }
2110 continue;
2111 }
2112 auto *DeadDefAccess = cast<MemoryDef>(DeadAccess);
2113 Instruction *DeadI = DeadDefAccess->getMemoryInst();
2114 LLVM_DEBUG(dbgs() << " (" << *DeadI << ")\n");
2115 ToCheck.insert(DeadDefAccess->getDefiningAccess());
2116 NumGetDomMemoryDefPassed++;
2117
2118 if (!DebugCounter::shouldExecute(MemorySSACounter))
2119 continue;
2120
2121 MemoryLocation DeadLoc = *State.getLocForWrite(DeadI);
2122
2123 if (IsMemTerm) {
2124 const Value *DeadUndObj = getUnderlyingObject(DeadLoc.Ptr);
2125 if (KillingUndObj != DeadUndObj)
2126 continue;
2127 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI
2128 << "\n KILLER: " << *KillingI << '\n');
2129 State.deleteDeadInstruction(DeadI);
2130 ++NumFastStores;
2131 MadeChange = true;
2132 } else {
2133 // Check if DeadI overwrites KillingI.
2134 int64_t KillingOffset = 0;
2135 int64_t DeadOffset = 0;
2136 OverwriteResult OR = State.isOverwrite(
2137 KillingI, DeadI, KillingLoc, DeadLoc, KillingOffset, DeadOffset);
2138 if (OR == OW_MaybePartial) {
2139 auto Iter = State.IOLs.insert(
2140 std::make_pair<BasicBlock *, InstOverlapIntervalsTy>(
2141 DeadI->getParent(), InstOverlapIntervalsTy()));
2142 auto &IOL = Iter.first->second;
2143 OR = isPartialOverwrite(KillingLoc, DeadLoc, KillingOffset,
2144 DeadOffset, DeadI, IOL);
2145 }
2146
2147 if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) {
2148 auto *DeadSI = dyn_cast<StoreInst>(DeadI);
2149 auto *KillingSI = dyn_cast<StoreInst>(KillingI);
2150 // We are re-using tryToMergePartialOverlappingStores, which requires
2151 // DeadSI to dominate DeadSI.
2152 // TODO: implement tryToMergeParialOverlappingStores using MemorySSA.
2153 if (DeadSI && KillingSI && DT.dominates(DeadSI, KillingSI)) {
2154 if (Constant *Merged = tryToMergePartialOverlappingStores(
2155 KillingSI, DeadSI, KillingOffset, DeadOffset, State.DL,
2156 State.BatchAA, &DT)) {
2157
2158 // Update stored value of earlier store to merged constant.
2159 DeadSI->setOperand(0, Merged);
2160 ++NumModifiedStores;
2161 MadeChange = true;
2162
2163 Shortend = true;
2164 // Remove killing store and remove any outstanding overlap
2165 // intervals for the updated store.
2166 State.deleteDeadInstruction(KillingSI);
2167 auto I = State.IOLs.find(DeadSI->getParent());
2168 if (I != State.IOLs.end())
2169 I->second.erase(DeadSI);
2170 break;
2171 }
2172 }
2173 }
2174
2175 if (OR == OW_Complete) {
2176 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI
2177 << "\n KILLER: " << *KillingI << '\n');
2178 State.deleteDeadInstruction(DeadI);
2179 ++NumFastStores;
2180 MadeChange = true;
2181 }
2182 }
2183 }
2184
2185 // Check if the store is a no-op.
2186 if (!Shortend && State.storeIsNoop(KillingDef, KillingUndObj)) {
2187 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *KillingI
2188 << '\n');
2189 State.deleteDeadInstruction(KillingI);
2190 NumRedundantStores++;
2191 MadeChange = true;
2192 continue;
2193 }
2194
2195 // Can we form a calloc from a memset/malloc pair?
2196 if (!Shortend && State.tryFoldIntoCalloc(KillingDef, KillingUndObj)) {
2197 LLVM_DEBUG(dbgs() << "DSE: Remove memset after forming calloc:\n"
2198 << " DEAD: " << *KillingI << '\n');
2199 State.deleteDeadInstruction(KillingI);
2200 MadeChange = true;
2201 continue;
2202 }
2203 }
2204
2205 if (EnablePartialOverwriteTracking)
2206 for (auto &KV : State.IOLs)
2207 MadeChange |= State.removePartiallyOverlappedStores(KV.second);
2208
2209 MadeChange |= State.eliminateRedundantStoresOfExistingValues();
2210 MadeChange |= State.eliminateDeadWritesAtEndOfFunction();
2211 return MadeChange;
2212 }
2213 } // end anonymous namespace
2214
2215 //===----------------------------------------------------------------------===//
2216 // DSE Pass
2217 //===----------------------------------------------------------------------===//
run(Function & F,FunctionAnalysisManager & AM)2218 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
2219 AliasAnalysis &AA = AM.getResult<AAManager>(F);
2220 const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F);
2221 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
2222 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2223 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
2224 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
2225 LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
2226
2227 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, AC, TLI, LI);
2228
2229 #ifdef LLVM_ENABLE_STATS
2230 if (AreStatisticsEnabled())
2231 for (auto &I : instructions(F))
2232 NumRemainingStores += isa<StoreInst>(&I);
2233 #endif
2234
2235 if (!Changed)
2236 return PreservedAnalyses::all();
2237
2238 PreservedAnalyses PA;
2239 PA.preserveSet<CFGAnalyses>();
2240 PA.preserve<MemorySSAAnalysis>();
2241 PA.preserve<LoopAnalysis>();
2242 return PA;
2243 }
2244
2245 namespace {
2246
2247 /// A legacy pass for the legacy pass manager that wraps \c DSEPass.
2248 class DSELegacyPass : public FunctionPass {
2249 public:
2250 static char ID; // Pass identification, replacement for typeid
2251
DSELegacyPass()2252 DSELegacyPass() : FunctionPass(ID) {
2253 initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
2254 }
2255
runOnFunction(Function & F)2256 bool runOnFunction(Function &F) override {
2257 if (skipFunction(F))
2258 return false;
2259
2260 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2261 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2262 const TargetLibraryInfo &TLI =
2263 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2264 MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2265 PostDominatorTree &PDT =
2266 getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
2267 AssumptionCache &AC =
2268 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2269 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2270
2271 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, AC, TLI, LI);
2272
2273 #ifdef LLVM_ENABLE_STATS
2274 if (AreStatisticsEnabled())
2275 for (auto &I : instructions(F))
2276 NumRemainingStores += isa<StoreInst>(&I);
2277 #endif
2278
2279 return Changed;
2280 }
2281
getAnalysisUsage(AnalysisUsage & AU) const2282 void getAnalysisUsage(AnalysisUsage &AU) const override {
2283 AU.setPreservesCFG();
2284 AU.addRequired<AAResultsWrapperPass>();
2285 AU.addRequired<TargetLibraryInfoWrapperPass>();
2286 AU.addPreserved<GlobalsAAWrapperPass>();
2287 AU.addRequired<DominatorTreeWrapperPass>();
2288 AU.addPreserved<DominatorTreeWrapperPass>();
2289 AU.addRequired<PostDominatorTreeWrapperPass>();
2290 AU.addRequired<MemorySSAWrapperPass>();
2291 AU.addPreserved<PostDominatorTreeWrapperPass>();
2292 AU.addPreserved<MemorySSAWrapperPass>();
2293 AU.addRequired<LoopInfoWrapperPass>();
2294 AU.addPreserved<LoopInfoWrapperPass>();
2295 AU.addRequired<AssumptionCacheTracker>();
2296 }
2297 };
2298
2299 } // end anonymous namespace
2300
2301 char DSELegacyPass::ID = 0;
2302
2303 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
2304 false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)2305 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2306 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
2307 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2308 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
2309 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
2310 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
2311 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2312 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2313 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2314 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
2315 false)
2316
2317 FunctionPass *llvm::createDeadStoreEliminationPass() {
2318 return new DSELegacyPass();
2319 }
2320