1 //===- ELFObject.cpp ------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "ELFObject.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/StringRef.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/ADT/iterator_range.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/MC/MCTargetOptions.h"
17 #include "llvm/Object/ELF.h"
18 #include "llvm/Object/ELFObjectFile.h"
19 #include "llvm/Support/Compression.h"
20 #include "llvm/Support/Endian.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/FileOutputBuffer.h"
23 #include "llvm/Support/Path.h"
24 #include <algorithm>
25 #include <cstddef>
26 #include <cstdint>
27 #include <iterator>
28 #include <unordered_set>
29 #include <utility>
30 #include <vector>
31
32 using namespace llvm;
33 using namespace llvm::ELF;
34 using namespace llvm::objcopy::elf;
35 using namespace llvm::object;
36
writePhdr(const Segment & Seg)37 template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
38 uint8_t *B = reinterpret_cast<uint8_t *>(Buf->getBufferStart()) +
39 Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr);
40 Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
41 Phdr.p_type = Seg.Type;
42 Phdr.p_flags = Seg.Flags;
43 Phdr.p_offset = Seg.Offset;
44 Phdr.p_vaddr = Seg.VAddr;
45 Phdr.p_paddr = Seg.PAddr;
46 Phdr.p_filesz = Seg.FileSize;
47 Phdr.p_memsz = Seg.MemSize;
48 Phdr.p_align = Seg.Align;
49 }
50
removeSectionReferences(bool,function_ref<bool (const SectionBase *)>)51 Error SectionBase::removeSectionReferences(
52 bool, function_ref<bool(const SectionBase *)>) {
53 return Error::success();
54 }
55
removeSymbols(function_ref<bool (const Symbol &)>)56 Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)>) {
57 return Error::success();
58 }
59
initialize(SectionTableRef)60 Error SectionBase::initialize(SectionTableRef) { return Error::success(); }
finalize()61 void SectionBase::finalize() {}
markSymbols()62 void SectionBase::markSymbols() {}
replaceSectionReferences(const DenseMap<SectionBase *,SectionBase * > &)63 void SectionBase::replaceSectionReferences(
64 const DenseMap<SectionBase *, SectionBase *> &) {}
onRemove()65 void SectionBase::onRemove() {}
66
writeShdr(const SectionBase & Sec)67 template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
68 uint8_t *B =
69 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Sec.HeaderOffset;
70 Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
71 Shdr.sh_name = Sec.NameIndex;
72 Shdr.sh_type = Sec.Type;
73 Shdr.sh_flags = Sec.Flags;
74 Shdr.sh_addr = Sec.Addr;
75 Shdr.sh_offset = Sec.Offset;
76 Shdr.sh_size = Sec.Size;
77 Shdr.sh_link = Sec.Link;
78 Shdr.sh_info = Sec.Info;
79 Shdr.sh_addralign = Sec.Align;
80 Shdr.sh_entsize = Sec.EntrySize;
81 }
82
visit(Section &)83 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(Section &) {
84 return Error::success();
85 }
86
visit(OwnedDataSection &)87 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(OwnedDataSection &) {
88 return Error::success();
89 }
90
visit(StringTableSection &)91 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(StringTableSection &) {
92 return Error::success();
93 }
94
95 template <class ELFT>
visit(DynamicRelocationSection &)96 Error ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &) {
97 return Error::success();
98 }
99
100 template <class ELFT>
visit(SymbolTableSection & Sec)101 Error ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) {
102 Sec.EntrySize = sizeof(Elf_Sym);
103 Sec.Size = Sec.Symbols.size() * Sec.EntrySize;
104 // Align to the largest field in Elf_Sym.
105 Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
106 return Error::success();
107 }
108
109 template <class ELFT>
visit(RelocationSection & Sec)110 Error ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) {
111 Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela);
112 Sec.Size = Sec.Relocations.size() * Sec.EntrySize;
113 // Align to the largest field in Elf_Rel(a).
114 Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
115 return Error::success();
116 }
117
118 template <class ELFT>
visit(GnuDebugLinkSection &)119 Error ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &) {
120 return Error::success();
121 }
122
visit(GroupSection & Sec)123 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(GroupSection &Sec) {
124 Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word);
125 return Error::success();
126 }
127
128 template <class ELFT>
visit(SectionIndexSection &)129 Error ELFSectionSizer<ELFT>::visit(SectionIndexSection &) {
130 return Error::success();
131 }
132
visit(CompressedSection &)133 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(CompressedSection &) {
134 return Error::success();
135 }
136
137 template <class ELFT>
visit(DecompressedSection &)138 Error ELFSectionSizer<ELFT>::visit(DecompressedSection &) {
139 return Error::success();
140 }
141
visit(const SectionIndexSection & Sec)142 Error BinarySectionWriter::visit(const SectionIndexSection &Sec) {
143 return createStringError(errc::operation_not_permitted,
144 "cannot write symbol section index table '" +
145 Sec.Name + "' ");
146 }
147
visit(const SymbolTableSection & Sec)148 Error BinarySectionWriter::visit(const SymbolTableSection &Sec) {
149 return createStringError(errc::operation_not_permitted,
150 "cannot write symbol table '" + Sec.Name +
151 "' out to binary");
152 }
153
visit(const RelocationSection & Sec)154 Error BinarySectionWriter::visit(const RelocationSection &Sec) {
155 return createStringError(errc::operation_not_permitted,
156 "cannot write relocation section '" + Sec.Name +
157 "' out to binary");
158 }
159
visit(const GnuDebugLinkSection & Sec)160 Error BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
161 return createStringError(errc::operation_not_permitted,
162 "cannot write '" + Sec.Name + "' out to binary");
163 }
164
visit(const GroupSection & Sec)165 Error BinarySectionWriter::visit(const GroupSection &Sec) {
166 return createStringError(errc::operation_not_permitted,
167 "cannot write '" + Sec.Name + "' out to binary");
168 }
169
visit(const Section & Sec)170 Error SectionWriter::visit(const Section &Sec) {
171 if (Sec.Type != SHT_NOBITS)
172 llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
173
174 return Error::success();
175 }
176
addressOverflows32bit(uint64_t Addr)177 static bool addressOverflows32bit(uint64_t Addr) {
178 // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok
179 return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX;
180 }
181
checkedGetHex(StringRef S)182 template <class T> static T checkedGetHex(StringRef S) {
183 T Value;
184 bool Fail = S.getAsInteger(16, Value);
185 assert(!Fail);
186 (void)Fail;
187 return Value;
188 }
189
190 // Fills exactly Len bytes of buffer with hexadecimal characters
191 // representing value 'X'
192 template <class T, class Iterator>
toHexStr(T X,Iterator It,size_t Len)193 static Iterator toHexStr(T X, Iterator It, size_t Len) {
194 // Fill range with '0'
195 std::fill(It, It + Len, '0');
196
197 for (long I = Len - 1; I >= 0; --I) {
198 unsigned char Mod = static_cast<unsigned char>(X) & 15;
199 *(It + I) = hexdigit(Mod, false);
200 X >>= 4;
201 }
202 assert(X == 0);
203 return It + Len;
204 }
205
getChecksum(StringRef S)206 uint8_t IHexRecord::getChecksum(StringRef S) {
207 assert((S.size() & 1) == 0);
208 uint8_t Checksum = 0;
209 while (!S.empty()) {
210 Checksum += checkedGetHex<uint8_t>(S.take_front(2));
211 S = S.drop_front(2);
212 }
213 return -Checksum;
214 }
215
getLine(uint8_t Type,uint16_t Addr,ArrayRef<uint8_t> Data)216 IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr,
217 ArrayRef<uint8_t> Data) {
218 IHexLineData Line(getLineLength(Data.size()));
219 assert(Line.size());
220 auto Iter = Line.begin();
221 *Iter++ = ':';
222 Iter = toHexStr(Data.size(), Iter, 2);
223 Iter = toHexStr(Addr, Iter, 4);
224 Iter = toHexStr(Type, Iter, 2);
225 for (uint8_t X : Data)
226 Iter = toHexStr(X, Iter, 2);
227 StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter));
228 Iter = toHexStr(getChecksum(S), Iter, 2);
229 *Iter++ = '\r';
230 *Iter++ = '\n';
231 assert(Iter == Line.end());
232 return Line;
233 }
234
checkRecord(const IHexRecord & R)235 static Error checkRecord(const IHexRecord &R) {
236 switch (R.Type) {
237 case IHexRecord::Data:
238 if (R.HexData.size() == 0)
239 return createStringError(
240 errc::invalid_argument,
241 "zero data length is not allowed for data records");
242 break;
243 case IHexRecord::EndOfFile:
244 break;
245 case IHexRecord::SegmentAddr:
246 // 20-bit segment address. Data length must be 2 bytes
247 // (4 bytes in hex)
248 if (R.HexData.size() != 4)
249 return createStringError(
250 errc::invalid_argument,
251 "segment address data should be 2 bytes in size");
252 break;
253 case IHexRecord::StartAddr80x86:
254 case IHexRecord::StartAddr:
255 if (R.HexData.size() != 8)
256 return createStringError(errc::invalid_argument,
257 "start address data should be 4 bytes in size");
258 // According to Intel HEX specification '03' record
259 // only specifies the code address within the 20-bit
260 // segmented address space of the 8086/80186. This
261 // means 12 high order bits should be zeroes.
262 if (R.Type == IHexRecord::StartAddr80x86 &&
263 R.HexData.take_front(3) != "000")
264 return createStringError(errc::invalid_argument,
265 "start address exceeds 20 bit for 80x86");
266 break;
267 case IHexRecord::ExtendedAddr:
268 // 16-31 bits of linear base address
269 if (R.HexData.size() != 4)
270 return createStringError(
271 errc::invalid_argument,
272 "extended address data should be 2 bytes in size");
273 break;
274 default:
275 // Unknown record type
276 return createStringError(errc::invalid_argument, "unknown record type: %u",
277 static_cast<unsigned>(R.Type));
278 }
279 return Error::success();
280 }
281
282 // Checks that IHEX line contains valid characters.
283 // This allows converting hexadecimal data to integers
284 // without extra verification.
checkChars(StringRef Line)285 static Error checkChars(StringRef Line) {
286 assert(!Line.empty());
287 if (Line[0] != ':')
288 return createStringError(errc::invalid_argument,
289 "missing ':' in the beginning of line.");
290
291 for (size_t Pos = 1; Pos < Line.size(); ++Pos)
292 if (hexDigitValue(Line[Pos]) == -1U)
293 return createStringError(errc::invalid_argument,
294 "invalid character at position %zu.", Pos + 1);
295 return Error::success();
296 }
297
parse(StringRef Line)298 Expected<IHexRecord> IHexRecord::parse(StringRef Line) {
299 assert(!Line.empty());
300
301 // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC'
302 if (Line.size() < 11)
303 return createStringError(errc::invalid_argument,
304 "line is too short: %zu chars.", Line.size());
305
306 if (Error E = checkChars(Line))
307 return std::move(E);
308
309 IHexRecord Rec;
310 size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2));
311 if (Line.size() != getLength(DataLen))
312 return createStringError(errc::invalid_argument,
313 "invalid line length %zu (should be %zu)",
314 Line.size(), getLength(DataLen));
315
316 Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4));
317 Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2));
318 Rec.HexData = Line.substr(9, DataLen * 2);
319
320 if (getChecksum(Line.drop_front(1)) != 0)
321 return createStringError(errc::invalid_argument, "incorrect checksum.");
322 if (Error E = checkRecord(Rec))
323 return std::move(E);
324 return Rec;
325 }
326
sectionPhysicalAddr(const SectionBase * Sec)327 static uint64_t sectionPhysicalAddr(const SectionBase *Sec) {
328 Segment *Seg = Sec->ParentSegment;
329 if (Seg && Seg->Type != ELF::PT_LOAD)
330 Seg = nullptr;
331 return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset
332 : Sec->Addr;
333 }
334
writeSection(const SectionBase * Sec,ArrayRef<uint8_t> Data)335 void IHexSectionWriterBase::writeSection(const SectionBase *Sec,
336 ArrayRef<uint8_t> Data) {
337 assert(Data.size() == Sec->Size);
338 const uint32_t ChunkSize = 16;
339 uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU;
340 while (!Data.empty()) {
341 uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
342 if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) {
343 if (Addr > 0xFFFFFU) {
344 // Write extended address record, zeroing segment address
345 // if needed.
346 if (SegmentAddr != 0)
347 SegmentAddr = writeSegmentAddr(0U);
348 BaseAddr = writeBaseAddr(Addr);
349 } else {
350 // We can still remain 16-bit
351 SegmentAddr = writeSegmentAddr(Addr);
352 }
353 }
354 uint64_t SegOffset = Addr - BaseAddr - SegmentAddr;
355 assert(SegOffset <= 0xFFFFU);
356 DataSize = std::min(DataSize, 0x10000U - SegOffset);
357 writeData(0, SegOffset, Data.take_front(DataSize));
358 Addr += DataSize;
359 Data = Data.drop_front(DataSize);
360 }
361 }
362
writeSegmentAddr(uint64_t Addr)363 uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) {
364 assert(Addr <= 0xFFFFFU);
365 uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0};
366 writeData(2, 0, Data);
367 return Addr & 0xF0000U;
368 }
369
writeBaseAddr(uint64_t Addr)370 uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) {
371 assert(Addr <= 0xFFFFFFFFU);
372 uint64_t Base = Addr & 0xFFFF0000U;
373 uint8_t Data[] = {static_cast<uint8_t>(Base >> 24),
374 static_cast<uint8_t>((Base >> 16) & 0xFF)};
375 writeData(4, 0, Data);
376 return Base;
377 }
378
writeData(uint8_t,uint16_t,ArrayRef<uint8_t> Data)379 void IHexSectionWriterBase::writeData(uint8_t, uint16_t,
380 ArrayRef<uint8_t> Data) {
381 Offset += IHexRecord::getLineLength(Data.size());
382 }
383
visit(const Section & Sec)384 Error IHexSectionWriterBase::visit(const Section &Sec) {
385 writeSection(&Sec, Sec.Contents);
386 return Error::success();
387 }
388
visit(const OwnedDataSection & Sec)389 Error IHexSectionWriterBase::visit(const OwnedDataSection &Sec) {
390 writeSection(&Sec, Sec.Data);
391 return Error::success();
392 }
393
visit(const StringTableSection & Sec)394 Error IHexSectionWriterBase::visit(const StringTableSection &Sec) {
395 // Check that sizer has already done its work
396 assert(Sec.Size == Sec.StrTabBuilder.getSize());
397 // We are free to pass an invalid pointer to writeSection as long
398 // as we don't actually write any data. The real writer class has
399 // to override this method .
400 writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)});
401 return Error::success();
402 }
403
visit(const DynamicRelocationSection & Sec)404 Error IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) {
405 writeSection(&Sec, Sec.Contents);
406 return Error::success();
407 }
408
writeData(uint8_t Type,uint16_t Addr,ArrayRef<uint8_t> Data)409 void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr,
410 ArrayRef<uint8_t> Data) {
411 IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data);
412 memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size());
413 Offset += HexData.size();
414 }
415
visit(const StringTableSection & Sec)416 Error IHexSectionWriter::visit(const StringTableSection &Sec) {
417 assert(Sec.Size == Sec.StrTabBuilder.getSize());
418 std::vector<uint8_t> Data(Sec.Size);
419 Sec.StrTabBuilder.write(Data.data());
420 writeSection(&Sec, Data);
421 return Error::success();
422 }
423
accept(SectionVisitor & Visitor) const424 Error Section::accept(SectionVisitor &Visitor) const {
425 return Visitor.visit(*this);
426 }
427
accept(MutableSectionVisitor & Visitor)428 Error Section::accept(MutableSectionVisitor &Visitor) {
429 return Visitor.visit(*this);
430 }
431
visit(const OwnedDataSection & Sec)432 Error SectionWriter::visit(const OwnedDataSection &Sec) {
433 llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset);
434 return Error::success();
435 }
436
437 template <class ELFT>
visit(const DecompressedSection & Sec)438 Error ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) {
439 ArrayRef<uint8_t> Compressed =
440 Sec.OriginalData.slice(sizeof(Elf_Chdr_Impl<ELFT>));
441 SmallVector<uint8_t, 128> Decompressed;
442 DebugCompressionType Type;
443 switch (Sec.ChType) {
444 case ELFCOMPRESS_ZLIB:
445 Type = DebugCompressionType::Zlib;
446 break;
447 case ELFCOMPRESS_ZSTD:
448 Type = DebugCompressionType::Zstd;
449 break;
450 default:
451 return createStringError(errc::invalid_argument,
452 "--decompress-debug-sections: ch_type (" +
453 Twine(Sec.ChType) + ") of section '" +
454 Sec.Name + "' is unsupported");
455 }
456 if (auto *Reason =
457 compression::getReasonIfUnsupported(compression::formatFor(Type)))
458 return createStringError(errc::invalid_argument,
459 "failed to decompress section '" + Sec.Name +
460 "': " + Reason);
461 if (Error E = compression::decompress(Type, Compressed, Decompressed,
462 static_cast<size_t>(Sec.Size)))
463 return createStringError(errc::invalid_argument,
464 "failed to decompress section '" + Sec.Name +
465 "': " + toString(std::move(E)));
466
467 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
468 std::copy(Decompressed.begin(), Decompressed.end(), Buf);
469
470 return Error::success();
471 }
472
visit(const DecompressedSection & Sec)473 Error BinarySectionWriter::visit(const DecompressedSection &Sec) {
474 return createStringError(errc::operation_not_permitted,
475 "cannot write compressed section '" + Sec.Name +
476 "' ");
477 }
478
accept(SectionVisitor & Visitor) const479 Error DecompressedSection::accept(SectionVisitor &Visitor) const {
480 return Visitor.visit(*this);
481 }
482
accept(MutableSectionVisitor & Visitor)483 Error DecompressedSection::accept(MutableSectionVisitor &Visitor) {
484 return Visitor.visit(*this);
485 }
486
accept(SectionVisitor & Visitor) const487 Error OwnedDataSection::accept(SectionVisitor &Visitor) const {
488 return Visitor.visit(*this);
489 }
490
accept(MutableSectionVisitor & Visitor)491 Error OwnedDataSection::accept(MutableSectionVisitor &Visitor) {
492 return Visitor.visit(*this);
493 }
494
appendHexData(StringRef HexData)495 void OwnedDataSection::appendHexData(StringRef HexData) {
496 assert((HexData.size() & 1) == 0);
497 while (!HexData.empty()) {
498 Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2)));
499 HexData = HexData.drop_front(2);
500 }
501 Size = Data.size();
502 }
503
visit(const CompressedSection & Sec)504 Error BinarySectionWriter::visit(const CompressedSection &Sec) {
505 return createStringError(errc::operation_not_permitted,
506 "cannot write compressed section '" + Sec.Name +
507 "' ");
508 }
509
510 template <class ELFT>
visit(const CompressedSection & Sec)511 Error ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) {
512 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
513 Elf_Chdr_Impl<ELFT> Chdr = {};
514 switch (Sec.CompressionType) {
515 case DebugCompressionType::None:
516 std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
517 return Error::success();
518 case DebugCompressionType::Zlib:
519 Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
520 break;
521 case DebugCompressionType::Zstd:
522 Chdr.ch_type = ELF::ELFCOMPRESS_ZSTD;
523 break;
524 }
525 Chdr.ch_size = Sec.DecompressedSize;
526 Chdr.ch_addralign = Sec.DecompressedAlign;
527 memcpy(Buf, &Chdr, sizeof(Chdr));
528 Buf += sizeof(Chdr);
529
530 std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
531 return Error::success();
532 }
533
CompressedSection(const SectionBase & Sec,DebugCompressionType CompressionType,bool Is64Bits)534 CompressedSection::CompressedSection(const SectionBase &Sec,
535 DebugCompressionType CompressionType,
536 bool Is64Bits)
537 : SectionBase(Sec), CompressionType(CompressionType),
538 DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
539 compression::compress(compression::Params(CompressionType), OriginalData,
540 CompressedData);
541
542 Flags |= ELF::SHF_COMPRESSED;
543 size_t ChdrSize = Is64Bits ? sizeof(object::Elf_Chdr_Impl<object::ELF64LE>)
544 : sizeof(object::Elf_Chdr_Impl<object::ELF32LE>);
545 Size = ChdrSize + CompressedData.size();
546 Align = 8;
547 }
548
CompressedSection(ArrayRef<uint8_t> CompressedData,uint32_t ChType,uint64_t DecompressedSize,uint64_t DecompressedAlign)549 CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData,
550 uint32_t ChType, uint64_t DecompressedSize,
551 uint64_t DecompressedAlign)
552 : ChType(ChType), CompressionType(DebugCompressionType::None),
553 DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
554 OriginalData = CompressedData;
555 }
556
accept(SectionVisitor & Visitor) const557 Error CompressedSection::accept(SectionVisitor &Visitor) const {
558 return Visitor.visit(*this);
559 }
560
accept(MutableSectionVisitor & Visitor)561 Error CompressedSection::accept(MutableSectionVisitor &Visitor) {
562 return Visitor.visit(*this);
563 }
564
addString(StringRef Name)565 void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); }
566
findIndex(StringRef Name) const567 uint32_t StringTableSection::findIndex(StringRef Name) const {
568 return StrTabBuilder.getOffset(Name);
569 }
570
prepareForLayout()571 void StringTableSection::prepareForLayout() {
572 StrTabBuilder.finalize();
573 Size = StrTabBuilder.getSize();
574 }
575
visit(const StringTableSection & Sec)576 Error SectionWriter::visit(const StringTableSection &Sec) {
577 Sec.StrTabBuilder.write(reinterpret_cast<uint8_t *>(Out.getBufferStart()) +
578 Sec.Offset);
579 return Error::success();
580 }
581
accept(SectionVisitor & Visitor) const582 Error StringTableSection::accept(SectionVisitor &Visitor) const {
583 return Visitor.visit(*this);
584 }
585
accept(MutableSectionVisitor & Visitor)586 Error StringTableSection::accept(MutableSectionVisitor &Visitor) {
587 return Visitor.visit(*this);
588 }
589
590 template <class ELFT>
visit(const SectionIndexSection & Sec)591 Error ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
592 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
593 llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf));
594 return Error::success();
595 }
596
initialize(SectionTableRef SecTable)597 Error SectionIndexSection::initialize(SectionTableRef SecTable) {
598 Size = 0;
599 Expected<SymbolTableSection *> Sec =
600 SecTable.getSectionOfType<SymbolTableSection>(
601 Link,
602 "Link field value " + Twine(Link) + " in section " + Name +
603 " is invalid",
604 "Link field value " + Twine(Link) + " in section " + Name +
605 " is not a symbol table");
606 if (!Sec)
607 return Sec.takeError();
608
609 setSymTab(*Sec);
610 Symbols->setShndxTable(this);
611 return Error::success();
612 }
613
finalize()614 void SectionIndexSection::finalize() { Link = Symbols->Index; }
615
accept(SectionVisitor & Visitor) const616 Error SectionIndexSection::accept(SectionVisitor &Visitor) const {
617 return Visitor.visit(*this);
618 }
619
accept(MutableSectionVisitor & Visitor)620 Error SectionIndexSection::accept(MutableSectionVisitor &Visitor) {
621 return Visitor.visit(*this);
622 }
623
isValidReservedSectionIndex(uint16_t Index,uint16_t Machine)624 static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
625 switch (Index) {
626 case SHN_ABS:
627 case SHN_COMMON:
628 return true;
629 }
630
631 if (Machine == EM_AMDGPU) {
632 return Index == SHN_AMDGPU_LDS;
633 }
634
635 if (Machine == EM_MIPS) {
636 switch (Index) {
637 case SHN_MIPS_ACOMMON:
638 case SHN_MIPS_SCOMMON:
639 case SHN_MIPS_SUNDEFINED:
640 return true;
641 }
642 }
643
644 if (Machine == EM_HEXAGON) {
645 switch (Index) {
646 case SHN_HEXAGON_SCOMMON:
647 case SHN_HEXAGON_SCOMMON_1:
648 case SHN_HEXAGON_SCOMMON_2:
649 case SHN_HEXAGON_SCOMMON_4:
650 case SHN_HEXAGON_SCOMMON_8:
651 return true;
652 }
653 }
654 return false;
655 }
656
657 // Large indexes force us to clarify exactly what this function should do. This
658 // function should return the value that will appear in st_shndx when written
659 // out.
getShndx() const660 uint16_t Symbol::getShndx() const {
661 if (DefinedIn != nullptr) {
662 if (DefinedIn->Index >= SHN_LORESERVE)
663 return SHN_XINDEX;
664 return DefinedIn->Index;
665 }
666
667 if (ShndxType == SYMBOL_SIMPLE_INDEX) {
668 // This means that we don't have a defined section but we do need to
669 // output a legitimate section index.
670 return SHN_UNDEF;
671 }
672
673 assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON ||
674 (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) ||
675 (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS));
676 return static_cast<uint16_t>(ShndxType);
677 }
678
isCommon() const679 bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; }
680
assignIndices()681 void SymbolTableSection::assignIndices() {
682 uint32_t Index = 0;
683 for (auto &Sym : Symbols)
684 Sym->Index = Index++;
685 }
686
addSymbol(Twine Name,uint8_t Bind,uint8_t Type,SectionBase * DefinedIn,uint64_t Value,uint8_t Visibility,uint16_t Shndx,uint64_t SymbolSize)687 void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
688 SectionBase *DefinedIn, uint64_t Value,
689 uint8_t Visibility, uint16_t Shndx,
690 uint64_t SymbolSize) {
691 Symbol Sym;
692 Sym.Name = Name.str();
693 Sym.Binding = Bind;
694 Sym.Type = Type;
695 Sym.DefinedIn = DefinedIn;
696 if (DefinedIn != nullptr)
697 DefinedIn->HasSymbol = true;
698 if (DefinedIn == nullptr) {
699 if (Shndx >= SHN_LORESERVE)
700 Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
701 else
702 Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
703 }
704 Sym.Value = Value;
705 Sym.Visibility = Visibility;
706 Sym.Size = SymbolSize;
707 Sym.Index = Symbols.size();
708 Symbols.emplace_back(std::make_unique<Symbol>(Sym));
709 Size += this->EntrySize;
710 }
711
removeSectionReferences(bool AllowBrokenLinks,function_ref<bool (const SectionBase *)> ToRemove)712 Error SymbolTableSection::removeSectionReferences(
713 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
714 if (ToRemove(SectionIndexTable))
715 SectionIndexTable = nullptr;
716 if (ToRemove(SymbolNames)) {
717 if (!AllowBrokenLinks)
718 return createStringError(
719 llvm::errc::invalid_argument,
720 "string table '%s' cannot be removed because it is "
721 "referenced by the symbol table '%s'",
722 SymbolNames->Name.data(), this->Name.data());
723 SymbolNames = nullptr;
724 }
725 return removeSymbols(
726 [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); });
727 }
728
updateSymbols(function_ref<void (Symbol &)> Callable)729 void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
730 for (SymPtr &Sym : llvm::drop_begin(Symbols))
731 Callable(*Sym);
732 std::stable_partition(
733 std::begin(Symbols), std::end(Symbols),
734 [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
735 assignIndices();
736 }
737
removeSymbols(function_ref<bool (const Symbol &)> ToRemove)738 Error SymbolTableSection::removeSymbols(
739 function_ref<bool(const Symbol &)> ToRemove) {
740 Symbols.erase(
741 std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
742 [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
743 std::end(Symbols));
744 Size = Symbols.size() * EntrySize;
745 assignIndices();
746 return Error::success();
747 }
748
replaceSectionReferences(const DenseMap<SectionBase *,SectionBase * > & FromTo)749 void SymbolTableSection::replaceSectionReferences(
750 const DenseMap<SectionBase *, SectionBase *> &FromTo) {
751 for (std::unique_ptr<Symbol> &Sym : Symbols)
752 if (SectionBase *To = FromTo.lookup(Sym->DefinedIn))
753 Sym->DefinedIn = To;
754 }
755
initialize(SectionTableRef SecTable)756 Error SymbolTableSection::initialize(SectionTableRef SecTable) {
757 Size = 0;
758 Expected<StringTableSection *> Sec =
759 SecTable.getSectionOfType<StringTableSection>(
760 Link,
761 "Symbol table has link index of " + Twine(Link) +
762 " which is not a valid index",
763 "Symbol table has link index of " + Twine(Link) +
764 " which is not a string table");
765 if (!Sec)
766 return Sec.takeError();
767
768 setStrTab(*Sec);
769 return Error::success();
770 }
771
finalize()772 void SymbolTableSection::finalize() {
773 uint32_t MaxLocalIndex = 0;
774 for (std::unique_ptr<Symbol> &Sym : Symbols) {
775 Sym->NameIndex =
776 SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name);
777 if (Sym->Binding == STB_LOCAL)
778 MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
779 }
780 // Now we need to set the Link and Info fields.
781 Link = SymbolNames == nullptr ? 0 : SymbolNames->Index;
782 Info = MaxLocalIndex + 1;
783 }
784
prepareForLayout()785 void SymbolTableSection::prepareForLayout() {
786 // Reserve proper amount of space in section index table, so we can
787 // layout sections correctly. We will fill the table with correct
788 // indexes later in fillShdnxTable.
789 if (SectionIndexTable)
790 SectionIndexTable->reserve(Symbols.size());
791
792 // Add all of our strings to SymbolNames so that SymbolNames has the right
793 // size before layout is decided.
794 // If the symbol names section has been removed, don't try to add strings to
795 // the table.
796 if (SymbolNames != nullptr)
797 for (std::unique_ptr<Symbol> &Sym : Symbols)
798 SymbolNames->addString(Sym->Name);
799 }
800
fillShndxTable()801 void SymbolTableSection::fillShndxTable() {
802 if (SectionIndexTable == nullptr)
803 return;
804 // Fill section index table with real section indexes. This function must
805 // be called after assignOffsets.
806 for (const std::unique_ptr<Symbol> &Sym : Symbols) {
807 if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
808 SectionIndexTable->addIndex(Sym->DefinedIn->Index);
809 else
810 SectionIndexTable->addIndex(SHN_UNDEF);
811 }
812 }
813
814 Expected<const Symbol *>
getSymbolByIndex(uint32_t Index) const815 SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
816 if (Symbols.size() <= Index)
817 return createStringError(errc::invalid_argument,
818 "invalid symbol index: " + Twine(Index));
819 return Symbols[Index].get();
820 }
821
getSymbolByIndex(uint32_t Index)822 Expected<Symbol *> SymbolTableSection::getSymbolByIndex(uint32_t Index) {
823 Expected<const Symbol *> Sym =
824 static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index);
825 if (!Sym)
826 return Sym.takeError();
827
828 return const_cast<Symbol *>(*Sym);
829 }
830
831 template <class ELFT>
visit(const SymbolTableSection & Sec)832 Error ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
833 Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset);
834 // Loop though symbols setting each entry of the symbol table.
835 for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) {
836 Sym->st_name = Symbol->NameIndex;
837 Sym->st_value = Symbol->Value;
838 Sym->st_size = Symbol->Size;
839 Sym->st_other = Symbol->Visibility;
840 Sym->setBinding(Symbol->Binding);
841 Sym->setType(Symbol->Type);
842 Sym->st_shndx = Symbol->getShndx();
843 ++Sym;
844 }
845 return Error::success();
846 }
847
accept(SectionVisitor & Visitor) const848 Error SymbolTableSection::accept(SectionVisitor &Visitor) const {
849 return Visitor.visit(*this);
850 }
851
accept(MutableSectionVisitor & Visitor)852 Error SymbolTableSection::accept(MutableSectionVisitor &Visitor) {
853 return Visitor.visit(*this);
854 }
855
getNamePrefix() const856 StringRef RelocationSectionBase::getNamePrefix() const {
857 switch (Type) {
858 case SHT_REL:
859 return ".rel";
860 case SHT_RELA:
861 return ".rela";
862 default:
863 llvm_unreachable("not a relocation section");
864 }
865 }
866
removeSectionReferences(bool AllowBrokenLinks,function_ref<bool (const SectionBase *)> ToRemove)867 Error RelocationSection::removeSectionReferences(
868 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
869 if (ToRemove(Symbols)) {
870 if (!AllowBrokenLinks)
871 return createStringError(
872 llvm::errc::invalid_argument,
873 "symbol table '%s' cannot be removed because it is "
874 "referenced by the relocation section '%s'",
875 Symbols->Name.data(), this->Name.data());
876 Symbols = nullptr;
877 }
878
879 for (const Relocation &R : Relocations) {
880 if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn ||
881 !ToRemove(R.RelocSymbol->DefinedIn))
882 continue;
883 return createStringError(llvm::errc::invalid_argument,
884 "section '%s' cannot be removed: (%s+0x%" PRIx64
885 ") has relocation against symbol '%s'",
886 R.RelocSymbol->DefinedIn->Name.data(),
887 SecToApplyRel->Name.data(), R.Offset,
888 R.RelocSymbol->Name.c_str());
889 }
890
891 return Error::success();
892 }
893
894 template <class SymTabType>
initialize(SectionTableRef SecTable)895 Error RelocSectionWithSymtabBase<SymTabType>::initialize(
896 SectionTableRef SecTable) {
897 if (Link != SHN_UNDEF) {
898 Expected<SymTabType *> Sec = SecTable.getSectionOfType<SymTabType>(
899 Link,
900 "Link field value " + Twine(Link) + " in section " + Name +
901 " is invalid",
902 "Link field value " + Twine(Link) + " in section " + Name +
903 " is not a symbol table");
904 if (!Sec)
905 return Sec.takeError();
906
907 setSymTab(*Sec);
908 }
909
910 if (Info != SHN_UNDEF) {
911 Expected<SectionBase *> Sec =
912 SecTable.getSection(Info, "Info field value " + Twine(Info) +
913 " in section " + Name + " is invalid");
914 if (!Sec)
915 return Sec.takeError();
916
917 setSection(*Sec);
918 } else
919 setSection(nullptr);
920
921 return Error::success();
922 }
923
924 template <class SymTabType>
finalize()925 void RelocSectionWithSymtabBase<SymTabType>::finalize() {
926 this->Link = Symbols ? Symbols->Index : 0;
927
928 if (SecToApplyRel != nullptr)
929 this->Info = SecToApplyRel->Index;
930 }
931
932 template <class ELFT>
setAddend(Elf_Rel_Impl<ELFT,false> &,uint64_t)933 static void setAddend(Elf_Rel_Impl<ELFT, false> &, uint64_t) {}
934
935 template <class ELFT>
setAddend(Elf_Rel_Impl<ELFT,true> & Rela,uint64_t Addend)936 static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
937 Rela.r_addend = Addend;
938 }
939
940 template <class RelRange, class T>
writeRel(const RelRange & Relocations,T * Buf,bool IsMips64EL)941 static void writeRel(const RelRange &Relocations, T *Buf, bool IsMips64EL) {
942 for (const auto &Reloc : Relocations) {
943 Buf->r_offset = Reloc.Offset;
944 setAddend(*Buf, Reloc.Addend);
945 Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0,
946 Reloc.Type, IsMips64EL);
947 ++Buf;
948 }
949 }
950
951 template <class ELFT>
visit(const RelocationSection & Sec)952 Error ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
953 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
954 if (Sec.Type == SHT_REL)
955 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf),
956 Sec.getObject().IsMips64EL);
957 else
958 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf),
959 Sec.getObject().IsMips64EL);
960 return Error::success();
961 }
962
accept(SectionVisitor & Visitor) const963 Error RelocationSection::accept(SectionVisitor &Visitor) const {
964 return Visitor.visit(*this);
965 }
966
accept(MutableSectionVisitor & Visitor)967 Error RelocationSection::accept(MutableSectionVisitor &Visitor) {
968 return Visitor.visit(*this);
969 }
970
removeSymbols(function_ref<bool (const Symbol &)> ToRemove)971 Error RelocationSection::removeSymbols(
972 function_ref<bool(const Symbol &)> ToRemove) {
973 for (const Relocation &Reloc : Relocations)
974 if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol))
975 return createStringError(
976 llvm::errc::invalid_argument,
977 "not stripping symbol '%s' because it is named in a relocation",
978 Reloc.RelocSymbol->Name.data());
979 return Error::success();
980 }
981
markSymbols()982 void RelocationSection::markSymbols() {
983 for (const Relocation &Reloc : Relocations)
984 if (Reloc.RelocSymbol)
985 Reloc.RelocSymbol->Referenced = true;
986 }
987
replaceSectionReferences(const DenseMap<SectionBase *,SectionBase * > & FromTo)988 void RelocationSection::replaceSectionReferences(
989 const DenseMap<SectionBase *, SectionBase *> &FromTo) {
990 // Update the target section if it was replaced.
991 if (SectionBase *To = FromTo.lookup(SecToApplyRel))
992 SecToApplyRel = To;
993 }
994
visit(const DynamicRelocationSection & Sec)995 Error SectionWriter::visit(const DynamicRelocationSection &Sec) {
996 llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
997 return Error::success();
998 }
999
accept(SectionVisitor & Visitor) const1000 Error DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
1001 return Visitor.visit(*this);
1002 }
1003
accept(MutableSectionVisitor & Visitor)1004 Error DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) {
1005 return Visitor.visit(*this);
1006 }
1007
removeSectionReferences(bool AllowBrokenLinks,function_ref<bool (const SectionBase *)> ToRemove)1008 Error DynamicRelocationSection::removeSectionReferences(
1009 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
1010 if (ToRemove(Symbols)) {
1011 if (!AllowBrokenLinks)
1012 return createStringError(
1013 llvm::errc::invalid_argument,
1014 "symbol table '%s' cannot be removed because it is "
1015 "referenced by the relocation section '%s'",
1016 Symbols->Name.data(), this->Name.data());
1017 Symbols = nullptr;
1018 }
1019
1020 // SecToApplyRel contains a section referenced by sh_info field. It keeps
1021 // a section to which the relocation section applies. When we remove any
1022 // sections we also remove their relocation sections. Since we do that much
1023 // earlier, this assert should never be triggered.
1024 assert(!SecToApplyRel || !ToRemove(SecToApplyRel));
1025 return Error::success();
1026 }
1027
removeSectionReferences(bool AllowBrokenDependency,function_ref<bool (const SectionBase *)> ToRemove)1028 Error Section::removeSectionReferences(
1029 bool AllowBrokenDependency,
1030 function_ref<bool(const SectionBase *)> ToRemove) {
1031 if (ToRemove(LinkSection)) {
1032 if (!AllowBrokenDependency)
1033 return createStringError(llvm::errc::invalid_argument,
1034 "section '%s' cannot be removed because it is "
1035 "referenced by the section '%s'",
1036 LinkSection->Name.data(), this->Name.data());
1037 LinkSection = nullptr;
1038 }
1039 return Error::success();
1040 }
1041
finalize()1042 void GroupSection::finalize() {
1043 this->Info = Sym ? Sym->Index : 0;
1044 this->Link = SymTab ? SymTab->Index : 0;
1045 // Linker deduplication for GRP_COMDAT is based on Sym->Name. The local/global
1046 // status is not part of the equation. If Sym is localized, the intention is
1047 // likely to make the group fully localized. Drop GRP_COMDAT to suppress
1048 // deduplication. See https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc
1049 if ((FlagWord & GRP_COMDAT) && Sym && Sym->Binding == STB_LOCAL)
1050 this->FlagWord &= ~GRP_COMDAT;
1051 }
1052
removeSectionReferences(bool AllowBrokenLinks,function_ref<bool (const SectionBase *)> ToRemove)1053 Error GroupSection::removeSectionReferences(
1054 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
1055 if (ToRemove(SymTab)) {
1056 if (!AllowBrokenLinks)
1057 return createStringError(
1058 llvm::errc::invalid_argument,
1059 "section '.symtab' cannot be removed because it is "
1060 "referenced by the group section '%s'",
1061 this->Name.data());
1062 SymTab = nullptr;
1063 Sym = nullptr;
1064 }
1065 llvm::erase_if(GroupMembers, ToRemove);
1066 return Error::success();
1067 }
1068
removeSymbols(function_ref<bool (const Symbol &)> ToRemove)1069 Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
1070 if (ToRemove(*Sym))
1071 return createStringError(llvm::errc::invalid_argument,
1072 "symbol '%s' cannot be removed because it is "
1073 "referenced by the section '%s[%d]'",
1074 Sym->Name.data(), this->Name.data(), this->Index);
1075 return Error::success();
1076 }
1077
markSymbols()1078 void GroupSection::markSymbols() {
1079 if (Sym)
1080 Sym->Referenced = true;
1081 }
1082
replaceSectionReferences(const DenseMap<SectionBase *,SectionBase * > & FromTo)1083 void GroupSection::replaceSectionReferences(
1084 const DenseMap<SectionBase *, SectionBase *> &FromTo) {
1085 for (SectionBase *&Sec : GroupMembers)
1086 if (SectionBase *To = FromTo.lookup(Sec))
1087 Sec = To;
1088 }
1089
onRemove()1090 void GroupSection::onRemove() {
1091 // As the header section of the group is removed, drop the Group flag in its
1092 // former members.
1093 for (SectionBase *Sec : GroupMembers)
1094 Sec->Flags &= ~SHF_GROUP;
1095 }
1096
initialize(SectionTableRef SecTable)1097 Error Section::initialize(SectionTableRef SecTable) {
1098 if (Link == ELF::SHN_UNDEF)
1099 return Error::success();
1100
1101 Expected<SectionBase *> Sec =
1102 SecTable.getSection(Link, "Link field value " + Twine(Link) +
1103 " in section " + Name + " is invalid");
1104 if (!Sec)
1105 return Sec.takeError();
1106
1107 LinkSection = *Sec;
1108
1109 if (LinkSection->Type == ELF::SHT_SYMTAB)
1110 LinkSection = nullptr;
1111
1112 return Error::success();
1113 }
1114
finalize()1115 void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
1116
init(StringRef File)1117 void GnuDebugLinkSection::init(StringRef File) {
1118 FileName = sys::path::filename(File);
1119 // The format for the .gnu_debuglink starts with the file name and is
1120 // followed by a null terminator and then the CRC32 of the file. The CRC32
1121 // should be 4 byte aligned. So we add the FileName size, a 1 for the null
1122 // byte, and then finally push the size to alignment and add 4.
1123 Size = alignTo(FileName.size() + 1, 4) + 4;
1124 // The CRC32 will only be aligned if we align the whole section.
1125 Align = 4;
1126 Type = OriginalType = ELF::SHT_PROGBITS;
1127 Name = ".gnu_debuglink";
1128 // For sections not found in segments, OriginalOffset is only used to
1129 // establish the order that sections should go in. By using the maximum
1130 // possible offset we cause this section to wind up at the end.
1131 OriginalOffset = std::numeric_limits<uint64_t>::max();
1132 }
1133
GnuDebugLinkSection(StringRef File,uint32_t PrecomputedCRC)1134 GnuDebugLinkSection::GnuDebugLinkSection(StringRef File,
1135 uint32_t PrecomputedCRC)
1136 : FileName(File), CRC32(PrecomputedCRC) {
1137 init(File);
1138 }
1139
1140 template <class ELFT>
visit(const GnuDebugLinkSection & Sec)1141 Error ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
1142 unsigned char *Buf =
1143 reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
1144 Elf_Word *CRC =
1145 reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
1146 *CRC = Sec.CRC32;
1147 llvm::copy(Sec.FileName, Buf);
1148 return Error::success();
1149 }
1150
accept(SectionVisitor & Visitor) const1151 Error GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
1152 return Visitor.visit(*this);
1153 }
1154
accept(MutableSectionVisitor & Visitor)1155 Error GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) {
1156 return Visitor.visit(*this);
1157 }
1158
1159 template <class ELFT>
visit(const GroupSection & Sec)1160 Error ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
1161 ELF::Elf32_Word *Buf =
1162 reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
1163 support::endian::write32<ELFT::TargetEndianness>(Buf++, Sec.FlagWord);
1164 for (SectionBase *S : Sec.GroupMembers)
1165 support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
1166 return Error::success();
1167 }
1168
accept(SectionVisitor & Visitor) const1169 Error GroupSection::accept(SectionVisitor &Visitor) const {
1170 return Visitor.visit(*this);
1171 }
1172
accept(MutableSectionVisitor & Visitor)1173 Error GroupSection::accept(MutableSectionVisitor &Visitor) {
1174 return Visitor.visit(*this);
1175 }
1176
1177 // Returns true IFF a section is wholly inside the range of a segment
sectionWithinSegment(const SectionBase & Sec,const Segment & Seg)1178 static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) {
1179 // If a section is empty it should be treated like it has a size of 1. This is
1180 // to clarify the case when an empty section lies on a boundary between two
1181 // segments and ensures that the section "belongs" to the second segment and
1182 // not the first.
1183 uint64_t SecSize = Sec.Size ? Sec.Size : 1;
1184
1185 // Ignore just added sections.
1186 if (Sec.OriginalOffset == std::numeric_limits<uint64_t>::max())
1187 return false;
1188
1189 if (Sec.Type == SHT_NOBITS) {
1190 if (!(Sec.Flags & SHF_ALLOC))
1191 return false;
1192
1193 bool SectionIsTLS = Sec.Flags & SHF_TLS;
1194 bool SegmentIsTLS = Seg.Type == PT_TLS;
1195 if (SectionIsTLS != SegmentIsTLS)
1196 return false;
1197
1198 return Seg.VAddr <= Sec.Addr &&
1199 Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize;
1200 }
1201
1202 return Seg.Offset <= Sec.OriginalOffset &&
1203 Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize;
1204 }
1205
1206 // Returns true IFF a segment's original offset is inside of another segment's
1207 // range.
segmentOverlapsSegment(const Segment & Child,const Segment & Parent)1208 static bool segmentOverlapsSegment(const Segment &Child,
1209 const Segment &Parent) {
1210
1211 return Parent.OriginalOffset <= Child.OriginalOffset &&
1212 Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
1213 }
1214
compareSegmentsByOffset(const Segment * A,const Segment * B)1215 static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
1216 // Any segment without a parent segment should come before a segment
1217 // that has a parent segment.
1218 if (A->OriginalOffset < B->OriginalOffset)
1219 return true;
1220 if (A->OriginalOffset > B->OriginalOffset)
1221 return false;
1222 return A->Index < B->Index;
1223 }
1224
initFileHeader()1225 void BasicELFBuilder::initFileHeader() {
1226 Obj->Flags = 0x0;
1227 Obj->Type = ET_REL;
1228 Obj->OSABI = ELFOSABI_NONE;
1229 Obj->ABIVersion = 0;
1230 Obj->Entry = 0x0;
1231 Obj->Machine = EM_NONE;
1232 Obj->Version = 1;
1233 }
1234
initHeaderSegment()1235 void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; }
1236
addStrTab()1237 StringTableSection *BasicELFBuilder::addStrTab() {
1238 auto &StrTab = Obj->addSection<StringTableSection>();
1239 StrTab.Name = ".strtab";
1240
1241 Obj->SectionNames = &StrTab;
1242 return &StrTab;
1243 }
1244
addSymTab(StringTableSection * StrTab)1245 SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) {
1246 auto &SymTab = Obj->addSection<SymbolTableSection>();
1247
1248 SymTab.Name = ".symtab";
1249 SymTab.Link = StrTab->Index;
1250
1251 // The symbol table always needs a null symbol
1252 SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
1253
1254 Obj->SymbolTable = &SymTab;
1255 return &SymTab;
1256 }
1257
initSections()1258 Error BasicELFBuilder::initSections() {
1259 for (SectionBase &Sec : Obj->sections())
1260 if (Error Err = Sec.initialize(Obj->sections()))
1261 return Err;
1262
1263 return Error::success();
1264 }
1265
addData(SymbolTableSection * SymTab)1266 void BinaryELFBuilder::addData(SymbolTableSection *SymTab) {
1267 auto Data = ArrayRef<uint8_t>(
1268 reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
1269 MemBuf->getBufferSize());
1270 auto &DataSection = Obj->addSection<Section>(Data);
1271 DataSection.Name = ".data";
1272 DataSection.Type = ELF::SHT_PROGBITS;
1273 DataSection.Size = Data.size();
1274 DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
1275
1276 std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
1277 std::replace_if(
1278 std::begin(SanitizedFilename), std::end(SanitizedFilename),
1279 [](char C) { return !isAlnum(C); }, '_');
1280 Twine Prefix = Twine("_binary_") + SanitizedFilename;
1281
1282 SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
1283 /*Value=*/0, NewSymbolVisibility, 0, 0);
1284 SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
1285 /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0);
1286 SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
1287 /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS,
1288 0);
1289 }
1290
build()1291 Expected<std::unique_ptr<Object>> BinaryELFBuilder::build() {
1292 initFileHeader();
1293 initHeaderSegment();
1294
1295 SymbolTableSection *SymTab = addSymTab(addStrTab());
1296 if (Error Err = initSections())
1297 return std::move(Err);
1298 addData(SymTab);
1299
1300 return std::move(Obj);
1301 }
1302
1303 // Adds sections from IHEX data file. Data should have been
1304 // fully validated by this time.
addDataSections()1305 void IHexELFBuilder::addDataSections() {
1306 OwnedDataSection *Section = nullptr;
1307 uint64_t SegmentAddr = 0, BaseAddr = 0;
1308 uint32_t SecNo = 1;
1309
1310 for (const IHexRecord &R : Records) {
1311 uint64_t RecAddr;
1312 switch (R.Type) {
1313 case IHexRecord::Data:
1314 // Ignore empty data records
1315 if (R.HexData.empty())
1316 continue;
1317 RecAddr = R.Addr + SegmentAddr + BaseAddr;
1318 if (!Section || Section->Addr + Section->Size != RecAddr) {
1319 // OriginalOffset field is only used to sort sections before layout, so
1320 // instead of keeping track of real offsets in IHEX file, and as
1321 // layoutSections() and layoutSectionsForOnlyKeepDebug() use
1322 // llvm::stable_sort(), we can just set it to a constant (zero).
1323 Section = &Obj->addSection<OwnedDataSection>(
1324 ".sec" + std::to_string(SecNo), RecAddr,
1325 ELF::SHF_ALLOC | ELF::SHF_WRITE, 0);
1326 SecNo++;
1327 }
1328 Section->appendHexData(R.HexData);
1329 break;
1330 case IHexRecord::EndOfFile:
1331 break;
1332 case IHexRecord::SegmentAddr:
1333 // 20-bit segment address.
1334 SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4;
1335 break;
1336 case IHexRecord::StartAddr80x86:
1337 case IHexRecord::StartAddr:
1338 Obj->Entry = checkedGetHex<uint32_t>(R.HexData);
1339 assert(Obj->Entry <= 0xFFFFFU);
1340 break;
1341 case IHexRecord::ExtendedAddr:
1342 // 16-31 bits of linear base address
1343 BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16;
1344 break;
1345 default:
1346 llvm_unreachable("unknown record type");
1347 }
1348 }
1349 }
1350
build()1351 Expected<std::unique_ptr<Object>> IHexELFBuilder::build() {
1352 initFileHeader();
1353 initHeaderSegment();
1354 StringTableSection *StrTab = addStrTab();
1355 addSymTab(StrTab);
1356 if (Error Err = initSections())
1357 return std::move(Err);
1358 addDataSections();
1359
1360 return std::move(Obj);
1361 }
1362
1363 template <class ELFT>
ELFBuilder(const ELFObjectFile<ELFT> & ElfObj,Object & Obj,std::optional<StringRef> ExtractPartition)1364 ELFBuilder<ELFT>::ELFBuilder(const ELFObjectFile<ELFT> &ElfObj, Object &Obj,
1365 std::optional<StringRef> ExtractPartition)
1366 : ElfFile(ElfObj.getELFFile()), Obj(Obj),
1367 ExtractPartition(ExtractPartition) {
1368 Obj.IsMips64EL = ElfFile.isMips64EL();
1369 }
1370
setParentSegment(Segment & Child)1371 template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
1372 for (Segment &Parent : Obj.segments()) {
1373 // Every segment will overlap with itself but we don't want a segment to
1374 // be its own parent so we avoid that situation.
1375 if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
1376 // We want a canonical "most parental" segment but this requires
1377 // inspecting the ParentSegment.
1378 if (compareSegmentsByOffset(&Parent, &Child))
1379 if (Child.ParentSegment == nullptr ||
1380 compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
1381 Child.ParentSegment = &Parent;
1382 }
1383 }
1384 }
1385 }
1386
findEhdrOffset()1387 template <class ELFT> Error ELFBuilder<ELFT>::findEhdrOffset() {
1388 if (!ExtractPartition)
1389 return Error::success();
1390
1391 for (const SectionBase &Sec : Obj.sections()) {
1392 if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) {
1393 EhdrOffset = Sec.Offset;
1394 return Error::success();
1395 }
1396 }
1397 return createStringError(errc::invalid_argument,
1398 "could not find partition named '" +
1399 *ExtractPartition + "'");
1400 }
1401
1402 template <class ELFT>
readProgramHeaders(const ELFFile<ELFT> & HeadersFile)1403 Error ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) {
1404 uint32_t Index = 0;
1405
1406 Expected<typename ELFFile<ELFT>::Elf_Phdr_Range> Headers =
1407 HeadersFile.program_headers();
1408 if (!Headers)
1409 return Headers.takeError();
1410
1411 for (const typename ELFFile<ELFT>::Elf_Phdr &Phdr : *Headers) {
1412 if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize())
1413 return createStringError(
1414 errc::invalid_argument,
1415 "program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) +
1416 " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) +
1417 " goes past the end of the file");
1418
1419 ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset,
1420 (size_t)Phdr.p_filesz};
1421 Segment &Seg = Obj.addSegment(Data);
1422 Seg.Type = Phdr.p_type;
1423 Seg.Flags = Phdr.p_flags;
1424 Seg.OriginalOffset = Phdr.p_offset + EhdrOffset;
1425 Seg.Offset = Phdr.p_offset + EhdrOffset;
1426 Seg.VAddr = Phdr.p_vaddr;
1427 Seg.PAddr = Phdr.p_paddr;
1428 Seg.FileSize = Phdr.p_filesz;
1429 Seg.MemSize = Phdr.p_memsz;
1430 Seg.Align = Phdr.p_align;
1431 Seg.Index = Index++;
1432 for (SectionBase &Sec : Obj.sections())
1433 if (sectionWithinSegment(Sec, Seg)) {
1434 Seg.addSection(&Sec);
1435 if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset)
1436 Sec.ParentSegment = &Seg;
1437 }
1438 }
1439
1440 auto &ElfHdr = Obj.ElfHdrSegment;
1441 ElfHdr.Index = Index++;
1442 ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset;
1443
1444 const typename ELFT::Ehdr &Ehdr = HeadersFile.getHeader();
1445 auto &PrHdr = Obj.ProgramHdrSegment;
1446 PrHdr.Type = PT_PHDR;
1447 PrHdr.Flags = 0;
1448 // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
1449 // Whereas this works automatically for ElfHdr, here OriginalOffset is
1450 // always non-zero and to ensure the equation we assign the same value to
1451 // VAddr as well.
1452 PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff;
1453 PrHdr.PAddr = 0;
1454 PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
1455 // The spec requires us to naturally align all the fields.
1456 PrHdr.Align = sizeof(Elf_Addr);
1457 PrHdr.Index = Index++;
1458
1459 // Now we do an O(n^2) loop through the segments in order to match up
1460 // segments.
1461 for (Segment &Child : Obj.segments())
1462 setParentSegment(Child);
1463 setParentSegment(ElfHdr);
1464 setParentSegment(PrHdr);
1465
1466 return Error::success();
1467 }
1468
1469 template <class ELFT>
initGroupSection(GroupSection * GroupSec)1470 Error ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
1471 if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0)
1472 return createStringError(errc::invalid_argument,
1473 "invalid alignment " + Twine(GroupSec->Align) +
1474 " of group section '" + GroupSec->Name + "'");
1475 SectionTableRef SecTable = Obj.sections();
1476 if (GroupSec->Link != SHN_UNDEF) {
1477 auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
1478 GroupSec->Link,
1479 "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1480 GroupSec->Name + "' is invalid",
1481 "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1482 GroupSec->Name + "' is not a symbol table");
1483 if (!SymTab)
1484 return SymTab.takeError();
1485
1486 Expected<Symbol *> Sym = (*SymTab)->getSymbolByIndex(GroupSec->Info);
1487 if (!Sym)
1488 return createStringError(errc::invalid_argument,
1489 "info field value '" + Twine(GroupSec->Info) +
1490 "' in section '" + GroupSec->Name +
1491 "' is not a valid symbol index");
1492 GroupSec->setSymTab(*SymTab);
1493 GroupSec->setSymbol(*Sym);
1494 }
1495 if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
1496 GroupSec->Contents.empty())
1497 return createStringError(errc::invalid_argument,
1498 "the content of the section " + GroupSec->Name +
1499 " is malformed");
1500 const ELF::Elf32_Word *Word =
1501 reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
1502 const ELF::Elf32_Word *End =
1503 Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
1504 GroupSec->setFlagWord(
1505 support::endian::read32<ELFT::TargetEndianness>(Word++));
1506 for (; Word != End; ++Word) {
1507 uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
1508 Expected<SectionBase *> Sec = SecTable.getSection(
1509 Index, "group member index " + Twine(Index) + " in section '" +
1510 GroupSec->Name + "' is invalid");
1511 if (!Sec)
1512 return Sec.takeError();
1513
1514 GroupSec->addMember(*Sec);
1515 }
1516
1517 return Error::success();
1518 }
1519
1520 template <class ELFT>
initSymbolTable(SymbolTableSection * SymTab)1521 Error ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
1522 Expected<const Elf_Shdr *> Shdr = ElfFile.getSection(SymTab->Index);
1523 if (!Shdr)
1524 return Shdr.takeError();
1525
1526 Expected<StringRef> StrTabData = ElfFile.getStringTableForSymtab(**Shdr);
1527 if (!StrTabData)
1528 return StrTabData.takeError();
1529
1530 ArrayRef<Elf_Word> ShndxData;
1531
1532 Expected<typename ELFFile<ELFT>::Elf_Sym_Range> Symbols =
1533 ElfFile.symbols(*Shdr);
1534 if (!Symbols)
1535 return Symbols.takeError();
1536
1537 for (const typename ELFFile<ELFT>::Elf_Sym &Sym : *Symbols) {
1538 SectionBase *DefSection = nullptr;
1539
1540 Expected<StringRef> Name = Sym.getName(*StrTabData);
1541 if (!Name)
1542 return Name.takeError();
1543
1544 if (Sym.st_shndx == SHN_XINDEX) {
1545 if (SymTab->getShndxTable() == nullptr)
1546 return createStringError(errc::invalid_argument,
1547 "symbol '" + *Name +
1548 "' has index SHN_XINDEX but no "
1549 "SHT_SYMTAB_SHNDX section exists");
1550 if (ShndxData.data() == nullptr) {
1551 Expected<const Elf_Shdr *> ShndxSec =
1552 ElfFile.getSection(SymTab->getShndxTable()->Index);
1553 if (!ShndxSec)
1554 return ShndxSec.takeError();
1555
1556 Expected<ArrayRef<Elf_Word>> Data =
1557 ElfFile.template getSectionContentsAsArray<Elf_Word>(**ShndxSec);
1558 if (!Data)
1559 return Data.takeError();
1560
1561 ShndxData = *Data;
1562 if (ShndxData.size() != Symbols->size())
1563 return createStringError(
1564 errc::invalid_argument,
1565 "symbol section index table does not have the same number of "
1566 "entries as the symbol table");
1567 }
1568 Elf_Word Index = ShndxData[&Sym - Symbols->begin()];
1569 Expected<SectionBase *> Sec = Obj.sections().getSection(
1570 Index,
1571 "symbol '" + *Name + "' has invalid section index " + Twine(Index));
1572 if (!Sec)
1573 return Sec.takeError();
1574
1575 DefSection = *Sec;
1576 } else if (Sym.st_shndx >= SHN_LORESERVE) {
1577 if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
1578 return createStringError(
1579 errc::invalid_argument,
1580 "symbol '" + *Name +
1581 "' has unsupported value greater than or equal "
1582 "to SHN_LORESERVE: " +
1583 Twine(Sym.st_shndx));
1584 }
1585 } else if (Sym.st_shndx != SHN_UNDEF) {
1586 Expected<SectionBase *> Sec = Obj.sections().getSection(
1587 Sym.st_shndx, "symbol '" + *Name +
1588 "' is defined has invalid section index " +
1589 Twine(Sym.st_shndx));
1590 if (!Sec)
1591 return Sec.takeError();
1592
1593 DefSection = *Sec;
1594 }
1595
1596 SymTab->addSymbol(*Name, Sym.getBinding(), Sym.getType(), DefSection,
1597 Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
1598 }
1599
1600 return Error::success();
1601 }
1602
1603 template <class ELFT>
getAddend(uint64_t &,const Elf_Rel_Impl<ELFT,false> &)1604 static void getAddend(uint64_t &, const Elf_Rel_Impl<ELFT, false> &) {}
1605
1606 template <class ELFT>
getAddend(uint64_t & ToSet,const Elf_Rel_Impl<ELFT,true> & Rela)1607 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
1608 ToSet = Rela.r_addend;
1609 }
1610
1611 template <class T>
initRelocations(RelocationSection * Relocs,T RelRange)1612 static Error initRelocations(RelocationSection *Relocs, T RelRange) {
1613 for (const auto &Rel : RelRange) {
1614 Relocation ToAdd;
1615 ToAdd.Offset = Rel.r_offset;
1616 getAddend(ToAdd.Addend, Rel);
1617 ToAdd.Type = Rel.getType(Relocs->getObject().IsMips64EL);
1618
1619 if (uint32_t Sym = Rel.getSymbol(Relocs->getObject().IsMips64EL)) {
1620 if (!Relocs->getObject().SymbolTable)
1621 return createStringError(
1622 errc::invalid_argument,
1623 "'" + Relocs->Name + "': relocation references symbol with index " +
1624 Twine(Sym) + ", but there is no symbol table");
1625 Expected<Symbol *> SymByIndex =
1626 Relocs->getObject().SymbolTable->getSymbolByIndex(Sym);
1627 if (!SymByIndex)
1628 return SymByIndex.takeError();
1629
1630 ToAdd.RelocSymbol = *SymByIndex;
1631 }
1632
1633 Relocs->addRelocation(ToAdd);
1634 }
1635
1636 return Error::success();
1637 }
1638
getSection(uint32_t Index,Twine ErrMsg)1639 Expected<SectionBase *> SectionTableRef::getSection(uint32_t Index,
1640 Twine ErrMsg) {
1641 if (Index == SHN_UNDEF || Index > Sections.size())
1642 return createStringError(errc::invalid_argument, ErrMsg);
1643 return Sections[Index - 1].get();
1644 }
1645
1646 template <class T>
getSectionOfType(uint32_t Index,Twine IndexErrMsg,Twine TypeErrMsg)1647 Expected<T *> SectionTableRef::getSectionOfType(uint32_t Index,
1648 Twine IndexErrMsg,
1649 Twine TypeErrMsg) {
1650 Expected<SectionBase *> BaseSec = getSection(Index, IndexErrMsg);
1651 if (!BaseSec)
1652 return BaseSec.takeError();
1653
1654 if (T *Sec = dyn_cast<T>(*BaseSec))
1655 return Sec;
1656
1657 return createStringError(errc::invalid_argument, TypeErrMsg);
1658 }
1659
1660 template <class ELFT>
makeSection(const Elf_Shdr & Shdr)1661 Expected<SectionBase &> ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
1662 switch (Shdr.sh_type) {
1663 case SHT_REL:
1664 case SHT_RELA:
1665 if (Shdr.sh_flags & SHF_ALLOC) {
1666 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1667 return Obj.addSection<DynamicRelocationSection>(*Data);
1668 else
1669 return Data.takeError();
1670 }
1671 return Obj.addSection<RelocationSection>(Obj);
1672 case SHT_STRTAB:
1673 // If a string table is allocated we don't want to mess with it. That would
1674 // mean altering the memory image. There are no special link types or
1675 // anything so we can just use a Section.
1676 if (Shdr.sh_flags & SHF_ALLOC) {
1677 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1678 return Obj.addSection<Section>(*Data);
1679 else
1680 return Data.takeError();
1681 }
1682 return Obj.addSection<StringTableSection>();
1683 case SHT_HASH:
1684 case SHT_GNU_HASH:
1685 // Hash tables should refer to SHT_DYNSYM which we're not going to change.
1686 // Because of this we don't need to mess with the hash tables either.
1687 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1688 return Obj.addSection<Section>(*Data);
1689 else
1690 return Data.takeError();
1691 case SHT_GROUP:
1692 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1693 return Obj.addSection<GroupSection>(*Data);
1694 else
1695 return Data.takeError();
1696 case SHT_DYNSYM:
1697 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1698 return Obj.addSection<DynamicSymbolTableSection>(*Data);
1699 else
1700 return Data.takeError();
1701 case SHT_DYNAMIC:
1702 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1703 return Obj.addSection<DynamicSection>(*Data);
1704 else
1705 return Data.takeError();
1706 case SHT_SYMTAB: {
1707 auto &SymTab = Obj.addSection<SymbolTableSection>();
1708 Obj.SymbolTable = &SymTab;
1709 return SymTab;
1710 }
1711 case SHT_SYMTAB_SHNDX: {
1712 auto &ShndxSection = Obj.addSection<SectionIndexSection>();
1713 Obj.SectionIndexTable = &ShndxSection;
1714 return ShndxSection;
1715 }
1716 case SHT_NOBITS:
1717 return Obj.addSection<Section>(ArrayRef<uint8_t>());
1718 default: {
1719 Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr);
1720 if (!Data)
1721 return Data.takeError();
1722
1723 Expected<StringRef> Name = ElfFile.getSectionName(Shdr);
1724 if (!Name)
1725 return Name.takeError();
1726
1727 if (!(Shdr.sh_flags & ELF::SHF_COMPRESSED))
1728 return Obj.addSection<Section>(*Data);
1729 auto *Chdr = reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data->data());
1730 return Obj.addSection<CompressedSection>(CompressedSection(
1731 *Data, Chdr->ch_type, Chdr->ch_size, Chdr->ch_addralign));
1732 }
1733 }
1734 }
1735
readSectionHeaders()1736 template <class ELFT> Error ELFBuilder<ELFT>::readSectionHeaders() {
1737 uint32_t Index = 0;
1738 Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections =
1739 ElfFile.sections();
1740 if (!Sections)
1741 return Sections.takeError();
1742
1743 for (const typename ELFFile<ELFT>::Elf_Shdr &Shdr : *Sections) {
1744 if (Index == 0) {
1745 ++Index;
1746 continue;
1747 }
1748 Expected<SectionBase &> Sec = makeSection(Shdr);
1749 if (!Sec)
1750 return Sec.takeError();
1751
1752 Expected<StringRef> SecName = ElfFile.getSectionName(Shdr);
1753 if (!SecName)
1754 return SecName.takeError();
1755 Sec->Name = SecName->str();
1756 Sec->Type = Sec->OriginalType = Shdr.sh_type;
1757 Sec->Flags = Sec->OriginalFlags = Shdr.sh_flags;
1758 Sec->Addr = Shdr.sh_addr;
1759 Sec->Offset = Shdr.sh_offset;
1760 Sec->OriginalOffset = Shdr.sh_offset;
1761 Sec->Size = Shdr.sh_size;
1762 Sec->Link = Shdr.sh_link;
1763 Sec->Info = Shdr.sh_info;
1764 Sec->Align = Shdr.sh_addralign;
1765 Sec->EntrySize = Shdr.sh_entsize;
1766 Sec->Index = Index++;
1767 Sec->OriginalIndex = Sec->Index;
1768 Sec->OriginalData = ArrayRef<uint8_t>(
1769 ElfFile.base() + Shdr.sh_offset,
1770 (Shdr.sh_type == SHT_NOBITS) ? (size_t)0 : Shdr.sh_size);
1771 }
1772
1773 return Error::success();
1774 }
1775
readSections(bool EnsureSymtab)1776 template <class ELFT> Error ELFBuilder<ELFT>::readSections(bool EnsureSymtab) {
1777 uint32_t ShstrIndex = ElfFile.getHeader().e_shstrndx;
1778 if (ShstrIndex == SHN_XINDEX) {
1779 Expected<const Elf_Shdr *> Sec = ElfFile.getSection(0);
1780 if (!Sec)
1781 return Sec.takeError();
1782
1783 ShstrIndex = (*Sec)->sh_link;
1784 }
1785
1786 if (ShstrIndex == SHN_UNDEF)
1787 Obj.HadShdrs = false;
1788 else {
1789 Expected<StringTableSection *> Sec =
1790 Obj.sections().template getSectionOfType<StringTableSection>(
1791 ShstrIndex,
1792 "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1793 " is invalid",
1794 "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1795 " does not reference a string table");
1796 if (!Sec)
1797 return Sec.takeError();
1798
1799 Obj.SectionNames = *Sec;
1800 }
1801
1802 // If a section index table exists we'll need to initialize it before we
1803 // initialize the symbol table because the symbol table might need to
1804 // reference it.
1805 if (Obj.SectionIndexTable)
1806 if (Error Err = Obj.SectionIndexTable->initialize(Obj.sections()))
1807 return Err;
1808
1809 // Now that all of the sections have been added we can fill out some extra
1810 // details about symbol tables. We need the symbol table filled out before
1811 // any relocations.
1812 if (Obj.SymbolTable) {
1813 if (Error Err = Obj.SymbolTable->initialize(Obj.sections()))
1814 return Err;
1815 if (Error Err = initSymbolTable(Obj.SymbolTable))
1816 return Err;
1817 } else if (EnsureSymtab) {
1818 if (Error Err = Obj.addNewSymbolTable())
1819 return Err;
1820 }
1821
1822 // Now that all sections and symbols have been added we can add
1823 // relocations that reference symbols and set the link and info fields for
1824 // relocation sections.
1825 for (SectionBase &Sec : Obj.sections()) {
1826 if (&Sec == Obj.SymbolTable)
1827 continue;
1828 if (Error Err = Sec.initialize(Obj.sections()))
1829 return Err;
1830 if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) {
1831 Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections =
1832 ElfFile.sections();
1833 if (!Sections)
1834 return Sections.takeError();
1835
1836 const typename ELFFile<ELFT>::Elf_Shdr *Shdr =
1837 Sections->begin() + RelSec->Index;
1838 if (RelSec->Type == SHT_REL) {
1839 Expected<typename ELFFile<ELFT>::Elf_Rel_Range> Rels =
1840 ElfFile.rels(*Shdr);
1841 if (!Rels)
1842 return Rels.takeError();
1843
1844 if (Error Err = initRelocations(RelSec, *Rels))
1845 return Err;
1846 } else {
1847 Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas =
1848 ElfFile.relas(*Shdr);
1849 if (!Relas)
1850 return Relas.takeError();
1851
1852 if (Error Err = initRelocations(RelSec, *Relas))
1853 return Err;
1854 }
1855 } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) {
1856 if (Error Err = initGroupSection(GroupSec))
1857 return Err;
1858 }
1859 }
1860
1861 return Error::success();
1862 }
1863
build(bool EnsureSymtab)1864 template <class ELFT> Error ELFBuilder<ELFT>::build(bool EnsureSymtab) {
1865 if (Error E = readSectionHeaders())
1866 return E;
1867 if (Error E = findEhdrOffset())
1868 return E;
1869
1870 // The ELFFile whose ELF headers and program headers are copied into the
1871 // output file. Normally the same as ElfFile, but if we're extracting a
1872 // loadable partition it will point to the partition's headers.
1873 Expected<ELFFile<ELFT>> HeadersFile = ELFFile<ELFT>::create(toStringRef(
1874 {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset}));
1875 if (!HeadersFile)
1876 return HeadersFile.takeError();
1877
1878 const typename ELFFile<ELFT>::Elf_Ehdr &Ehdr = HeadersFile->getHeader();
1879 Obj.Is64Bits = Ehdr.e_ident[EI_CLASS] == ELFCLASS64;
1880 Obj.OSABI = Ehdr.e_ident[EI_OSABI];
1881 Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION];
1882 Obj.Type = Ehdr.e_type;
1883 Obj.Machine = Ehdr.e_machine;
1884 Obj.Version = Ehdr.e_version;
1885 Obj.Entry = Ehdr.e_entry;
1886 Obj.Flags = Ehdr.e_flags;
1887
1888 if (Error E = readSections(EnsureSymtab))
1889 return E;
1890 return readProgramHeaders(*HeadersFile);
1891 }
1892
1893 Writer::~Writer() = default;
1894
1895 Reader::~Reader() = default;
1896
1897 Expected<std::unique_ptr<Object>>
create(bool) const1898 BinaryReader::create(bool /*EnsureSymtab*/) const {
1899 return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build();
1900 }
1901
parse() const1902 Expected<std::vector<IHexRecord>> IHexReader::parse() const {
1903 SmallVector<StringRef, 16> Lines;
1904 std::vector<IHexRecord> Records;
1905 bool HasSections = false;
1906
1907 MemBuf->getBuffer().split(Lines, '\n');
1908 Records.reserve(Lines.size());
1909 for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) {
1910 StringRef Line = Lines[LineNo - 1].trim();
1911 if (Line.empty())
1912 continue;
1913
1914 Expected<IHexRecord> R = IHexRecord::parse(Line);
1915 if (!R)
1916 return parseError(LineNo, R.takeError());
1917 if (R->Type == IHexRecord::EndOfFile)
1918 break;
1919 HasSections |= (R->Type == IHexRecord::Data);
1920 Records.push_back(*R);
1921 }
1922 if (!HasSections)
1923 return parseError(-1U, "no sections");
1924
1925 return std::move(Records);
1926 }
1927
1928 Expected<std::unique_ptr<Object>>
create(bool) const1929 IHexReader::create(bool /*EnsureSymtab*/) const {
1930 Expected<std::vector<IHexRecord>> Records = parse();
1931 if (!Records)
1932 return Records.takeError();
1933
1934 return IHexELFBuilder(*Records).build();
1935 }
1936
create(bool EnsureSymtab) const1937 Expected<std::unique_ptr<Object>> ELFReader::create(bool EnsureSymtab) const {
1938 auto Obj = std::make_unique<Object>();
1939 if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
1940 ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition);
1941 if (Error Err = Builder.build(EnsureSymtab))
1942 return std::move(Err);
1943 return std::move(Obj);
1944 } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
1945 ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition);
1946 if (Error Err = Builder.build(EnsureSymtab))
1947 return std::move(Err);
1948 return std::move(Obj);
1949 } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
1950 ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition);
1951 if (Error Err = Builder.build(EnsureSymtab))
1952 return std::move(Err);
1953 return std::move(Obj);
1954 } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
1955 ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition);
1956 if (Error Err = Builder.build(EnsureSymtab))
1957 return std::move(Err);
1958 return std::move(Obj);
1959 }
1960 return createStringError(errc::invalid_argument, "invalid file type");
1961 }
1962
writeEhdr()1963 template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
1964 Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf->getBufferStart());
1965 std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
1966 Ehdr.e_ident[EI_MAG0] = 0x7f;
1967 Ehdr.e_ident[EI_MAG1] = 'E';
1968 Ehdr.e_ident[EI_MAG2] = 'L';
1969 Ehdr.e_ident[EI_MAG3] = 'F';
1970 Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
1971 Ehdr.e_ident[EI_DATA] =
1972 ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB;
1973 Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
1974 Ehdr.e_ident[EI_OSABI] = Obj.OSABI;
1975 Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion;
1976
1977 Ehdr.e_type = Obj.Type;
1978 Ehdr.e_machine = Obj.Machine;
1979 Ehdr.e_version = Obj.Version;
1980 Ehdr.e_entry = Obj.Entry;
1981 // We have to use the fully-qualified name llvm::size
1982 // since some compilers complain on ambiguous resolution.
1983 Ehdr.e_phnum = llvm::size(Obj.segments());
1984 Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
1985 Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
1986 Ehdr.e_flags = Obj.Flags;
1987 Ehdr.e_ehsize = sizeof(Elf_Ehdr);
1988 if (WriteSectionHeaders && Obj.sections().size() != 0) {
1989 Ehdr.e_shentsize = sizeof(Elf_Shdr);
1990 Ehdr.e_shoff = Obj.SHOff;
1991 // """
1992 // If the number of sections is greater than or equal to
1993 // SHN_LORESERVE (0xff00), this member has the value zero and the actual
1994 // number of section header table entries is contained in the sh_size field
1995 // of the section header at index 0.
1996 // """
1997 auto Shnum = Obj.sections().size() + 1;
1998 if (Shnum >= SHN_LORESERVE)
1999 Ehdr.e_shnum = 0;
2000 else
2001 Ehdr.e_shnum = Shnum;
2002 // """
2003 // If the section name string table section index is greater than or equal
2004 // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
2005 // and the actual index of the section name string table section is
2006 // contained in the sh_link field of the section header at index 0.
2007 // """
2008 if (Obj.SectionNames->Index >= SHN_LORESERVE)
2009 Ehdr.e_shstrndx = SHN_XINDEX;
2010 else
2011 Ehdr.e_shstrndx = Obj.SectionNames->Index;
2012 } else {
2013 Ehdr.e_shentsize = 0;
2014 Ehdr.e_shoff = 0;
2015 Ehdr.e_shnum = 0;
2016 Ehdr.e_shstrndx = 0;
2017 }
2018 }
2019
writePhdrs()2020 template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
2021 for (auto &Seg : Obj.segments())
2022 writePhdr(Seg);
2023 }
2024
writeShdrs()2025 template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
2026 // This reference serves to write the dummy section header at the begining
2027 // of the file. It is not used for anything else
2028 Elf_Shdr &Shdr =
2029 *reinterpret_cast<Elf_Shdr *>(Buf->getBufferStart() + Obj.SHOff);
2030 Shdr.sh_name = 0;
2031 Shdr.sh_type = SHT_NULL;
2032 Shdr.sh_flags = 0;
2033 Shdr.sh_addr = 0;
2034 Shdr.sh_offset = 0;
2035 // See writeEhdr for why we do this.
2036 uint64_t Shnum = Obj.sections().size() + 1;
2037 if (Shnum >= SHN_LORESERVE)
2038 Shdr.sh_size = Shnum;
2039 else
2040 Shdr.sh_size = 0;
2041 // See writeEhdr for why we do this.
2042 if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
2043 Shdr.sh_link = Obj.SectionNames->Index;
2044 else
2045 Shdr.sh_link = 0;
2046 Shdr.sh_info = 0;
2047 Shdr.sh_addralign = 0;
2048 Shdr.sh_entsize = 0;
2049
2050 for (SectionBase &Sec : Obj.sections())
2051 writeShdr(Sec);
2052 }
2053
writeSectionData()2054 template <class ELFT> Error ELFWriter<ELFT>::writeSectionData() {
2055 for (SectionBase &Sec : Obj.sections())
2056 // Segments are responsible for writing their contents, so only write the
2057 // section data if the section is not in a segment. Note that this renders
2058 // sections in segments effectively immutable.
2059 if (Sec.ParentSegment == nullptr)
2060 if (Error Err = Sec.accept(*SecWriter))
2061 return Err;
2062
2063 return Error::success();
2064 }
2065
writeSegmentData()2066 template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() {
2067 for (Segment &Seg : Obj.segments()) {
2068 size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size());
2069 std::memcpy(Buf->getBufferStart() + Seg.Offset, Seg.getContents().data(),
2070 Size);
2071 }
2072
2073 for (auto it : Obj.getUpdatedSections()) {
2074 SectionBase *Sec = it.first;
2075 ArrayRef<uint8_t> Data = it.second;
2076
2077 auto *Parent = Sec->ParentSegment;
2078 assert(Parent && "This section should've been part of a segment.");
2079 uint64_t Offset =
2080 Sec->OriginalOffset - Parent->OriginalOffset + Parent->Offset;
2081 llvm::copy(Data, Buf->getBufferStart() + Offset);
2082 }
2083
2084 // Iterate over removed sections and overwrite their old data with zeroes.
2085 for (auto &Sec : Obj.removedSections()) {
2086 Segment *Parent = Sec.ParentSegment;
2087 if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0)
2088 continue;
2089 uint64_t Offset =
2090 Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset;
2091 std::memset(Buf->getBufferStart() + Offset, 0, Sec.Size);
2092 }
2093 }
2094
2095 template <class ELFT>
ELFWriter(Object & Obj,raw_ostream & Buf,bool WSH,bool OnlyKeepDebug)2096 ELFWriter<ELFT>::ELFWriter(Object &Obj, raw_ostream &Buf, bool WSH,
2097 bool OnlyKeepDebug)
2098 : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs),
2099 OnlyKeepDebug(OnlyKeepDebug) {}
2100
updateSection(StringRef Name,ArrayRef<uint8_t> Data)2101 Error Object::updateSection(StringRef Name, ArrayRef<uint8_t> Data) {
2102 auto It = llvm::find_if(Sections,
2103 [&](const SecPtr &Sec) { return Sec->Name == Name; });
2104 if (It == Sections.end())
2105 return createStringError(errc::invalid_argument, "section '%s' not found",
2106 Name.str().c_str());
2107
2108 auto *OldSec = It->get();
2109 if (!OldSec->hasContents())
2110 return createStringError(
2111 errc::invalid_argument,
2112 "section '%s' cannot be updated because it does not have contents",
2113 Name.str().c_str());
2114
2115 if (Data.size() > OldSec->Size && OldSec->ParentSegment)
2116 return createStringError(errc::invalid_argument,
2117 "cannot fit data of size %zu into section '%s' "
2118 "with size %" PRIu64 " that is part of a segment",
2119 Data.size(), Name.str().c_str(), OldSec->Size);
2120
2121 if (!OldSec->ParentSegment) {
2122 *It = std::make_unique<OwnedDataSection>(*OldSec, Data);
2123 } else {
2124 // The segment writer will be in charge of updating these contents.
2125 OldSec->Size = Data.size();
2126 UpdatedSections[OldSec] = Data;
2127 }
2128
2129 return Error::success();
2130 }
2131
removeSections(bool AllowBrokenLinks,std::function<bool (const SectionBase &)> ToRemove)2132 Error Object::removeSections(
2133 bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove) {
2134
2135 auto Iter = std::stable_partition(
2136 std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
2137 if (ToRemove(*Sec))
2138 return false;
2139 if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
2140 if (auto ToRelSec = RelSec->getSection())
2141 return !ToRemove(*ToRelSec);
2142 }
2143 return true;
2144 });
2145 if (SymbolTable != nullptr && ToRemove(*SymbolTable))
2146 SymbolTable = nullptr;
2147 if (SectionNames != nullptr && ToRemove(*SectionNames))
2148 SectionNames = nullptr;
2149 if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
2150 SectionIndexTable = nullptr;
2151 // Now make sure there are no remaining references to the sections that will
2152 // be removed. Sometimes it is impossible to remove a reference so we emit
2153 // an error here instead.
2154 std::unordered_set<const SectionBase *> RemoveSections;
2155 RemoveSections.reserve(std::distance(Iter, std::end(Sections)));
2156 for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
2157 for (auto &Segment : Segments)
2158 Segment->removeSection(RemoveSec.get());
2159 RemoveSec->onRemove();
2160 RemoveSections.insert(RemoveSec.get());
2161 }
2162
2163 // For each section that remains alive, we want to remove the dead references.
2164 // This either might update the content of the section (e.g. remove symbols
2165 // from symbol table that belongs to removed section) or trigger an error if
2166 // a live section critically depends on a section being removed somehow
2167 // (e.g. the removed section is referenced by a relocation).
2168 for (auto &KeepSec : make_range(std::begin(Sections), Iter)) {
2169 if (Error E = KeepSec->removeSectionReferences(
2170 AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) {
2171 return RemoveSections.find(Sec) != RemoveSections.end();
2172 }))
2173 return E;
2174 }
2175
2176 // Transfer removed sections into the Object RemovedSections container for use
2177 // later.
2178 std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
2179 // Now finally get rid of them all together.
2180 Sections.erase(Iter, std::end(Sections));
2181 return Error::success();
2182 }
2183
replaceSections(const DenseMap<SectionBase *,SectionBase * > & FromTo)2184 Error Object::replaceSections(
2185 const DenseMap<SectionBase *, SectionBase *> &FromTo) {
2186 auto SectionIndexLess = [](const SecPtr &Lhs, const SecPtr &Rhs) {
2187 return Lhs->Index < Rhs->Index;
2188 };
2189 assert(llvm::is_sorted(Sections, SectionIndexLess) &&
2190 "Sections are expected to be sorted by Index");
2191 // Set indices of new sections so that they can be later sorted into positions
2192 // of removed ones.
2193 for (auto &I : FromTo)
2194 I.second->Index = I.first->Index;
2195
2196 // Notify all sections about the replacement.
2197 for (auto &Sec : Sections)
2198 Sec->replaceSectionReferences(FromTo);
2199
2200 if (Error E = removeSections(
2201 /*AllowBrokenLinks=*/false,
2202 [=](const SectionBase &Sec) { return FromTo.count(&Sec) > 0; }))
2203 return E;
2204 llvm::sort(Sections, SectionIndexLess);
2205 return Error::success();
2206 }
2207
removeSymbols(function_ref<bool (const Symbol &)> ToRemove)2208 Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
2209 if (SymbolTable)
2210 for (const SecPtr &Sec : Sections)
2211 if (Error E = Sec->removeSymbols(ToRemove))
2212 return E;
2213 return Error::success();
2214 }
2215
addNewSymbolTable()2216 Error Object::addNewSymbolTable() {
2217 assert(!SymbolTable && "Object must not has a SymbolTable.");
2218
2219 // Reuse an existing SHT_STRTAB section if it exists.
2220 StringTableSection *StrTab = nullptr;
2221 for (SectionBase &Sec : sections()) {
2222 if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) {
2223 StrTab = static_cast<StringTableSection *>(&Sec);
2224
2225 // Prefer a string table that is not the section header string table, if
2226 // such a table exists.
2227 if (SectionNames != &Sec)
2228 break;
2229 }
2230 }
2231 if (!StrTab)
2232 StrTab = &addSection<StringTableSection>();
2233
2234 SymbolTableSection &SymTab = addSection<SymbolTableSection>();
2235 SymTab.Name = ".symtab";
2236 SymTab.Link = StrTab->Index;
2237 if (Error Err = SymTab.initialize(sections()))
2238 return Err;
2239 SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
2240
2241 SymbolTable = &SymTab;
2242
2243 return Error::success();
2244 }
2245
2246 // Orders segments such that if x = y->ParentSegment then y comes before x.
orderSegments(std::vector<Segment * > & Segments)2247 static void orderSegments(std::vector<Segment *> &Segments) {
2248 llvm::stable_sort(Segments, compareSegmentsByOffset);
2249 }
2250
2251 // This function finds a consistent layout for a list of segments starting from
2252 // an Offset. It assumes that Segments have been sorted by orderSegments and
2253 // returns an Offset one past the end of the last segment.
layoutSegments(std::vector<Segment * > & Segments,uint64_t Offset)2254 static uint64_t layoutSegments(std::vector<Segment *> &Segments,
2255 uint64_t Offset) {
2256 assert(llvm::is_sorted(Segments, compareSegmentsByOffset));
2257 // The only way a segment should move is if a section was between two
2258 // segments and that section was removed. If that section isn't in a segment
2259 // then it's acceptable, but not ideal, to simply move it to after the
2260 // segments. So we can simply layout segments one after the other accounting
2261 // for alignment.
2262 for (Segment *Seg : Segments) {
2263 // We assume that segments have been ordered by OriginalOffset and Index
2264 // such that a parent segment will always come before a child segment in
2265 // OrderedSegments. This means that the Offset of the ParentSegment should
2266 // already be set and we can set our offset relative to it.
2267 if (Seg->ParentSegment != nullptr) {
2268 Segment *Parent = Seg->ParentSegment;
2269 Seg->Offset =
2270 Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset;
2271 } else {
2272 Seg->Offset =
2273 alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr);
2274 }
2275 Offset = std::max(Offset, Seg->Offset + Seg->FileSize);
2276 }
2277 return Offset;
2278 }
2279
2280 // This function finds a consistent layout for a list of sections. It assumes
2281 // that the ->ParentSegment of each section has already been laid out. The
2282 // supplied starting Offset is used for the starting offset of any section that
2283 // does not have a ParentSegment. It returns either the offset given if all
2284 // sections had a ParentSegment or an offset one past the last section if there
2285 // was a section that didn't have a ParentSegment.
2286 template <class Range>
layoutSections(Range Sections,uint64_t Offset)2287 static uint64_t layoutSections(Range Sections, uint64_t Offset) {
2288 // Now the offset of every segment has been set we can assign the offsets
2289 // of each section. For sections that are covered by a segment we should use
2290 // the segment's original offset and the section's original offset to compute
2291 // the offset from the start of the segment. Using the offset from the start
2292 // of the segment we can assign a new offset to the section. For sections not
2293 // covered by segments we can just bump Offset to the next valid location.
2294 // While it is not necessary, layout the sections in the order based on their
2295 // original offsets to resemble the input file as close as possible.
2296 std::vector<SectionBase *> OutOfSegmentSections;
2297 uint32_t Index = 1;
2298 for (auto &Sec : Sections) {
2299 Sec.Index = Index++;
2300 if (Sec.ParentSegment != nullptr) {
2301 auto Segment = *Sec.ParentSegment;
2302 Sec.Offset =
2303 Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset);
2304 } else
2305 OutOfSegmentSections.push_back(&Sec);
2306 }
2307
2308 llvm::stable_sort(OutOfSegmentSections,
2309 [](const SectionBase *Lhs, const SectionBase *Rhs) {
2310 return Lhs->OriginalOffset < Rhs->OriginalOffset;
2311 });
2312 for (auto *Sec : OutOfSegmentSections) {
2313 Offset = alignTo(Offset, Sec->Align == 0 ? 1 : Sec->Align);
2314 Sec->Offset = Offset;
2315 if (Sec->Type != SHT_NOBITS)
2316 Offset += Sec->Size;
2317 }
2318 return Offset;
2319 }
2320
2321 // Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus
2322 // occupy no space in the file.
layoutSectionsForOnlyKeepDebug(Object & Obj,uint64_t Off)2323 static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) {
2324 // The layout algorithm requires the sections to be handled in the order of
2325 // their offsets in the input file, at least inside segments.
2326 std::vector<SectionBase *> Sections;
2327 Sections.reserve(Obj.sections().size());
2328 uint32_t Index = 1;
2329 for (auto &Sec : Obj.sections()) {
2330 Sec.Index = Index++;
2331 Sections.push_back(&Sec);
2332 }
2333 llvm::stable_sort(Sections,
2334 [](const SectionBase *Lhs, const SectionBase *Rhs) {
2335 return Lhs->OriginalOffset < Rhs->OriginalOffset;
2336 });
2337
2338 for (auto *Sec : Sections) {
2339 auto *FirstSec = Sec->ParentSegment && Sec->ParentSegment->Type == PT_LOAD
2340 ? Sec->ParentSegment->firstSection()
2341 : nullptr;
2342
2343 // The first section in a PT_LOAD has to have congruent offset and address
2344 // modulo the alignment, which usually equals the maximum page size.
2345 if (FirstSec && FirstSec == Sec)
2346 Off = alignTo(Off, Sec->ParentSegment->Align, Sec->Addr);
2347
2348 // sh_offset is not significant for SHT_NOBITS sections, but the congruence
2349 // rule must be followed if it is the first section in a PT_LOAD. Do not
2350 // advance Off.
2351 if (Sec->Type == SHT_NOBITS) {
2352 Sec->Offset = Off;
2353 continue;
2354 }
2355
2356 if (!FirstSec) {
2357 // FirstSec being nullptr generally means that Sec does not have the
2358 // SHF_ALLOC flag.
2359 Off = Sec->Align ? alignTo(Off, Sec->Align) : Off;
2360 } else if (FirstSec != Sec) {
2361 // The offset is relative to the first section in the PT_LOAD segment. Use
2362 // sh_offset for non-SHF_ALLOC sections.
2363 Off = Sec->OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset;
2364 }
2365 Sec->Offset = Off;
2366 Off += Sec->Size;
2367 }
2368 return Off;
2369 }
2370
2371 // Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values
2372 // have been updated.
layoutSegmentsForOnlyKeepDebug(std::vector<Segment * > & Segments,uint64_t HdrEnd)2373 static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments,
2374 uint64_t HdrEnd) {
2375 uint64_t MaxOffset = 0;
2376 for (Segment *Seg : Segments) {
2377 if (Seg->Type == PT_PHDR)
2378 continue;
2379
2380 // The segment offset is generally the offset of the first section.
2381 //
2382 // For a segment containing no section (see sectionWithinSegment), if it has
2383 // a parent segment, copy the parent segment's offset field. This works for
2384 // empty PT_TLS. If no parent segment, use 0: the segment is not useful for
2385 // debugging anyway.
2386 const SectionBase *FirstSec = Seg->firstSection();
2387 uint64_t Offset =
2388 FirstSec ? FirstSec->Offset
2389 : (Seg->ParentSegment ? Seg->ParentSegment->Offset : 0);
2390 uint64_t FileSize = 0;
2391 for (const SectionBase *Sec : Seg->Sections) {
2392 uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size;
2393 if (Sec->Offset + Size > Offset)
2394 FileSize = std::max(FileSize, Sec->Offset + Size - Offset);
2395 }
2396
2397 // If the segment includes EHDR and program headers, don't make it smaller
2398 // than the headers.
2399 if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) {
2400 FileSize += Offset - Seg->Offset;
2401 Offset = Seg->Offset;
2402 FileSize = std::max(FileSize, HdrEnd - Offset);
2403 }
2404
2405 Seg->Offset = Offset;
2406 Seg->FileSize = FileSize;
2407 MaxOffset = std::max(MaxOffset, Offset + FileSize);
2408 }
2409 return MaxOffset;
2410 }
2411
initEhdrSegment()2412 template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
2413 Segment &ElfHdr = Obj.ElfHdrSegment;
2414 ElfHdr.Type = PT_PHDR;
2415 ElfHdr.Flags = 0;
2416 ElfHdr.VAddr = 0;
2417 ElfHdr.PAddr = 0;
2418 ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
2419 ElfHdr.Align = 0;
2420 }
2421
assignOffsets()2422 template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
2423 // We need a temporary list of segments that has a special order to it
2424 // so that we know that anytime ->ParentSegment is set that segment has
2425 // already had its offset properly set.
2426 std::vector<Segment *> OrderedSegments;
2427 for (Segment &Segment : Obj.segments())
2428 OrderedSegments.push_back(&Segment);
2429 OrderedSegments.push_back(&Obj.ElfHdrSegment);
2430 OrderedSegments.push_back(&Obj.ProgramHdrSegment);
2431 orderSegments(OrderedSegments);
2432
2433 uint64_t Offset;
2434 if (OnlyKeepDebug) {
2435 // For --only-keep-debug, the sections that did not preserve contents were
2436 // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and
2437 // then rewrite p_offset/p_filesz of program headers.
2438 uint64_t HdrEnd =
2439 sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr);
2440 Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd);
2441 Offset = std::max(Offset,
2442 layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd));
2443 } else {
2444 // Offset is used as the start offset of the first segment to be laid out.
2445 // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
2446 // we start at offset 0.
2447 Offset = layoutSegments(OrderedSegments, 0);
2448 Offset = layoutSections(Obj.sections(), Offset);
2449 }
2450 // If we need to write the section header table out then we need to align the
2451 // Offset so that SHOffset is valid.
2452 if (WriteSectionHeaders)
2453 Offset = alignTo(Offset, sizeof(Elf_Addr));
2454 Obj.SHOff = Offset;
2455 }
2456
totalSize() const2457 template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
2458 // We already have the section header offset so we can calculate the total
2459 // size by just adding up the size of each section header.
2460 if (!WriteSectionHeaders)
2461 return Obj.SHOff;
2462 size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr.
2463 return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr);
2464 }
2465
write()2466 template <class ELFT> Error ELFWriter<ELFT>::write() {
2467 // Segment data must be written first, so that the ELF header and program
2468 // header tables can overwrite it, if covered by a segment.
2469 writeSegmentData();
2470 writeEhdr();
2471 writePhdrs();
2472 if (Error E = writeSectionData())
2473 return E;
2474 if (WriteSectionHeaders)
2475 writeShdrs();
2476
2477 // TODO: Implement direct writing to the output stream (without intermediate
2478 // memory buffer Buf).
2479 Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2480 return Error::success();
2481 }
2482
removeUnneededSections(Object & Obj)2483 static Error removeUnneededSections(Object &Obj) {
2484 // We can remove an empty symbol table from non-relocatable objects.
2485 // Relocatable objects typically have relocation sections whose
2486 // sh_link field points to .symtab, so we can't remove .symtab
2487 // even if it is empty.
2488 if (Obj.isRelocatable() || Obj.SymbolTable == nullptr ||
2489 !Obj.SymbolTable->empty())
2490 return Error::success();
2491
2492 // .strtab can be used for section names. In such a case we shouldn't
2493 // remove it.
2494 auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames
2495 ? nullptr
2496 : Obj.SymbolTable->getStrTab();
2497 return Obj.removeSections(false, [&](const SectionBase &Sec) {
2498 return &Sec == Obj.SymbolTable || &Sec == StrTab;
2499 });
2500 }
2501
finalize()2502 template <class ELFT> Error ELFWriter<ELFT>::finalize() {
2503 // It could happen that SectionNames has been removed and yet the user wants
2504 // a section header table output. We need to throw an error if a user tries
2505 // to do that.
2506 if (Obj.SectionNames == nullptr && WriteSectionHeaders)
2507 return createStringError(llvm::errc::invalid_argument,
2508 "cannot write section header table because "
2509 "section header string table was removed");
2510
2511 if (Error E = removeUnneededSections(Obj))
2512 return E;
2513
2514 // We need to assign indexes before we perform layout because we need to know
2515 // if we need large indexes or not. We can assign indexes first and check as
2516 // we go to see if we will actully need large indexes.
2517 bool NeedsLargeIndexes = false;
2518 if (Obj.sections().size() >= SHN_LORESERVE) {
2519 SectionTableRef Sections = Obj.sections();
2520 // Sections doesn't include the null section header, so account for this
2521 // when skipping the first N sections.
2522 NeedsLargeIndexes =
2523 any_of(drop_begin(Sections, SHN_LORESERVE - 1),
2524 [](const SectionBase &Sec) { return Sec.HasSymbol; });
2525 // TODO: handle case where only one section needs the large index table but
2526 // only needs it because the large index table hasn't been removed yet.
2527 }
2528
2529 if (NeedsLargeIndexes) {
2530 // This means we definitely need to have a section index table but if we
2531 // already have one then we should use it instead of making a new one.
2532 if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
2533 // Addition of a section to the end does not invalidate the indexes of
2534 // other sections and assigns the correct index to the new section.
2535 auto &Shndx = Obj.addSection<SectionIndexSection>();
2536 Obj.SymbolTable->setShndxTable(&Shndx);
2537 Shndx.setSymTab(Obj.SymbolTable);
2538 }
2539 } else {
2540 // Since we don't need SectionIndexTable we should remove it and all
2541 // references to it.
2542 if (Obj.SectionIndexTable != nullptr) {
2543 // We do not support sections referring to the section index table.
2544 if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/,
2545 [this](const SectionBase &Sec) {
2546 return &Sec == Obj.SectionIndexTable;
2547 }))
2548 return E;
2549 }
2550 }
2551
2552 // Make sure we add the names of all the sections. Importantly this must be
2553 // done after we decide to add or remove SectionIndexes.
2554 if (Obj.SectionNames != nullptr)
2555 for (const SectionBase &Sec : Obj.sections())
2556 Obj.SectionNames->addString(Sec.Name);
2557
2558 initEhdrSegment();
2559
2560 // Before we can prepare for layout the indexes need to be finalized.
2561 // Also, the output arch may not be the same as the input arch, so fix up
2562 // size-related fields before doing layout calculations.
2563 uint64_t Index = 0;
2564 auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>();
2565 for (SectionBase &Sec : Obj.sections()) {
2566 Sec.Index = Index++;
2567 if (Error Err = Sec.accept(*SecSizer))
2568 return Err;
2569 }
2570
2571 // The symbol table does not update all other sections on update. For
2572 // instance, symbol names are not added as new symbols are added. This means
2573 // that some sections, like .strtab, don't yet have their final size.
2574 if (Obj.SymbolTable != nullptr)
2575 Obj.SymbolTable->prepareForLayout();
2576
2577 // Now that all strings are added we want to finalize string table builders,
2578 // because that affects section sizes which in turn affects section offsets.
2579 for (SectionBase &Sec : Obj.sections())
2580 if (auto StrTab = dyn_cast<StringTableSection>(&Sec))
2581 StrTab->prepareForLayout();
2582
2583 assignOffsets();
2584
2585 // layoutSections could have modified section indexes, so we need
2586 // to fill the index table after assignOffsets.
2587 if (Obj.SymbolTable != nullptr)
2588 Obj.SymbolTable->fillShndxTable();
2589
2590 // Finally now that all offsets and indexes have been set we can finalize any
2591 // remaining issues.
2592 uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr);
2593 for (SectionBase &Sec : Obj.sections()) {
2594 Sec.HeaderOffset = Offset;
2595 Offset += sizeof(Elf_Shdr);
2596 if (WriteSectionHeaders)
2597 Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name);
2598 Sec.finalize();
2599 }
2600
2601 size_t TotalSize = totalSize();
2602 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2603 if (!Buf)
2604 return createStringError(errc::not_enough_memory,
2605 "failed to allocate memory buffer of " +
2606 Twine::utohexstr(TotalSize) + " bytes");
2607
2608 SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(*Buf);
2609 return Error::success();
2610 }
2611
write()2612 Error BinaryWriter::write() {
2613 for (const SectionBase &Sec : Obj.allocSections())
2614 if (Error Err = Sec.accept(*SecWriter))
2615 return Err;
2616
2617 // TODO: Implement direct writing to the output stream (without intermediate
2618 // memory buffer Buf).
2619 Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2620 return Error::success();
2621 }
2622
finalize()2623 Error BinaryWriter::finalize() {
2624 // Compute the section LMA based on its sh_offset and the containing segment's
2625 // p_offset and p_paddr. Also compute the minimum LMA of all non-empty
2626 // sections as MinAddr. In the output, the contents between address 0 and
2627 // MinAddr will be skipped.
2628 uint64_t MinAddr = UINT64_MAX;
2629 for (SectionBase &Sec : Obj.allocSections()) {
2630 // If Sec's type is changed from SHT_NOBITS due to --set-section-flags,
2631 // Offset may not be aligned. Align it to max(Align, 1).
2632 if (Sec.ParentSegment != nullptr)
2633 Sec.Addr = alignTo(Sec.Offset - Sec.ParentSegment->Offset +
2634 Sec.ParentSegment->PAddr,
2635 std::max(Sec.Align, uint64_t(1)));
2636 if (Sec.Type != SHT_NOBITS && Sec.Size > 0)
2637 MinAddr = std::min(MinAddr, Sec.Addr);
2638 }
2639
2640 // Now that every section has been laid out we just need to compute the total
2641 // file size. This might not be the same as the offset returned by
2642 // layoutSections, because we want to truncate the last segment to the end of
2643 // its last non-empty section, to match GNU objcopy's behaviour.
2644 TotalSize = 0;
2645 for (SectionBase &Sec : Obj.allocSections())
2646 if (Sec.Type != SHT_NOBITS && Sec.Size > 0) {
2647 Sec.Offset = Sec.Addr - MinAddr;
2648 TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size);
2649 }
2650
2651 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2652 if (!Buf)
2653 return createStringError(errc::not_enough_memory,
2654 "failed to allocate memory buffer of " +
2655 Twine::utohexstr(TotalSize) + " bytes");
2656 SecWriter = std::make_unique<BinarySectionWriter>(*Buf);
2657 return Error::success();
2658 }
2659
operator ()(const SectionBase * Lhs,const SectionBase * Rhs) const2660 bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs,
2661 const SectionBase *Rhs) const {
2662 return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) <
2663 (sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU);
2664 }
2665
writeEntryPointRecord(uint8_t * Buf)2666 uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) {
2667 IHexLineData HexData;
2668 uint8_t Data[4] = {};
2669 // We don't write entry point record if entry is zero.
2670 if (Obj.Entry == 0)
2671 return 0;
2672
2673 if (Obj.Entry <= 0xFFFFFU) {
2674 Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF;
2675 support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry),
2676 support::big);
2677 HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data);
2678 } else {
2679 support::endian::write(Data, static_cast<uint32_t>(Obj.Entry),
2680 support::big);
2681 HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data);
2682 }
2683 memcpy(Buf, HexData.data(), HexData.size());
2684 return HexData.size();
2685 }
2686
writeEndOfFileRecord(uint8_t * Buf)2687 uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) {
2688 IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {});
2689 memcpy(Buf, HexData.data(), HexData.size());
2690 return HexData.size();
2691 }
2692
write()2693 Error IHexWriter::write() {
2694 IHexSectionWriter Writer(*Buf);
2695 // Write sections.
2696 for (const SectionBase *Sec : Sections)
2697 if (Error Err = Sec->accept(Writer))
2698 return Err;
2699
2700 uint64_t Offset = Writer.getBufferOffset();
2701 // Write entry point address.
2702 Offset += writeEntryPointRecord(
2703 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
2704 // Write EOF.
2705 Offset += writeEndOfFileRecord(
2706 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
2707 assert(Offset == TotalSize);
2708
2709 // TODO: Implement direct writing to the output stream (without intermediate
2710 // memory buffer Buf).
2711 Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2712 return Error::success();
2713 }
2714
checkSection(const SectionBase & Sec)2715 Error IHexWriter::checkSection(const SectionBase &Sec) {
2716 uint64_t Addr = sectionPhysicalAddr(&Sec);
2717 if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1))
2718 return createStringError(
2719 errc::invalid_argument,
2720 "Section '%s' address range [0x%llx, 0x%llx] is not 32 bit",
2721 Sec.Name.c_str(), Addr, Addr + Sec.Size - 1);
2722 return Error::success();
2723 }
2724
finalize()2725 Error IHexWriter::finalize() {
2726 // We can't write 64-bit addresses.
2727 if (addressOverflows32bit(Obj.Entry))
2728 return createStringError(errc::invalid_argument,
2729 "Entry point address 0x%llx overflows 32 bits",
2730 Obj.Entry);
2731
2732 for (const SectionBase &Sec : Obj.sections())
2733 if ((Sec.Flags & ELF::SHF_ALLOC) && Sec.Type != ELF::SHT_NOBITS &&
2734 Sec.Size > 0) {
2735 if (Error E = checkSection(Sec))
2736 return E;
2737 Sections.insert(&Sec);
2738 }
2739
2740 std::unique_ptr<WritableMemoryBuffer> EmptyBuffer =
2741 WritableMemoryBuffer::getNewMemBuffer(0);
2742 if (!EmptyBuffer)
2743 return createStringError(errc::not_enough_memory,
2744 "failed to allocate memory buffer of 0 bytes");
2745
2746 IHexSectionWriterBase LengthCalc(*EmptyBuffer);
2747 for (const SectionBase *Sec : Sections)
2748 if (Error Err = Sec->accept(LengthCalc))
2749 return Err;
2750
2751 // We need space to write section records + StartAddress record
2752 // (if start adress is not zero) + EndOfFile record.
2753 TotalSize = LengthCalc.getBufferOffset() +
2754 (Obj.Entry ? IHexRecord::getLineLength(4) : 0) +
2755 IHexRecord::getLineLength(0);
2756
2757 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2758 if (!Buf)
2759 return createStringError(errc::not_enough_memory,
2760 "failed to allocate memory buffer of " +
2761 Twine::utohexstr(TotalSize) + " bytes");
2762
2763 return Error::success();
2764 }
2765
2766 namespace llvm {
2767 namespace objcopy {
2768 namespace elf {
2769
2770 template class ELFBuilder<ELF64LE>;
2771 template class ELFBuilder<ELF64BE>;
2772 template class ELFBuilder<ELF32LE>;
2773 template class ELFBuilder<ELF32BE>;
2774
2775 template class ELFWriter<ELF64LE>;
2776 template class ELFWriter<ELF64BE>;
2777 template class ELFWriter<ELF32LE>;
2778 template class ELFWriter<ELF32BE>;
2779
2780 } // end namespace elf
2781 } // end namespace objcopy
2782 } // end namespace llvm
2783