xref: /aosp_15_r20/external/executorch/backends/example/example_operators/dropout.py (revision 523fa7a60841cd1ecfb9cc4201f1ca8b03ed023a)
1# Copyright (c) Meta Platforms, Inc. and affiliates.
2# All rights reserved.
3#
4# This source code is licensed under the BSD-style license found in the
5# LICENSE file in the root directory of this source tree.
6
7from dataclasses import dataclass
8
9import torch
10from executorch.backends.example.example_operators.op_base import OpBase
11from executorch.backends.example.example_operators.utils import (
12    _annotate_nodes,
13    _nodes_are_annotated,
14)
15
16
17def _annotate_dropout(partitions, quant_config):
18    """
19    This is what the graph of a simple clone op looks like:
20    fn_weight = self.fn_weight
21    fn_bias = self.fn_bias
22    permute_copy = torch.ops.aten.permute_copy.default(fn_weight, [1, 0]);  fn_weight = None
23    addmm = torch.ops.aten.addmm.default(fn_bias, arg2_1, permute_copy);  fn_bias = arg2_1 = permute_copy = None
24    """
25    dropout_node = partitions[0].output_nodes[0]
26    input_node = dropout_node.args[0]
27
28    if _nodes_are_annotated([dropout_node]):
29        return
30
31    _annotate_nodes(
32        [(dropout_node, input_node)], quant_config.input_quant_spec, input_node=True
33    )
34    _annotate_nodes([(dropout_node,)], quant_config.output_quant_spec)
35
36
37@dataclass
38class DropOutNode(OpBase):
39    def __init__(self):
40        super().__init__(
41            # pattern=(torch.clone,),
42            pattern=(torch.nn.modules.dropout.Dropout,),
43            annotate_handle=_annotate_dropout,
44        )
45