1 /******************************************************************************
2  *
3  *  Copyright 2006-2015 Broadcom Corporation
4  *
5  *  Licensed under the Apache License, Version 2.0 (the "License");
6  *  you may not use this file except in compliance with the License.
7  *  You may obtain a copy of the License at:
8  *
9  *  http://www.apache.org/licenses/LICENSE-2.0
10  *
11  *  Unless required by applicable law or agreed to in writing, software
12  *  distributed under the License is distributed on an "AS IS" BASIS,
13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  *  See the License for the specific language governing permissions and
15  *  limitations under the License.
16  *
17  ******************************************************************************/
18 
19 /*******************************************************************************
20  *
21  *  This file contains simple pairing algorithms using Elliptic Curve
22  *  Cryptography for private public key
23  *
24  ******************************************************************************/
25 #include "p_256_ecc_pp.h"
26 
27 #include <cstdint>
28 #include <cstring>
29 
30 #include "p_256_multprecision.h"
31 
32 elliptic_curve_t curve;
33 elliptic_curve_t curve_p256;
34 
p_256_init_point(Point * q)35 static void p_256_init_point(Point* q) { memset(q, 0, sizeof(Point)); }
36 
p_256_copy_point(Point * q,Point * p)37 static void p_256_copy_point(Point* q, Point* p) { memcpy(q, p, sizeof(Point)); }
38 
39 // q=2q
ECC_Double(Point * q,Point * p)40 static void ECC_Double(Point* q, Point* p) {
41   uint32_t t1[KEY_LENGTH_DWORDS_P256];
42   uint32_t t2[KEY_LENGTH_DWORDS_P256];
43   uint32_t t3[KEY_LENGTH_DWORDS_P256];
44   uint32_t* x1;
45   uint32_t* x3;
46   uint32_t* y1;
47   uint32_t* y3;
48   uint32_t* z1;
49   uint32_t* z3;
50 
51   if (multiprecision_iszero(p->z)) {
52     multiprecision_init(q->z);
53     return;  // return infinity
54   }
55 
56   x1 = p->x;
57   y1 = p->y;
58   z1 = p->z;
59   x3 = q->x;
60   y3 = q->y;
61   z3 = q->z;
62 
63   multiprecision_mersenns_squa_mod(t1, z1);      // t1=z1^2
64   multiprecision_sub_mod(t2, x1, t1);            // t2=x1-t1
65   multiprecision_add_mod(t1, x1, t1);            // t1=x1+t1
66   multiprecision_mersenns_mult_mod(t2, t1, t2);  // t2=t2*t1
67   multiprecision_lshift_mod(t3, t2);
68   multiprecision_add_mod(t2, t3, t2);  // t2=3t2
69 
70   multiprecision_mersenns_mult_mod(z3, y1, z1);  // z3=y1*z1
71   multiprecision_lshift_mod(z3, z3);
72 
73   multiprecision_mersenns_squa_mod(y3, y1);  // y3=y1^2
74   multiprecision_lshift_mod(y3, y3);
75   multiprecision_mersenns_mult_mod(t3, y3, x1);  // t3=y3*x1=x1*y1^2
76   multiprecision_lshift_mod(t3, t3);
77   multiprecision_mersenns_squa_mod(y3, y3);  // y3=y3^2=y1^4
78   multiprecision_lshift_mod(y3, y3);
79 
80   multiprecision_mersenns_squa_mod(x3, t2);      // x3=t2^2
81   multiprecision_lshift_mod(t1, t3);             // t1=2t3
82   multiprecision_sub_mod(x3, x3, t1);            // x3=x3-t1
83   multiprecision_sub_mod(t1, t3, x3);            // t1=t3-x3
84   multiprecision_mersenns_mult_mod(t1, t1, t2);  // t1=t1*t2
85   multiprecision_sub_mod(y3, t1, y3);            // y3=t1-y3
86 }
87 
88 // q=q+p,     zp must be 1
ECC_Add(Point * r,Point * p,Point * q)89 static void ECC_Add(Point* r, Point* p, Point* q) {
90   uint32_t t1[KEY_LENGTH_DWORDS_P256];
91   uint32_t t2[KEY_LENGTH_DWORDS_P256];
92   uint32_t* x1;
93   uint32_t* x2;
94   uint32_t* x3;
95   uint32_t* y1;
96   uint32_t* y2;
97   uint32_t* y3;
98   uint32_t* z1;
99   uint32_t* z2;
100   uint32_t* z3;
101 
102   x1 = p->x;
103   y1 = p->y;
104   z1 = p->z;
105   x2 = q->x;
106   y2 = q->y;
107   z2 = q->z;
108   x3 = r->x;
109   y3 = r->y;
110   z3 = r->z;
111 
112   // if Q=infinity, return p
113   if (multiprecision_iszero(z2)) {
114     p_256_copy_point(r, p);
115     return;
116   }
117 
118   // if P=infinity, return q
119   if (multiprecision_iszero(z1)) {
120     p_256_copy_point(r, q);
121     return;
122   }
123 
124   multiprecision_mersenns_squa_mod(t1, z1);      // t1=z1^2
125   multiprecision_mersenns_mult_mod(t2, z1, t1);  // t2=t1*z1
126   multiprecision_mersenns_mult_mod(t1, x2, t1);  // t1=t1*x2
127   multiprecision_mersenns_mult_mod(t2, y2, t2);  // t2=t2*y2
128 
129   multiprecision_sub_mod(t1, t1, x1);  // t1=t1-x1
130   multiprecision_sub_mod(t2, t2, y1);  // t2=t2-y1
131 
132   if (multiprecision_iszero(t1)) {
133     if (multiprecision_iszero(t2)) {
134       ECC_Double(r, q);
135       return;
136     } else {
137       multiprecision_init(z3);
138       return;  // return infinity
139     }
140   }
141 
142   multiprecision_mersenns_mult_mod(z3, z1, t1);  // z3=z1*t1
143   multiprecision_mersenns_squa_mod(y3, t1);      // t3=t1^2
144   multiprecision_mersenns_mult_mod(z1, y3, t1);  // t4=t3*t1
145   multiprecision_mersenns_mult_mod(y3, y3, x1);  // t3=t3*x1
146   multiprecision_lshift_mod(t1, y3);             // t1=2*t3
147   multiprecision_mersenns_squa_mod(x3, t2);      // x3=t2^2
148   multiprecision_sub_mod(x3, x3, t1);            // x3=x3-t1
149   multiprecision_sub_mod(x3, x3, z1);            // x3=x3-t4
150   multiprecision_sub_mod(y3, y3, x3);            // t3=t3-x3
151   multiprecision_mersenns_mult_mod(y3, y3, t2);  // t3=t3*t2
152   multiprecision_mersenns_mult_mod(z1, z1, y1);  // t4=t4*t1
153   multiprecision_sub_mod(y3, y3, z1);
154 }
155 
156 // Computing the Non-Adjacent Form of a positive integer
ECC_NAF(uint8_t * naf,uint32_t * NumNAF,uint32_t * k)157 static void ECC_NAF(uint8_t* naf, uint32_t* NumNAF, uint32_t* k) {
158   uint32_t sign;
159   int i = 0;
160   int j;
161   uint32_t var;
162 
163   while ((var = multiprecision_most_signbits(k)) >= 1) {
164     if (k[0] & 0x01)  // k is odd
165     {
166       sign = (k[0] & 0x03);  // 1 or 3
167 
168       // k = k-naf[i]
169       if (sign == 1) {
170         k[0] = k[0] & 0xFFFFFFFE;
171       } else {
172         k[0] = k[0] + 1;
173         if (k[0] == 0)  // overflow
174         {
175           j = 1;
176           do {
177             k[j]++;
178           } while (k[j++] == 0);  // overflow
179         }
180       }
181     } else {
182       sign = 0;
183     }
184 
185     multiprecision_rshift(k, k);
186     naf[i / 4] |= (sign) << ((i % 4) * 2);
187     i++;
188   }
189 
190   *NumNAF = i;
191 }
192 
193 // Binary Non-Adjacent Form for point multiplication
ECC_PointMult_Bin_NAF(Point * q,Point * p,uint32_t * n)194 void ECC_PointMult_Bin_NAF(Point* q, Point* p, uint32_t* n) {
195   uint32_t sign;
196   uint8_t naf[256 / 4 + 1];
197   uint32_t NumNaf;
198   Point minus_p;
199   Point r;
200   uint32_t* modp;
201 
202   modp = curve_p256.p;
203 
204   p_256_init_point(&r);
205   multiprecision_init(p->z);
206   p->z[0] = 1;
207 
208   // initialization
209   p_256_init_point(q);
210 
211   // -p
212   multiprecision_copy(minus_p.x, p->x);
213   multiprecision_sub(minus_p.y, modp, p->y);
214 
215   multiprecision_init(minus_p.z);
216   minus_p.z[0] = 1;
217 
218   // NAF
219   memset(naf, 0, sizeof(naf));
220   ECC_NAF(naf, &NumNaf, n);
221 
222   for (int i = NumNaf - 1; i >= 0; i--) {
223     p_256_copy_point(&r, q);
224     ECC_Double(q, &r);
225     sign = (naf[i / 4] >> ((i % 4) * 2)) & 0x03;
226 
227     if (sign == 1) {
228       p_256_copy_point(&r, q);
229       ECC_Add(q, &r, p);
230     } else if (sign == 3) {
231       p_256_copy_point(&r, q);
232       ECC_Add(q, &r, &minus_p);
233     }
234   }
235 
236   multiprecision_inv_mod(minus_p.x, q->z);
237   multiprecision_mersenns_squa_mod(q->z, minus_p.x);
238   multiprecision_mersenns_mult_mod(q->x, q->x, q->z);
239   multiprecision_mersenns_mult_mod(q->z, q->z, minus_p.x);
240   multiprecision_mersenns_mult_mod(q->y, q->y, q->z);
241 }
242 
ECC_ValidatePoint(const Point & pt)243 bool ECC_ValidatePoint(const Point& pt) {
244   p_256_init_curve();
245 
246   // Ensure y^2 = x^3 + a*x + b (mod p); a = -3
247 
248   // y^2 mod p
249   uint32_t y2_mod[KEY_LENGTH_DWORDS_P256] = {0};
250   multiprecision_mersenns_squa_mod(y2_mod, (uint32_t*)pt.y);
251 
252   // Right hand side calculation
253   uint32_t rhs[KEY_LENGTH_DWORDS_P256] = {0};
254   multiprecision_mersenns_squa_mod(rhs, (uint32_t*)pt.x);
255   uint32_t three[KEY_LENGTH_DWORDS_P256] = {0};
256   three[0] = 3;
257   multiprecision_sub_mod(rhs, rhs, three);
258   multiprecision_mersenns_mult_mod(rhs, rhs, (uint32_t*)pt.x);
259   multiprecision_add_mod(rhs, rhs, curve_p256.b);
260 
261   return multiprecision_compare(rhs, y2_mod) == 0;
262 }
263