xref: /aosp_15_r20/art/runtime/gc/heap.h (revision 795d594fd825385562da6b089ea9b2033f3abf5a)
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_GC_HEAP_H_
18 #define ART_RUNTIME_GC_HEAP_H_
19 
20 #include <android-base/logging.h>
21 
22 #include <iosfwd>
23 #include <string>
24 #include <unordered_set>
25 #include <vector>
26 
27 #include "allocator_type.h"
28 #include "base/atomic.h"
29 #include "base/histogram.h"
30 #include "base/macros.h"
31 #include "base/mutex.h"
32 #include "base/os.h"
33 #include "base/runtime_debug.h"
34 #include "base/safe_map.h"
35 #include "base/time_utils.h"
36 #include "gc/collector/gc_type.h"
37 #include "gc/collector/iteration.h"
38 #include "gc/collector/mark_compact.h"
39 #include "gc/collector_type.h"
40 #include "gc/gc_cause.h"
41 #include "gc/space/large_object_space.h"
42 #include "gc/space/space.h"
43 #include "handle.h"
44 #include "obj_ptr.h"
45 #include "offsets.h"
46 #include "process_state.h"
47 #include "read_barrier_config.h"
48 #include "runtime_globals.h"
49 #include "scoped_thread_state_change.h"
50 #include "verify_object.h"
51 
52 namespace art HIDDEN {
53 
54 class ConditionVariable;
55 enum class InstructionSet;
56 class IsMarkedVisitor;
57 class Mutex;
58 class ReflectiveValueVisitor;
59 class RootVisitor;
60 class StackVisitor;
61 class Thread;
62 class ThreadPool;
63 class TimingLogger;
64 class VariableSizedHandleScope;
65 
66 namespace mirror {
67 class Class;
68 class Object;
69 }  // namespace mirror
70 
71 namespace gc {
72 
73 class AllocationListener;
74 class AllocRecordObjectMap;
75 class GcPauseListener;
76 class HeapTask;
77 class ReferenceProcessor;
78 class TaskProcessor;
79 class Verification;
80 
81 namespace accounting {
82 template <typename T> class AtomicStack;
83 using ObjectStack = AtomicStack<mirror::Object>;
84 class CardTable;
85 class HeapBitmap;
86 class ModUnionTable;
87 class ReadBarrierTable;
88 class RememberedSet;
89 }  // namespace accounting
90 
91 namespace collector {
92 class ConcurrentCopying;
93 class GarbageCollector;
94 class MarkSweep;
95 class SemiSpace;
96 }  // namespace collector
97 
98 namespace allocator {
99 class RosAlloc;
100 }  // namespace allocator
101 
102 namespace space {
103 class AllocSpace;
104 class BumpPointerSpace;
105 class ContinuousMemMapAllocSpace;
106 class DiscontinuousSpace;
107 class DlMallocSpace;
108 class ImageSpace;
109 class LargeObjectSpace;
110 class MallocSpace;
111 class RegionSpace;
112 class RosAllocSpace;
113 class Space;
114 class ZygoteSpace;
115 }  // namespace space
116 
117 enum HomogeneousSpaceCompactResult {
118   // Success.
119   kSuccess,
120   // Reject due to disabled moving GC.
121   kErrorReject,
122   // Unsupported due to the current configuration.
123   kErrorUnsupported,
124   // System is shutting down.
125   kErrorVMShuttingDown,
126 };
127 
128 // If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace
129 static constexpr bool kUseRosAlloc = true;
130 
131 // If true, use thread-local allocation stack.
132 static constexpr bool kUseThreadLocalAllocationStack = false;
133 
134 class Heap {
135  public:
136   // How much we grow the TLAB if we can do it.
137   static constexpr size_t kPartialTlabSize = 16 * KB;
138   static constexpr bool kUsePartialTlabs = true;
139 
140   static constexpr size_t kDefaultInitialSize = 2 * MB;
141   static constexpr size_t kDefaultMaximumSize = 256 * MB;
142   static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB;
143   static constexpr size_t kDefaultMaxFree = 32 * MB;
144   static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4;
145   static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5);
146   static constexpr size_t kDefaultLongPauseLogThresholdGcStress = MsToNs(50);
147   static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100);
148   static constexpr size_t kDefaultLongGCLogThresholdGcStress = MsToNs(1000);
149   static constexpr size_t kDefaultTLABSize = 32 * KB;
150   static constexpr double kDefaultTargetUtilization = 0.6;
151   static constexpr double kDefaultHeapGrowthMultiplier = 2.0;
152   // Primitive arrays larger than this size are put in the large object space.
153   // TODO: Preliminary experiments suggest this value might be not optimal.
154   //       This might benefit from further investigation.
155   static constexpr size_t kMinLargeObjectThreshold = 12 * KB;
156   static constexpr size_t kDefaultLargeObjectThreshold = kMinLargeObjectThreshold;
157   // Whether or not parallel GC is enabled. If not, then we never create the thread pool.
158   static constexpr bool kDefaultEnableParallelGC = true;
159   static uint8_t* const kPreferredAllocSpaceBegin;
160 
161   // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR
162   // since this means that we have to use the slow msync loop in MemMap::MapAnonymous.
163   static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType =
164       USE_ART_LOW_4G_ALLOCATOR ?
165           space::LargeObjectSpaceType::kFreeList
166         : space::LargeObjectSpaceType::kMap;
167 
168   // Used so that we don't overflow the allocation time atomic integer.
169   static constexpr size_t kTimeAdjust = 1024;
170 
171   // Client should call NotifyNativeAllocation every kNotifyNativeInterval allocations.
172   // Should be chosen so that time_to_call_mallinfo / kNotifyNativeInterval is on the same order
173   // as object allocation time. time_to_call_mallinfo seems to be on the order of 1 usec
174   // on Android.
175 #ifdef __ANDROID__
176   static constexpr uint32_t kNotifyNativeInterval = 64;
177 #else
178   // Some host mallinfo() implementations are slow. And memory is less scarce.
179   static constexpr uint32_t kNotifyNativeInterval = 384;
180 #endif
181 
182   // RegisterNativeAllocation checks immediately whether GC is needed if size exceeds the
183   // following. kCheckImmediatelyThreshold * kNotifyNativeInterval should be small enough to
184   // make it safe to allocate that many bytes between checks.
185   static constexpr size_t kCheckImmediatelyThreshold = (10'000'000 / kNotifyNativeInterval);
186 
187   // How often we allow heap trimming to happen (nanoseconds).
188   static constexpr uint64_t kHeapTrimWait = MsToNs(5000);
189 
190   // Starting size of DlMalloc/RosAlloc spaces.
GetDefaultStartingSize()191   static size_t GetDefaultStartingSize() {
192     return gPageSize;
193   }
194 
195   // Whether the transition-GC heap threshold condition applies or not for non-low memory devices.
196   // Stressing GC will bypass the heap threshold condition.
197   DECLARE_RUNTIME_DEBUG_FLAG(kStressCollectorTransition);
198 
199   // Create a heap with the requested sizes. The possible empty
200   // image_file_names names specify Spaces to load based on
201   // ImageWriter output.
202   Heap(size_t initial_size,
203        size_t growth_limit,
204        size_t min_free,
205        size_t max_free,
206        double target_utilization,
207        double foreground_heap_growth_multiplier,
208        size_t stop_for_native_allocs,
209        size_t capacity,
210        size_t non_moving_space_capacity,
211        const std::vector<std::string>& boot_class_path,
212        const std::vector<std::string>& boot_class_path_locations,
213        ArrayRef<File> boot_class_path_files,
214        ArrayRef<File> boot_class_path_image_files,
215        ArrayRef<File> boot_class_path_vdex_files,
216        ArrayRef<File> boot_class_path_oat_files,
217        const std::vector<std::string>& image_file_names,
218        InstructionSet image_instruction_set,
219        CollectorType foreground_collector_type,
220        CollectorType background_collector_type,
221        space::LargeObjectSpaceType large_object_space_type,
222        size_t large_object_threshold,
223        size_t parallel_gc_threads,
224        size_t conc_gc_threads,
225        bool low_memory_mode,
226        size_t long_pause_threshold,
227        size_t long_gc_threshold,
228        bool ignore_target_footprint,
229        bool always_log_explicit_gcs,
230        bool use_tlab,
231        bool verify_pre_gc_heap,
232        bool verify_pre_sweeping_heap,
233        bool verify_post_gc_heap,
234        bool verify_pre_gc_rosalloc,
235        bool verify_pre_sweeping_rosalloc,
236        bool verify_post_gc_rosalloc,
237        bool gc_stress_mode,
238        bool measure_gc_performance,
239        bool use_homogeneous_space_compaction,
240        bool use_generational_cc,
241        uint64_t min_interval_homogeneous_space_compaction_by_oom,
242        bool dump_region_info_before_gc,
243        bool dump_region_info_after_gc);
244 
245   ~Heap();
246 
247   // Allocates and initializes storage for an object instance.
248   template <bool kInstrumented = true, typename PreFenceVisitor>
AllocObject(Thread * self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)249   mirror::Object* AllocObject(Thread* self,
250                               ObjPtr<mirror::Class> klass,
251                               size_t num_bytes,
252                               const PreFenceVisitor& pre_fence_visitor)
253       REQUIRES_SHARED(Locks::mutator_lock_)
254       REQUIRES(!*gc_complete_lock_,
255                !*pending_task_lock_,
256                !*backtrace_lock_,
257                !process_state_update_lock_,
258                !Roles::uninterruptible_) {
259     return AllocObjectWithAllocator<kInstrumented>(self,
260                                                    klass,
261                                                    num_bytes,
262                                                    GetCurrentAllocator(),
263                                                    pre_fence_visitor);
264   }
265 
266   template <bool kInstrumented = true, typename PreFenceVisitor>
AllocNonMovableObject(Thread * self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)267   mirror::Object* AllocNonMovableObject(Thread* self,
268                                         ObjPtr<mirror::Class> klass,
269                                         size_t num_bytes,
270                                         const PreFenceVisitor& pre_fence_visitor)
271       REQUIRES_SHARED(Locks::mutator_lock_)
272       REQUIRES(!*gc_complete_lock_,
273                !*pending_task_lock_,
274                !*backtrace_lock_,
275                !process_state_update_lock_,
276                !Roles::uninterruptible_) {
277     mirror::Object* obj = AllocObjectWithAllocator<kInstrumented>(self,
278                                                                   klass,
279                                                                   num_bytes,
280                                                                   GetCurrentNonMovingAllocator(),
281                                                                   pre_fence_visitor);
282     // Java Heap Profiler check and sample allocation.
283     if (GetHeapSampler().IsEnabled()) {
284       JHPCheckNonTlabSampleAllocation(self, obj, num_bytes);
285     }
286     return obj;
287   }
288 
289   template <bool kInstrumented = true, bool kCheckLargeObject = true, typename PreFenceVisitor>
290   ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(Thread* self,
291                                                          ObjPtr<mirror::Class> klass,
292                                                          size_t byte_count,
293                                                          AllocatorType allocator,
294                                                          const PreFenceVisitor& pre_fence_visitor)
295       REQUIRES_SHARED(Locks::mutator_lock_)
296       REQUIRES(!*gc_complete_lock_,
297                !*pending_task_lock_,
298                !*backtrace_lock_,
299                !process_state_update_lock_,
300                !Roles::uninterruptible_);
301 
GetCurrentAllocator()302   AllocatorType GetCurrentAllocator() const {
303     return current_allocator_;
304   }
305 
GetCurrentNonMovingAllocator()306   AllocatorType GetCurrentNonMovingAllocator() const {
307     return current_non_moving_allocator_;
308   }
309 
GetUpdatedAllocator(AllocatorType old_allocator)310   AllocatorType GetUpdatedAllocator(AllocatorType old_allocator) {
311     return (old_allocator == kAllocatorTypeNonMoving) ?
312         GetCurrentNonMovingAllocator() : GetCurrentAllocator();
313   }
314 
315   // Visit all of the live objects in the heap.
316   template <typename Visitor>
317   ALWAYS_INLINE void VisitObjects(Visitor&& visitor)
318       REQUIRES_SHARED(Locks::mutator_lock_)
319       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_);
320   template <typename Visitor>
321   ALWAYS_INLINE void VisitObjectsPaused(Visitor&& visitor)
322       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
323 
324   void VisitReflectiveTargets(ReflectiveValueVisitor* visitor)
325       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
326 
327   void CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count)
328       REQUIRES_SHARED(Locks::mutator_lock_);
329 
330   // Inform the garbage collector of a non-malloc allocated native memory that might become
331   // reclaimable in the future as a result of Java garbage collection.
332   void RegisterNativeAllocation(JNIEnv* env, size_t bytes)
333       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
334   void RegisterNativeFree(JNIEnv* env, size_t bytes);
335 
336   // Notify the garbage collector of malloc allocations that might be reclaimable
337   // as a result of Java garbage collection. Each such call represents approximately
338   // kNotifyNativeInterval such allocations.
339   void NotifyNativeAllocations(JNIEnv* env)
340       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
341 
GetNotifyNativeInterval()342   uint32_t GetNotifyNativeInterval() {
343     return kNotifyNativeInterval;
344   }
345 
346   // Change the allocator, updates entrypoints.
347   void ChangeAllocator(AllocatorType allocator)
348       REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_);
349 
350   // Change the collector to be one of the possible options (MS, CMS, SS). Only safe when no
351   // concurrent accesses to the heap are possible.
352   void ChangeCollector(CollectorType collector_type)
353       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
354 
355   // The given reference is believed to be to an object in the Java heap, check the soundness of it.
356   // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a
357   // proper lock ordering for it.
358   void VerifyObjectBody(ObjPtr<mirror::Object> o) NO_THREAD_SAFETY_ANALYSIS;
359 
360   // Consistency check of all live references.
361   void VerifyHeap() REQUIRES(!Locks::heap_bitmap_lock_);
362   // Returns how many failures occured.
363   size_t VerifyHeapReferences(bool verify_referents = true)
364       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
365   bool VerifyMissingCardMarks()
366       REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
367 
368   // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock,
369   // and doesn't abort on error, allowing the caller to report more
370   // meaningful diagnostics.
371   bool IsValidObjectAddress(const void* obj) const REQUIRES_SHARED(Locks::mutator_lock_);
372 
373   // Faster alternative to IsHeapAddress since finding if an object is in the large object space is
374   // very slow.
375   bool IsNonDiscontinuousSpaceHeapAddress(const void* addr) const
376       REQUIRES_SHARED(Locks::mutator_lock_);
377 
378   // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses).
379   // Requires the heap lock to be held.
380   bool IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
381                           bool search_allocation_stack = true,
382                           bool search_live_stack = true,
383                           bool sorted = false)
384       REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
385 
386   // Returns true if there is any chance that the object (obj) will move.
387   bool IsMovableObject(ObjPtr<mirror::Object> obj) const REQUIRES_SHARED(Locks::mutator_lock_);
388 
389   // Enables us to compacting GC until objects are released.
390   EXPORT void IncrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_);
391   EXPORT void DecrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_);
392 
393   // Temporarily disable thread flip for JNI critical calls.
394   void IncrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_);
395   void DecrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_);
396   void ThreadFlipBegin(Thread* self) REQUIRES(!*thread_flip_lock_);
397   void ThreadFlipEnd(Thread* self) REQUIRES(!*thread_flip_lock_);
398 
399   // Ensures that the obj doesn't cause userfaultfd in JNI critical calls.
400   void EnsureObjectUserfaulted(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_);
401 
402   // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits.
403   // Mutator lock is required for GetContinuousSpaces.
404   void ClearMarkedObjects(bool release_eagerly = true)
405       REQUIRES(Locks::heap_bitmap_lock_)
406       REQUIRES_SHARED(Locks::mutator_lock_);
407 
408   // Initiates an explicit garbage collection. Guarantees that a GC started after this call has
409   // completed.
410   EXPORT void CollectGarbage(bool clear_soft_references, GcCause cause = kGcCauseExplicit)
411       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
412 
413   // Does a concurrent GC, provided the GC numbered requested_gc_num has not already been
414   // completed. Should only be called by the GC daemon thread through runtime.
415   void ConcurrentGC(Thread* self, GcCause cause, bool force_full, uint32_t requested_gc_num)
416       REQUIRES(!Locks::runtime_shutdown_lock_, !*gc_complete_lock_,
417                !*pending_task_lock_, !process_state_update_lock_);
418 
419   // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount.
420   // The boolean decides whether to use IsAssignableFrom or == when comparing classes.
421   void CountInstances(const std::vector<Handle<mirror::Class>>& classes,
422                       bool use_is_assignable_from,
423                       uint64_t* counts)
424       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
425       REQUIRES_SHARED(Locks::mutator_lock_);
426 
427   // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to
428   // implement dalvik.system.VMRuntime.clearGrowthLimit.
429   void ClearGrowthLimit() REQUIRES(!*gc_complete_lock_);
430 
431   // Make the current growth limit the new maximum capacity, unmaps pages at the end of spaces
432   // which will never be used. Used to implement dalvik.system.VMRuntime.clampGrowthLimit.
433   void ClampGrowthLimit() REQUIRES(!Locks::heap_bitmap_lock_);
434 
435   // Target ideal heap utilization ratio, implements
436   // dalvik.system.VMRuntime.getTargetHeapUtilization.
GetTargetHeapUtilization()437   double GetTargetHeapUtilization() const {
438     return target_utilization_;
439   }
440 
441   // Data structure memory usage tracking.
442   void RegisterGCAllocation(size_t bytes);
443   void RegisterGCDeAllocation(size_t bytes);
444 
445   // Set the heap's private space pointers to be the same as the space based on it's type. Public
446   // due to usage by tests.
447   void SetSpaceAsDefault(space::ContinuousSpace* continuous_space)
448       REQUIRES(!Locks::heap_bitmap_lock_);
449   void AddSpace(space::Space* space)
450       REQUIRES(!Locks::heap_bitmap_lock_)
451       REQUIRES(Locks::mutator_lock_);
452   void RemoveSpace(space::Space* space)
453     REQUIRES(!Locks::heap_bitmap_lock_)
454     REQUIRES(Locks::mutator_lock_);
455 
GetPreGcWeightedAllocatedBytes()456   double GetPreGcWeightedAllocatedBytes() const {
457     return pre_gc_weighted_allocated_bytes_;
458   }
459 
GetPostGcWeightedAllocatedBytes()460   double GetPostGcWeightedAllocatedBytes() const {
461     return post_gc_weighted_allocated_bytes_;
462   }
463 
464   void CalculatePreGcWeightedAllocatedBytes();
465   void CalculatePostGcWeightedAllocatedBytes();
466   uint64_t GetTotalGcCpuTime();
467 
GetProcessCpuStartTime()468   uint64_t GetProcessCpuStartTime() const {
469     return process_cpu_start_time_ns_;
470   }
471 
GetPostGCLastProcessCpuTime()472   uint64_t GetPostGCLastProcessCpuTime() const {
473     return post_gc_last_process_cpu_time_ns_;
474   }
475 
476   // Set target ideal heap utilization ratio, implements
477   // dalvik.system.VMRuntime.setTargetHeapUtilization.
478   void SetTargetHeapUtilization(float target);
479 
480   // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate
481   // from the system. Doesn't allow the space to exceed its growth limit.
482   // Set while we hold gc_complete_lock or collector_type_running_ != kCollectorTypeNone.
483   void SetIdealFootprint(size_t max_allowed_footprint);
484 
485   // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
486   // waited for. Only waits for running collections, ignoring a requested but unstarted GC. Only
487   // heuristic, since a new GC may have started by the time we return. However, if we hold the
488   // mutator lock, even in shared mode, a new GC can't get very far, so long as we keep it.
489   EXPORT collector::GcType WaitForGcToComplete(GcCause cause, Thread* self)
490       REQUIRES(!*gc_complete_lock_);
491 
492   // Update the heap's process state to a new value, may cause compaction to occur.
493   void UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state)
494       REQUIRES(!*pending_task_lock_, !*gc_complete_lock_, !process_state_update_lock_);
495 
HaveContinuousSpaces()496   bool HaveContinuousSpaces() const NO_THREAD_SAFETY_ANALYSIS {
497     // No lock since vector empty is thread safe.
498     return !continuous_spaces_.empty();
499   }
500 
GetContinuousSpaces()501   const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const
502       REQUIRES_SHARED(Locks::mutator_lock_) {
503     return continuous_spaces_;
504   }
505 
GetDiscontinuousSpaces()506   const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const
507       REQUIRES_SHARED(Locks::mutator_lock_) {
508     return discontinuous_spaces_;
509   }
510 
GetCurrentGcIteration()511   const collector::Iteration* GetCurrentGcIteration() const {
512     return &current_gc_iteration_;
513   }
GetCurrentGcIteration()514   collector::Iteration* GetCurrentGcIteration() {
515     return &current_gc_iteration_;
516   }
517 
518   // Enable verification of object references when the runtime is sufficiently initialized.
EnableObjectValidation()519   void EnableObjectValidation() {
520     verify_object_mode_ = kVerifyObjectSupport;
521     if (verify_object_mode_ > kVerifyObjectModeDisabled) {
522       VerifyHeap();
523     }
524   }
525 
526   // Disable object reference verification for image writing.
DisableObjectValidation()527   void DisableObjectValidation() {
528     verify_object_mode_ = kVerifyObjectModeDisabled;
529   }
530 
531   // Other checks may be performed if we know the heap should be in a healthy state.
IsObjectValidationEnabled()532   bool IsObjectValidationEnabled() const {
533     return verify_object_mode_ > kVerifyObjectModeDisabled;
534   }
535 
536   // Returns true if low memory mode is enabled.
IsLowMemoryMode()537   bool IsLowMemoryMode() const {
538     return low_memory_mode_;
539   }
540 
541   // Returns the heap growth multiplier, this affects how much we grow the heap after a GC.
542   // Scales heap growth, min free, and max free.
543   double HeapGrowthMultiplier() const;
544 
545   // Freed bytes can be negative in cases where we copy objects from a compacted space to a
546   // free-list backed space.
547   void RecordFree(uint64_t freed_objects, int64_t freed_bytes);
548 
549   // Record the bytes freed by thread-local buffer revoke.
550   void RecordFreeRevoke();
551 
GetCardTable()552   accounting::CardTable* GetCardTable() const {
553     return card_table_.get();
554   }
555 
GetReadBarrierTable()556   accounting::ReadBarrierTable* GetReadBarrierTable() const {
557     return rb_table_.get();
558   }
559 
560   EXPORT void AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object);
561 
562   // Returns the number of bytes currently allocated.
563   // The result should be treated as an approximation, if it is being concurrently updated.
GetBytesAllocated()564   size_t GetBytesAllocated() const {
565     return num_bytes_allocated_.load(std::memory_order_relaxed);
566   }
567 
568   // Returns bytes_allocated before adding 'bytes' to it.
AddBytesAllocated(size_t bytes)569   size_t AddBytesAllocated(size_t bytes) {
570     return num_bytes_allocated_.fetch_add(bytes, std::memory_order_relaxed);
571   }
572 
GetUseGenerationalCC()573   bool GetUseGenerationalCC() const {
574     return use_generational_cc_;
575   }
576 
577   // Returns the number of objects currently allocated.
578   size_t GetObjectsAllocated() const
579       REQUIRES(!Locks::heap_bitmap_lock_);
580 
581   // Returns the total number of bytes allocated since the heap was created.
582   uint64_t GetBytesAllocatedEver() const;
583 
584   // Returns the total number of bytes freed since the heap was created.
585   // Can decrease over time, and may even be negative, since moving an object to
586   // a space in which it occupies more memory results in negative "freed bytes".
587   // With default memory order, this should be viewed only as a hint.
588   int64_t GetBytesFreedEver(std::memory_order mo = std::memory_order_relaxed) const {
589     return total_bytes_freed_ever_.load(mo);
590   }
591 
GetRegionSpace()592   space::RegionSpace* GetRegionSpace() const {
593     return region_space_;
594   }
595 
GetBumpPointerSpace()596   space::BumpPointerSpace* GetBumpPointerSpace() const {
597     return bump_pointer_space_;
598   }
599   // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can
600   // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx
601   // were specified. Android apps start with a growth limit (small heap size) which is
602   // cleared/extended for large apps.
GetMaxMemory()603   size_t GetMaxMemory() const {
604     // There are some race conditions in the allocation code that can cause bytes allocated to
605     // become larger than growth_limit_ in rare cases.
606     return std::max(GetBytesAllocated(), growth_limit_);
607   }
608 
609   // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently
610   // consumed by an application.
611   EXPORT size_t GetTotalMemory() const;
612 
613   // Returns approximately how much free memory we have until the next GC happens.
GetFreeMemoryUntilGC()614   size_t GetFreeMemoryUntilGC() const {
615     return UnsignedDifference(target_footprint_.load(std::memory_order_relaxed),
616                               GetBytesAllocated());
617   }
618 
619   // Returns approximately how much free memory we have until the next OOME happens.
GetFreeMemoryUntilOOME()620   size_t GetFreeMemoryUntilOOME() const {
621     return UnsignedDifference(growth_limit_, GetBytesAllocated());
622   }
623 
624   // Returns how much free memory we have until we need to grow the heap to perform an allocation.
625   // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory.
GetFreeMemory()626   size_t GetFreeMemory() const {
627     return UnsignedDifference(GetTotalMemory(),
628                               num_bytes_allocated_.load(std::memory_order_relaxed));
629   }
630 
631   // Get the space that corresponds to an object's address. Current implementation searches all
632   // spaces in turn. If fail_ok is false then failing to find a space will cause an abort.
633   // TODO: consider using faster data structure like binary tree.
634   EXPORT space::ContinuousSpace* FindContinuousSpaceFromObject(ObjPtr<mirror::Object>,
635                                                                bool fail_ok) const
636       REQUIRES_SHARED(Locks::mutator_lock_);
637 
638   space::ContinuousSpace* FindContinuousSpaceFromAddress(const mirror::Object* addr) const
639       REQUIRES_SHARED(Locks::mutator_lock_);
640 
641   space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object>,
642                                                               bool fail_ok) const
643       REQUIRES_SHARED(Locks::mutator_lock_);
644 
645   EXPORT space::Space* FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const
646       REQUIRES_SHARED(Locks::mutator_lock_);
647 
648   space::Space* FindSpaceFromAddress(const void* ptr) const
649       REQUIRES_SHARED(Locks::mutator_lock_);
650 
651   std::string DumpSpaceNameFromAddress(const void* addr) const
652       REQUIRES_SHARED(Locks::mutator_lock_);
653 
654   void DumpForSigQuit(std::ostream& os) REQUIRES(!*gc_complete_lock_);
655 
656   // Do a pending collector transition.
657   void DoPendingCollectorTransition()
658       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
659 
660   // Deflate monitors, ... and trim the spaces.
661   EXPORT void Trim(Thread* self) REQUIRES(!*gc_complete_lock_);
662 
663   void RevokeThreadLocalBuffers(Thread* thread);
664   void RevokeRosAllocThreadLocalBuffers(Thread* thread);
665   void RevokeAllThreadLocalBuffers();
666   void AssertThreadLocalBuffersAreRevoked(Thread* thread);
667   void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
668   void RosAllocVerification(TimingLogger* timings, const char* name)
669       REQUIRES(Locks::mutator_lock_);
670 
GetLiveBitmap()671   accounting::HeapBitmap* GetLiveBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
672     return live_bitmap_.get();
673   }
674 
GetMarkBitmap()675   accounting::HeapBitmap* GetMarkBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
676     return mark_bitmap_.get();
677   }
678 
GetLiveStack()679   accounting::ObjectStack* GetLiveStack() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
680     return live_stack_.get();
681   }
682 
GetAllocationStack()683   accounting::ObjectStack* GetAllocationStack() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
684     return allocation_stack_.get();
685   }
686 
687   void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS;
688 
689   // Mark and empty stack.
690   EXPORT void FlushAllocStack() REQUIRES_SHARED(Locks::mutator_lock_)
691       REQUIRES(Locks::heap_bitmap_lock_);
692 
693   // Revoke all the thread-local allocation stacks.
694   EXPORT void RevokeAllThreadLocalAllocationStacks(Thread* self)
695       REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_);
696 
697   // Mark all the objects in the allocation stack in the specified bitmap.
698   // TODO: Refactor?
699   void MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
700                       accounting::ContinuousSpaceBitmap* bitmap2,
701                       accounting::LargeObjectBitmap* large_objects,
702                       accounting::ObjectStack* stack)
703       REQUIRES_SHARED(Locks::mutator_lock_)
704       REQUIRES(Locks::heap_bitmap_lock_);
705 
706   // Mark the specified allocation stack as live.
707   void MarkAllocStackAsLive(accounting::ObjectStack* stack)
708       REQUIRES_SHARED(Locks::mutator_lock_)
709       REQUIRES(Locks::heap_bitmap_lock_);
710 
711   // Unbind any bound bitmaps.
712   void UnBindBitmaps()
713       REQUIRES(Locks::heap_bitmap_lock_)
714       REQUIRES_SHARED(Locks::mutator_lock_);
715 
716   // Returns the boot image spaces. There may be multiple boot image spaces.
GetBootImageSpaces()717   const std::vector<space::ImageSpace*>& GetBootImageSpaces() const {
718     return boot_image_spaces_;
719   }
720 
721   // TODO(b/260881207): refactor to only use this function in debug builds and
722   // remove EXPORT.
723   EXPORT bool ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const
724       REQUIRES_SHARED(Locks::mutator_lock_);
725 
726   bool IsInBootImageOatFile(const void* p) const
727       REQUIRES_SHARED(Locks::mutator_lock_);
728 
729   // Get the start address of the boot images if any; otherwise returns 0.
GetBootImagesStartAddress()730   uint32_t GetBootImagesStartAddress() const {
731     return boot_images_start_address_;
732   }
733 
734   // Get the size of all boot images, including the heap and oat areas.
GetBootImagesSize()735   uint32_t GetBootImagesSize() const {
736     return boot_images_size_;
737   }
738 
739   // Check if a pointer points to a boot image.
IsBootImageAddress(const void * p)740   bool IsBootImageAddress(const void* p) const {
741     return reinterpret_cast<uintptr_t>(p) - boot_images_start_address_ < boot_images_size_;
742   }
743 
GetDlMallocSpace()744   space::DlMallocSpace* GetDlMallocSpace() const {
745     return dlmalloc_space_;
746   }
747 
GetRosAllocSpace()748   space::RosAllocSpace* GetRosAllocSpace() const {
749     return rosalloc_space_;
750   }
751 
752   // Return the corresponding rosalloc space.
753   space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const
754       REQUIRES_SHARED(Locks::mutator_lock_);
755 
GetNonMovingSpace()756   space::MallocSpace* GetNonMovingSpace() const {
757     return non_moving_space_;
758   }
759 
GetLargeObjectsSpace()760   space::LargeObjectSpace* GetLargeObjectsSpace() const {
761     return large_object_space_;
762   }
763 
764   // Returns the free list space that may contain movable objects (the
765   // one that's not the non-moving space), either rosalloc_space_ or
766   // dlmalloc_space_.
GetPrimaryFreeListSpace()767   space::MallocSpace* GetPrimaryFreeListSpace() {
768     if (kUseRosAlloc) {
769       DCHECK(rosalloc_space_ != nullptr);
770       // reinterpret_cast is necessary as the space class hierarchy
771       // isn't known (#included) yet here.
772       return reinterpret_cast<space::MallocSpace*>(rosalloc_space_);
773     } else {
774       DCHECK(dlmalloc_space_ != nullptr);
775       return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_);
776     }
777   }
778 
779   void DumpSpaces(std::ostream& stream) const REQUIRES_SHARED(Locks::mutator_lock_);
780   EXPORT std::string DumpSpaces() const REQUIRES_SHARED(Locks::mutator_lock_);
781 
782   // GC performance measuring
783   void DumpGcPerformanceInfo(std::ostream& os)
784       REQUIRES(!*gc_complete_lock_);
785   void ResetGcPerformanceInfo() REQUIRES(!*gc_complete_lock_);
786 
787   // Thread pool. Create either the given number of threads, or as per the
788   // values of conc_gc_threads_ and parallel_gc_threads_.
789   void CreateThreadPool(size_t num_threads = 0);
790   void WaitForWorkersToBeCreated();
791   void DeleteThreadPool();
GetThreadPool()792   ThreadPool* GetThreadPool() {
793     return thread_pool_.get();
794   }
GetParallelGCThreadCount()795   size_t GetParallelGCThreadCount() const {
796     return parallel_gc_threads_;
797   }
GetConcGCThreadCount()798   size_t GetConcGCThreadCount() const {
799     return conc_gc_threads_;
800   }
801   accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space);
802   void AddModUnionTable(accounting::ModUnionTable* mod_union_table);
803 
804   accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space);
805   void AddRememberedSet(accounting::RememberedSet* remembered_set);
806   // Also deletes the remebered set.
807   void RemoveRememberedSet(space::Space* space);
808 
809   bool IsCompilingBoot() const;
HasBootImageSpace()810   bool HasBootImageSpace() const {
811     return !boot_image_spaces_.empty();
812   }
813   bool HasAppImageSpaceFor(const std::string& dex_location) const;
814 
GetReferenceProcessor()815   ReferenceProcessor* GetReferenceProcessor() {
816     return reference_processor_.get();
817   }
GetTaskProcessor()818   TaskProcessor* GetTaskProcessor() {
819     return task_processor_.get();
820   }
821 
HasZygoteSpace()822   bool HasZygoteSpace() const {
823     return zygote_space_ != nullptr;
824   }
825 
826   // Returns the active concurrent copying collector.
ConcurrentCopyingCollector()827   collector::ConcurrentCopying* ConcurrentCopyingCollector() {
828     collector::ConcurrentCopying* active_collector =
829             active_concurrent_copying_collector_.load(std::memory_order_relaxed);
830     if (use_generational_cc_) {
831       DCHECK((active_collector == concurrent_copying_collector_) ||
832              (active_collector == young_concurrent_copying_collector_))
833               << "active_concurrent_copying_collector: " << active_collector
834               << " young_concurrent_copying_collector: " << young_concurrent_copying_collector_
835               << " concurrent_copying_collector: " << concurrent_copying_collector_;
836     } else {
837       DCHECK_EQ(active_collector, concurrent_copying_collector_);
838     }
839     return active_collector;
840   }
841 
MarkCompactCollector()842   collector::MarkCompact* MarkCompactCollector() {
843     DCHECK(!gUseUserfaultfd || mark_compact_ != nullptr);
844     return mark_compact_;
845   }
846 
IsPerformingUffdCompaction()847   bool IsPerformingUffdCompaction() { return gUseUserfaultfd && mark_compact_->IsCompacting(); }
848 
CurrentCollectorType()849   CollectorType CurrentCollectorType() const {
850     DCHECK(!gUseUserfaultfd || collector_type_ == kCollectorTypeCMC);
851     return collector_type_;
852   }
853 
IsMovingGc()854   bool IsMovingGc() const { return IsMovingGc(CurrentCollectorType()); }
855 
GetForegroundCollectorType()856   CollectorType GetForegroundCollectorType() const { return foreground_collector_type_; }
857   // EXPORT is needed to make this method visible for libartservice.
858   EXPORT std::string GetForegroundCollectorName();
859 
IsGcConcurrentAndMoving()860   bool IsGcConcurrentAndMoving() const {
861     if (IsGcConcurrent() && IsMovingGc(collector_type_)) {
862       // Assume no transition when a concurrent moving collector is used.
863       DCHECK_EQ(collector_type_, foreground_collector_type_);
864       return true;
865     }
866     return false;
867   }
868 
IsMovingGCDisabled(Thread * self)869   bool IsMovingGCDisabled(Thread* self) REQUIRES(!*gc_complete_lock_) {
870     MutexLock mu(self, *gc_complete_lock_);
871     return disable_moving_gc_count_ > 0;
872   }
873 
874   // Request an asynchronous trim.
875   void RequestTrim(Thread* self) REQUIRES(!*pending_task_lock_);
876 
877   // Retrieve the current GC number, i.e. the number n such that we completed n GCs so far.
878   // Provides acquire ordering, so that if we read this first, and then check whether a GC is
879   // required, we know that the GC number read actually preceded the test.
GetCurrentGcNum()880   uint32_t GetCurrentGcNum() {
881     return gcs_completed_.load(std::memory_order_acquire);
882   }
883 
884   // Request asynchronous GC. Observed_gc_num is the value of GetCurrentGcNum() when we started to
885   // evaluate the GC triggering condition. If a GC has been completed since then, we consider our
886   // job done. If we return true, then we ensured that gcs_completed_ will eventually be
887   // incremented beyond observed_gc_num. We return false only in corner cases in which we cannot
888   // ensure that.
889   bool RequestConcurrentGC(Thread* self, GcCause cause, bool force_full, uint32_t observed_gc_num)
890       REQUIRES(!*pending_task_lock_);
891 
892   // Whether or not we may use a garbage collector, used so that we only create collectors we need.
893   bool MayUseCollector(CollectorType type) const;
894 
895   // Used by tests to reduce timinig-dependent flakiness in OOME behavior.
SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval)896   void SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval) {
897     min_interval_homogeneous_space_compaction_by_oom_ = interval;
898   }
899 
900   // Helpers for android.os.Debug.getRuntimeStat().
901   uint64_t GetGcCount() const;
902   uint64_t GetGcTime() const;
903   uint64_t GetBlockingGcCount() const;
904   uint64_t GetBlockingGcTime() const;
905   void DumpGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_);
906   void DumpBlockingGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_);
GetTotalTimeWaitingForGC()907   uint64_t GetTotalTimeWaitingForGC() const {
908     return total_wait_time_;
909   }
910   uint64_t GetPreOomeGcCount() const;
911 
912   // Perfetto Art Heap Profiler Support.
GetHeapSampler()913   HeapSampler& GetHeapSampler() {
914     return heap_sampler_;
915   }
916 
917   void InitPerfettoJavaHeapProf();
918   // In NonTlab case: Check whether we should report a sample allocation and if so report it.
919   // Also update state (bytes_until_sample).
920   // By calling JHPCheckNonTlabSampleAllocation from different functions for Large allocations and
921   // non-moving allocations we are able to use the stack to identify these allocations separately.
922   EXPORT void JHPCheckNonTlabSampleAllocation(Thread* self, mirror::Object* ret, size_t alloc_size);
923   // In Tlab case: Calculate the next tlab size (location of next sample point) and whether
924   // a sample should be taken.
925   size_t JHPCalculateNextTlabSize(Thread* self,
926                                   size_t jhp_def_tlab_size,
927                                   size_t alloc_size,
928                                   bool* take_sample,
929                                   size_t* bytes_until_sample);
930   // Reduce the number of bytes to the next sample position by this adjustment.
931   void AdjustSampleOffset(size_t adjustment);
932 
933   // Allocation tracking support
934   // Callers to this function use double-checked locking to ensure safety on allocation_records_
IsAllocTrackingEnabled()935   bool IsAllocTrackingEnabled() const {
936     return alloc_tracking_enabled_.load(std::memory_order_relaxed);
937   }
938 
SetAllocTrackingEnabled(bool enabled)939   void SetAllocTrackingEnabled(bool enabled) REQUIRES(Locks::alloc_tracker_lock_) {
940     alloc_tracking_enabled_.store(enabled, std::memory_order_relaxed);
941   }
942 
943   // Return the current stack depth of allocation records.
GetAllocTrackerStackDepth()944   size_t GetAllocTrackerStackDepth() const {
945     return alloc_record_depth_;
946   }
947 
948   // Return the current stack depth of allocation records.
SetAllocTrackerStackDepth(size_t alloc_record_depth)949   void SetAllocTrackerStackDepth(size_t alloc_record_depth) {
950     alloc_record_depth_ = alloc_record_depth;
951   }
952 
GetAllocationRecords()953   AllocRecordObjectMap* GetAllocationRecords() const REQUIRES(Locks::alloc_tracker_lock_) {
954     return allocation_records_.get();
955   }
956 
957   void SetAllocationRecords(AllocRecordObjectMap* records)
958       REQUIRES(Locks::alloc_tracker_lock_);
959 
960   void VisitAllocationRecords(RootVisitor* visitor) const
961       REQUIRES_SHARED(Locks::mutator_lock_)
962       REQUIRES(!Locks::alloc_tracker_lock_);
963 
964   void SweepAllocationRecords(IsMarkedVisitor* visitor) const
965       REQUIRES_SHARED(Locks::mutator_lock_)
966       REQUIRES(!Locks::alloc_tracker_lock_);
967 
968   void DisallowNewAllocationRecords() const
969       REQUIRES_SHARED(Locks::mutator_lock_)
970       REQUIRES(!Locks::alloc_tracker_lock_);
971 
972   void AllowNewAllocationRecords() const
973       REQUIRES_SHARED(Locks::mutator_lock_)
974       REQUIRES(!Locks::alloc_tracker_lock_);
975 
976   void BroadcastForNewAllocationRecords() const
977       REQUIRES(!Locks::alloc_tracker_lock_);
978 
979   void DisableGCForShutdown() REQUIRES(!*gc_complete_lock_);
980   bool IsGCDisabledForShutdown() const REQUIRES(!*gc_complete_lock_);
981 
982   // Create a new alloc space and compact default alloc space to it.
983   EXPORT HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact()
984       REQUIRES(!*gc_complete_lock_, !process_state_update_lock_);
985   EXPORT bool SupportHomogeneousSpaceCompactAndCollectorTransitions() const;
986 
987   // Install an allocation listener.
988   EXPORT void SetAllocationListener(AllocationListener* l);
989   // Remove an allocation listener. Note: the listener must not be deleted, as for performance
990   // reasons, we assume it stays valid when we read it (so that we don't require a lock).
991   EXPORT void RemoveAllocationListener();
992 
993   // Install a gc pause listener.
994   EXPORT void SetGcPauseListener(GcPauseListener* l);
995   // Get the currently installed gc pause listener, or null.
GetGcPauseListener()996   GcPauseListener* GetGcPauseListener() {
997     return gc_pause_listener_.load(std::memory_order_acquire);
998   }
999   // Remove a gc pause listener. Note: the listener must not be deleted, as for performance
1000   // reasons, we assume it stays valid when we read it (so that we don't require a lock).
1001   EXPORT void RemoveGcPauseListener();
1002 
1003   EXPORT const Verification* GetVerification() const;
1004 
1005   void PostForkChildAction(Thread* self) REQUIRES(!*gc_complete_lock_);
1006 
1007   EXPORT void TraceHeapSize(size_t heap_size);
1008 
1009   bool AddHeapTask(gc::HeapTask* task);
1010 
1011   // TODO: Kernels for arm and x86 in both, 32-bit and 64-bit modes use 512 entries per page-table
1012   // page. Find a way to confirm that in userspace.
1013   // Address range covered by 1 Page Middle Directory (PMD) entry in the page table
GetPMDSize()1014   static inline ALWAYS_INLINE size_t GetPMDSize() {
1015     return (gPageSize / sizeof(uint64_t)) * gPageSize;
1016   }
1017   // Address range covered by 1 Page Upper Directory (PUD) entry in the page table
GetPUDSize()1018   static inline ALWAYS_INLINE size_t GetPUDSize() {
1019     return (gPageSize / sizeof(uint64_t)) * GetPMDSize();
1020   }
1021 
1022   // Returns the ideal alignment corresponding to page-table levels for the
1023   // given size.
BestPageTableAlignment(size_t size)1024   static inline size_t BestPageTableAlignment(size_t size) {
1025     const size_t pud_size = GetPUDSize();
1026     const size_t pmd_size = GetPMDSize();
1027     return size < pud_size ? pmd_size : pud_size;
1028   }
1029 
1030  private:
1031   class ConcurrentGCTask;
1032   class CollectorTransitionTask;
1033   class HeapTrimTask;
1034   class TriggerPostForkCCGcTask;
1035   class ReduceTargetFootprintTask;
1036 
1037   // Compact source space to target space. Returns the collector used.
1038   collector::GarbageCollector* Compact(space::ContinuousMemMapAllocSpace* target_space,
1039                                        space::ContinuousMemMapAllocSpace* source_space,
1040                                        GcCause gc_cause)
1041       REQUIRES(Locks::mutator_lock_);
1042 
1043   void LogGC(GcCause gc_cause, collector::GarbageCollector* collector);
1044   void StartGC(Thread* self, GcCause cause, CollectorType collector_type)
1045       REQUIRES(!*gc_complete_lock_);
1046   void StartGCRunnable(Thread* self, GcCause cause, CollectorType collector_type)
1047       REQUIRES(!*gc_complete_lock_) REQUIRES_SHARED(Locks::mutator_lock_);
1048   void FinishGC(Thread* self, collector::GcType gc_type) REQUIRES(!*gc_complete_lock_);
1049 
1050   double CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,
1051                                            uint64_t current_process_cpu_time) const;
1052 
1053   // Create a mem map with a preferred base address.
1054   static MemMap MapAnonymousPreferredAddress(const char* name,
1055                                              uint8_t* request_begin,
1056                                              size_t capacity,
1057                                              std::string* out_error_str);
1058 
SupportHSpaceCompaction()1059   bool SupportHSpaceCompaction() const {
1060     // Returns true if we can do hspace compaction
1061     return main_space_backup_ != nullptr;
1062   }
1063 
1064   // Size_t saturating arithmetic
UnsignedDifference(size_t x,size_t y)1065   static ALWAYS_INLINE size_t UnsignedDifference(size_t x, size_t y) {
1066     return x > y ? x - y : 0;
1067   }
UnsignedSum(size_t x,size_t y)1068   static ALWAYS_INLINE size_t UnsignedSum(size_t x, size_t y) {
1069     return x + y >= x ? x + y : std::numeric_limits<size_t>::max();
1070   }
1071 
AllocatorHasAllocationStack(AllocatorType allocator_type)1072   static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) {
1073     return
1074         allocator_type != kAllocatorTypeRegionTLAB &&
1075         allocator_type != kAllocatorTypeBumpPointer &&
1076         allocator_type != kAllocatorTypeTLAB &&
1077         allocator_type != kAllocatorTypeRegion;
1078   }
IsMovingGc(CollectorType collector_type)1079   static bool IsMovingGc(CollectorType collector_type) {
1080     return
1081         collector_type == kCollectorTypeCC ||
1082         collector_type == kCollectorTypeSS ||
1083         collector_type == kCollectorTypeCMC ||
1084         collector_type == kCollectorTypeCCBackground ||
1085         collector_type == kCollectorTypeCMCBackground ||
1086         collector_type == kCollectorTypeHomogeneousSpaceCompact;
1087   }
1088   bool ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const
1089       REQUIRES_SHARED(Locks::mutator_lock_);
1090 
1091   // Checks whether we should garbage collect:
1092   ALWAYS_INLINE bool ShouldConcurrentGCForJava(size_t new_num_bytes_allocated);
1093   float NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent);
1094   void CheckGCForNative(Thread* self)
1095       REQUIRES(!*pending_task_lock_, !*gc_complete_lock_, !process_state_update_lock_);
1096 
GetMarkStack()1097   accounting::ObjectStack* GetMarkStack() {
1098     return mark_stack_.get();
1099   }
1100 
1101   // We don't force this to be inlined since it is a slow path.
1102   template <bool kInstrumented, typename PreFenceVisitor>
1103   mirror::Object* AllocLargeObject(Thread* self,
1104                                    ObjPtr<mirror::Class>* klass,
1105                                    size_t byte_count,
1106                                    const PreFenceVisitor& pre_fence_visitor)
1107       REQUIRES_SHARED(Locks::mutator_lock_)
1108       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_,
1109                !*backtrace_lock_, !process_state_update_lock_);
1110 
1111   // Handles Allocate()'s slow allocation path with GC involved after an initial allocation
1112   // attempt failed.
1113   // Called with thread suspension disallowed, but re-enables it, and may suspend, internally.
1114   // Returns null if instrumentation or the allocator changed.
1115   EXPORT mirror::Object* AllocateInternalWithGc(Thread* self,
1116                                                 AllocatorType allocator,
1117                                                 bool instrumented,
1118                                                 size_t num_bytes,
1119                                                 size_t* bytes_allocated,
1120                                                 size_t* usable_size,
1121                                                 size_t* bytes_tl_bulk_allocated,
1122                                                 ObjPtr<mirror::Class>* klass)
1123       REQUIRES(!Locks::thread_suspend_count_lock_, !*gc_complete_lock_, !*pending_task_lock_)
1124           REQUIRES(Roles::uninterruptible_) REQUIRES_SHARED(Locks::mutator_lock_);
1125 
1126   // Allocate into a specific space.
1127   mirror::Object* AllocateInto(Thread* self,
1128                                space::AllocSpace* space,
1129                                ObjPtr<mirror::Class> c,
1130                                size_t bytes)
1131       REQUIRES_SHARED(Locks::mutator_lock_);
1132 
1133   // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
1134   // wrong space.
1135   void SwapSemiSpaces() REQUIRES(Locks::mutator_lock_);
1136 
1137   // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so
1138   // that the switch statement is constant optimized in the entrypoints.
1139   template <const bool kInstrumented, const bool kGrow>
1140   ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self,
1141                                               AllocatorType allocator_type,
1142                                               size_t alloc_size,
1143                                               size_t* bytes_allocated,
1144                                               size_t* usable_size,
1145                                               size_t* bytes_tl_bulk_allocated)
1146       REQUIRES_SHARED(Locks::mutator_lock_);
1147 
1148   EXPORT mirror::Object* AllocWithNewTLAB(Thread* self,
1149                                           AllocatorType allocator_type,
1150                                           size_t alloc_size,
1151                                           bool grow,
1152                                           size_t* bytes_allocated,
1153                                           size_t* usable_size,
1154                                           size_t* bytes_tl_bulk_allocated)
1155       REQUIRES_SHARED(Locks::mutator_lock_);
1156 
1157   void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type)
1158       REQUIRES_SHARED(Locks::mutator_lock_);
1159 
1160   // Are we out of memory, and thus should force a GC or fail?
1161   // For concurrent collectors, out of memory is defined by growth_limit_.
1162   // For nonconcurrent collectors it is defined by target_footprint_ unless grow is
1163   // set. If grow is set, the limit is growth_limit_ and we adjust target_footprint_
1164   // to accomodate the allocation.
1165   ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type,
1166                                                size_t alloc_size,
1167                                                bool grow);
1168 
1169   // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
1170   // waited for. If only_one is true, we only wait for the currently running GC, and may return
1171   // while a new GC is again running.
1172   collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self, bool only_one = false)
1173       REQUIRES(gc_complete_lock_);
1174 
1175   void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time)
1176       REQUIRES(!*pending_task_lock_);
1177 
1178   EXPORT void RequestConcurrentGCAndSaveObject(Thread* self,
1179                                                bool force_full,
1180                                                uint32_t observed_gc_num,
1181                                                ObjPtr<mirror::Object>* obj)
1182       REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!*pending_task_lock_);
1183 
1184   static constexpr uint32_t GC_NUM_ANY = std::numeric_limits<uint32_t>::max();
1185 
1186   // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns
1187   // which type of Gc was actually run.
1188   // We pass in the intended GC sequence number to ensure that multiple approximately concurrent
1189   // requests result in a single GC; clearly redundant request will be pruned.  A requested_gc_num
1190   // of GC_NUM_ANY indicates that we should not prune redundant requests.  (In the unlikely case
1191   // that gcs_completed_ gets this big, we just accept a potential extra GC or two.)
1192   collector::GcType CollectGarbageInternal(collector::GcType gc_plan,
1193                                            GcCause gc_cause,
1194                                            bool clear_soft_references,
1195                                            uint32_t requested_gc_num)
1196       REQUIRES(!*gc_complete_lock_, !Locks::heap_bitmap_lock_, !Locks::thread_suspend_count_lock_,
1197                !*pending_task_lock_, !process_state_update_lock_);
1198 
1199   void PreGcVerification(collector::GarbageCollector* gc)
1200       REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_);
1201   void PreGcVerificationPaused(collector::GarbageCollector* gc)
1202       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
1203   void PrePauseRosAllocVerification(collector::GarbageCollector* gc)
1204       REQUIRES(Locks::mutator_lock_);
1205   void PreSweepingGcVerification(collector::GarbageCollector* gc)
1206       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
1207   void PostGcVerification(collector::GarbageCollector* gc)
1208       REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_);
1209   void PostGcVerificationPaused(collector::GarbageCollector* gc)
1210       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
1211 
1212   // Find a collector based on GC type.
1213   collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type);
1214 
1215   // Create the main free list malloc space, either a RosAlloc space or DlMalloc space.
1216   void CreateMainMallocSpace(MemMap&& mem_map,
1217                              size_t initial_size,
1218                              size_t growth_limit,
1219                              size_t capacity);
1220 
1221   // Create a malloc space based on a mem map. Does not set the space as default.
1222   space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap&& mem_map,
1223                                                   size_t initial_size,
1224                                                   size_t growth_limit,
1225                                                   size_t capacity,
1226                                                   const char* name,
1227                                                   bool can_move_objects);
1228 
1229   // Given the current contents of the alloc space, increase the allowed heap footprint to match
1230   // the target utilization ratio.  This should only be called immediately after a full garbage
1231   // collection. bytes_allocated_before_gc is used to measure bytes / second for the period which
1232   // the GC was run.
1233   // This is only called by the thread that set collector_type_running_ to a value other than
1234   // kCollectorTypeNone, or while holding gc_complete_lock, and ensuring that
1235   // collector_type_running_ is kCollectorTypeNone.
1236   void GrowForUtilization(collector::GarbageCollector* collector_ran,
1237                           size_t bytes_allocated_before_gc = 0)
1238       REQUIRES(!process_state_update_lock_);
1239 
1240   size_t GetPercentFree();
1241 
1242   // Swap the allocation stack with the live stack.
1243   void SwapStacks() REQUIRES_SHARED(Locks::mutator_lock_);
1244 
1245   // Clear cards and update the mod union table. When process_alloc_space_cards is true,
1246   // if clear_alloc_space_cards is true, then we clear cards instead of ageing them. We do
1247   // not process the alloc space if process_alloc_space_cards is false.
1248   void ProcessCards(TimingLogger* timings,
1249                     bool use_rem_sets,
1250                     bool process_alloc_space_cards,
1251                     bool clear_alloc_space_cards)
1252       REQUIRES_SHARED(Locks::mutator_lock_);
1253 
1254   // Push an object onto the allocation stack.
1255   void PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj)
1256       REQUIRES_SHARED(Locks::mutator_lock_)
1257       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
1258   EXPORT void PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj)
1259       REQUIRES_SHARED(Locks::mutator_lock_)
1260       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
1261   EXPORT void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread,
1262                                                              ObjPtr<mirror::Object>* obj)
1263       REQUIRES_SHARED(Locks::mutator_lock_)
1264           REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
1265 
1266   void ClearPendingTrim(Thread* self) REQUIRES(!*pending_task_lock_);
1267   void ClearPendingCollectorTransition(Thread* self) REQUIRES(!*pending_task_lock_);
1268 
1269   // What kind of concurrency behavior is the runtime after?
IsGcConcurrent()1270   bool IsGcConcurrent() const ALWAYS_INLINE {
1271     return collector_type_ == kCollectorTypeCC ||
1272         collector_type_ == kCollectorTypeCMC ||
1273         collector_type_ == kCollectorTypeCMS ||
1274         collector_type_ == kCollectorTypeCCBackground ||
1275         collector_type_ == kCollectorTypeCMCBackground;
1276   }
1277 
1278   // Trim the managed and native spaces by releasing unused memory back to the OS.
1279   void TrimSpaces(Thread* self) REQUIRES(!*gc_complete_lock_);
1280 
1281   // Trim 0 pages at the end of reference tables.
1282   void TrimIndirectReferenceTables(Thread* self);
1283 
1284   template <typename Visitor>
1285   ALWAYS_INLINE void VisitObjectsInternal(Visitor&& visitor)
1286       REQUIRES_SHARED(Locks::mutator_lock_)
1287       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_);
1288   template <typename Visitor>
1289   ALWAYS_INLINE void VisitObjectsInternalRegionSpace(Visitor&& visitor)
1290       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
1291 
1292   void UpdateGcCountRateHistograms() REQUIRES(gc_complete_lock_);
1293 
1294   // GC stress mode attempts to do one GC per unique backtrace.
1295   EXPORT void CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj)
1296       REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!*gc_complete_lock_,
1297                                                      !*pending_task_lock_,
1298                                                      !*backtrace_lock_,
1299                                                      !process_state_update_lock_);
1300 
NonStickyGcType()1301   collector::GcType NonStickyGcType() const {
1302     return HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
1303   }
1304 
1305   // Return the amount of space we allow for native memory when deciding whether to
1306   // collect. We collect when a weighted sum of Java memory plus native memory exceeds
1307   // the similarly weighted sum of the Java heap size target and this value.
NativeAllocationGcWatermark()1308   ALWAYS_INLINE size_t NativeAllocationGcWatermark() const {
1309     // We keep the traditional limit of max_free_ in place for small heaps,
1310     // but allow it to be adjusted upward for large heaps to limit GC overhead.
1311     return target_footprint_.load(std::memory_order_relaxed) / 8 + max_free_;
1312   }
1313 
1314   ALWAYS_INLINE void IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke);
1315 
1316   // On switching app from background to foreground, grow the heap size
1317   // to incorporate foreground heap growth multiplier.
1318   void GrowHeapOnJankPerceptibleSwitch() REQUIRES(!process_state_update_lock_);
1319 
1320   // Update *_freed_ever_ counters to reflect current GC values.
1321   void IncrementFreedEver();
1322 
1323   // Remove a vlog code from heap-inl.h which is transitively included in half the world.
1324   EXPORT static void VlogHeapGrowth(size_t max_allowed_footprint,
1325                                     size_t new_footprint,
1326                                     size_t alloc_size);
1327 
1328   // Return our best approximation of the number of bytes of native memory that
1329   // are currently in use, and could possibly be reclaimed as an indirect result
1330   // of a garbage collection.
1331   size_t GetNativeBytes();
1332 
1333   // Set concurrent_start_bytes_ to a reasonable guess, given target_footprint_ .
1334   void SetDefaultConcurrentStartBytes() REQUIRES(!*gc_complete_lock_);
1335   // This version assumes no concurrent updaters.
1336   void SetDefaultConcurrentStartBytesLocked();
1337 
1338   // All-known continuous spaces, where objects lie within fixed bounds.
1339   std::vector<space::ContinuousSpace*> continuous_spaces_ GUARDED_BY(Locks::mutator_lock_);
1340 
1341   // All-known discontinuous spaces, where objects may be placed throughout virtual memory.
1342   std::vector<space::DiscontinuousSpace*> discontinuous_spaces_ GUARDED_BY(Locks::mutator_lock_);
1343 
1344   // All-known alloc spaces, where objects may be or have been allocated.
1345   std::vector<space::AllocSpace*> alloc_spaces_;
1346 
1347   // A space where non-movable objects are allocated, when compaction is enabled it contains
1348   // Classes, ArtMethods, ArtFields, and non moving objects.
1349   space::MallocSpace* non_moving_space_;
1350 
1351   // Space which we use for the kAllocatorTypeROSAlloc.
1352   space::RosAllocSpace* rosalloc_space_;
1353 
1354   // Space which we use for the kAllocatorTypeDlMalloc.
1355   space::DlMallocSpace* dlmalloc_space_;
1356 
1357   // The main space is the space which the GC copies to and from on process state updates. This
1358   // space is typically either the dlmalloc_space_ or the rosalloc_space_.
1359   space::MallocSpace* main_space_;
1360 
1361   // The large object space we are currently allocating into.
1362   space::LargeObjectSpace* large_object_space_;
1363 
1364   // The card table, dirtied by the write barrier.
1365   std::unique_ptr<accounting::CardTable> card_table_;
1366 
1367   std::unique_ptr<accounting::ReadBarrierTable> rb_table_;
1368 
1369   // A mod-union table remembers all of the references from the it's space to other spaces.
1370   AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap>
1371       mod_union_tables_;
1372 
1373   // A remembered set remembers all of the references from the it's space to the target space.
1374   AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap>
1375       remembered_sets_;
1376 
1377   // The current collector type.
1378   CollectorType collector_type_;
1379   // Which collector we use when the app is in the foreground.
1380   const CollectorType foreground_collector_type_;
1381   // Which collector we will use when the app is notified of a transition to background.
1382   CollectorType background_collector_type_;
1383   // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_.
1384   CollectorType desired_collector_type_;
1385 
1386   // Lock which guards pending tasks.
1387   Mutex* pending_task_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
1388 
1389   // How many GC threads we may use for paused parts of garbage collection.
1390   const size_t parallel_gc_threads_;
1391 
1392   // How many GC threads we may use for unpaused parts of garbage collection.
1393   const size_t conc_gc_threads_;
1394 
1395   // Boolean for if we are in low memory mode.
1396   const bool low_memory_mode_;
1397 
1398   // If we get a pause longer than long pause log threshold, then we print out the GC after it
1399   // finishes.
1400   const size_t long_pause_log_threshold_;
1401 
1402   // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes.
1403   const size_t long_gc_log_threshold_;
1404 
1405   // Starting time of the new process; meant to be used for measuring total process CPU time.
1406   uint64_t process_cpu_start_time_ns_;
1407 
1408   // Last time (before and after) GC started; meant to be used to measure the
1409   // duration between two GCs.
1410   uint64_t pre_gc_last_process_cpu_time_ns_;
1411   uint64_t post_gc_last_process_cpu_time_ns_;
1412 
1413   // allocated_bytes * (current_process_cpu_time - [pre|post]_gc_last_process_cpu_time)
1414   double pre_gc_weighted_allocated_bytes_;
1415   double post_gc_weighted_allocated_bytes_;
1416 
1417   // If we ignore the target footprint it lets the heap grow until it hits the heap capacity, this
1418   // is useful for benchmarking since it reduces time spent in GC to a low %.
1419   const bool ignore_target_footprint_;
1420 
1421   // If we are running tests or some other configurations we might not actually
1422   // want logs for explicit gcs since they can get spammy.
1423   const bool always_log_explicit_gcs_;
1424 
1425   // Lock which guards zygote space creation.
1426   Mutex zygote_creation_lock_;
1427 
1428   // Non-null iff we have a zygote space. Doesn't contain the large objects allocated before
1429   // zygote space creation.
1430   space::ZygoteSpace* zygote_space_;
1431 
1432   // Minimum allocation size of large object.
1433   size_t large_object_threshold_;
1434 
1435   // Guards access to the state of GC, associated conditional variable is used to signal when a GC
1436   // completes.
1437   Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
1438   std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_);
1439 
1440   // Used to synchronize between JNI critical calls and the thread flip of the CC collector.
1441   Mutex* thread_flip_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
1442   std::unique_ptr<ConditionVariable> thread_flip_cond_ GUARDED_BY(thread_flip_lock_);
1443   // This counter keeps track of how many threads are currently in a JNI critical section. This is
1444   // incremented once per thread even with nested enters.
1445   size_t disable_thread_flip_count_ GUARDED_BY(thread_flip_lock_);
1446   bool thread_flip_running_ GUARDED_BY(thread_flip_lock_);
1447 
1448   // Reference processor;
1449   std::unique_ptr<ReferenceProcessor> reference_processor_;
1450 
1451   // Task processor, proxies heap trim requests to the daemon threads.
1452   std::unique_ptr<TaskProcessor> task_processor_;
1453 
1454   // The following are declared volatile only for debugging purposes; it shouldn't otherwise
1455   // matter.
1456 
1457   // Collector type of the running GC.
1458   CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_);
1459 
1460   // Cause of the last running or attempted GC or GC-like action.
1461   GcCause last_gc_cause_ GUARDED_BY(gc_complete_lock_);
1462 
1463   // The thread currently running the GC.
1464   Thread* thread_running_gc_ GUARDED_BY(gc_complete_lock_);
1465 
1466   // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on.
1467   collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_);
1468   collector::GcType next_gc_type_;
1469 
1470   // Maximum size that the heap can reach.
1471   size_t capacity_;
1472 
1473   // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap
1474   // programs it is "cleared" making it the same as capacity.
1475   // Only weakly enforced for simultaneous allocations.
1476   size_t growth_limit_;
1477 
1478   // Requested initial heap size. Temporarily ignored after a fork, but then reestablished after
1479   // a while to usually trigger the initial GC.
1480   size_t initial_heap_size_;
1481 
1482   // Target size (as in maximum allocatable bytes) for the heap. Weakly enforced as a limit for
1483   // non-concurrent GC. Used as a guideline for computing concurrent_start_bytes_ in the
1484   // concurrent GC case. Updates normally occur while collector_type_running_ is not none.
1485   Atomic<size_t> target_footprint_;
1486 
1487   Mutex process_state_update_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
1488 
1489   // Computed with foreground-multiplier in GrowForUtilization() when run in
1490   // jank non-perceptible state. On update to process state from background to
1491   // foreground we set target_footprint_ and concurrent_start_bytes_ to the corresponding value.
1492   size_t min_foreground_target_footprint_ GUARDED_BY(process_state_update_lock_);
1493   size_t min_foreground_concurrent_start_bytes_ GUARDED_BY(process_state_update_lock_);
1494 
1495   // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that
1496   // it completes ahead of an allocation failing.
1497   // A multiple of this is also used to determine when to trigger a GC in response to native
1498   // allocation.
1499   // After initialization, this is only updated by the thread that set collector_type_running_ to
1500   // a value other than kCollectorTypeNone, or while holding gc_complete_lock, and ensuring that
1501   // collector_type_running_ is kCollectorTypeNone.
1502   size_t concurrent_start_bytes_;
1503 
1504   // Since the heap was created, how many bytes have been freed.
1505   std::atomic<int64_t> total_bytes_freed_ever_;
1506 
1507   // Since the heap was created, how many objects have been freed.
1508   std::atomic<uint64_t> total_objects_freed_ever_;
1509 
1510   // Number of bytes currently allocated and not yet reclaimed. Includes active
1511   // TLABS in their entirety, even if they have not yet been parceled out.
1512   Atomic<size_t> num_bytes_allocated_;
1513 
1514   // Number of registered native bytes allocated. Adjusted after each RegisterNativeAllocation and
1515   // RegisterNativeFree. Used to  help determine when to trigger GC for native allocations. Should
1516   // not include bytes allocated through the system malloc, since those are implicitly included.
1517   Atomic<size_t> native_bytes_registered_;
1518 
1519   // Approximately the smallest value of GetNativeBytes() we've seen since the last GC.
1520   Atomic<size_t> old_native_bytes_allocated_;
1521 
1522   // Total number of native objects of which we were notified since the beginning of time, mod 2^32.
1523   // Allows us to check for GC only roughly every kNotifyNativeInterval allocations.
1524   Atomic<uint32_t> native_objects_notified_;
1525 
1526   // Number of bytes freed by thread local buffer revokes. This will
1527   // cancel out the ahead-of-time bulk counting of bytes allocated in
1528   // rosalloc thread-local buffers.  It is temporarily accumulated
1529   // here to be subtracted from num_bytes_allocated_ later at the next
1530   // GC.
1531   Atomic<size_t> num_bytes_freed_revoke_;
1532 
1533   // Records the number of bytes allocated at the time of GC, which is used later to calculate
1534   // how many bytes have been allocated since the last GC
1535   size_t num_bytes_alive_after_gc_;
1536 
1537   // Info related to the current or previous GC iteration.
1538   collector::Iteration current_gc_iteration_;
1539 
1540   // Heap verification flags.
1541   const bool verify_missing_card_marks_;
1542   const bool verify_system_weaks_;
1543   const bool verify_pre_gc_heap_;
1544   const bool verify_pre_sweeping_heap_;
1545   const bool verify_post_gc_heap_;
1546   const bool verify_mod_union_table_;
1547   bool verify_pre_gc_rosalloc_;
1548   bool verify_pre_sweeping_rosalloc_;
1549   bool verify_post_gc_rosalloc_;
1550   const bool gc_stress_mode_;
1551 
1552   // RAII that temporarily disables the rosalloc verification during
1553   // the zygote fork.
1554   class ScopedDisableRosAllocVerification {
1555    private:
1556     Heap* const heap_;
1557     const bool orig_verify_pre_gc_;
1558     const bool orig_verify_pre_sweeping_;
1559     const bool orig_verify_post_gc_;
1560 
1561    public:
ScopedDisableRosAllocVerification(Heap * heap)1562     explicit ScopedDisableRosAllocVerification(Heap* heap)
1563         : heap_(heap),
1564           orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_),
1565           orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_),
1566           orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) {
1567       heap_->verify_pre_gc_rosalloc_ = false;
1568       heap_->verify_pre_sweeping_rosalloc_ = false;
1569       heap_->verify_post_gc_rosalloc_ = false;
1570     }
~ScopedDisableRosAllocVerification()1571     ~ScopedDisableRosAllocVerification() {
1572       heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_;
1573       heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_;
1574       heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_;
1575     }
1576   };
1577 
1578   // Parallel GC data structures.
1579   std::unique_ptr<ThreadPool> thread_pool_;
1580 
1581   // A bitmap that is set corresponding to the known live objects since the last GC cycle.
1582   std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
1583   // A bitmap that is set corresponding to the marked objects in the current GC cycle.
1584   std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
1585 
1586   // Mark stack that we reuse to avoid re-allocating the mark stack.
1587   std::unique_ptr<accounting::ObjectStack> mark_stack_;
1588 
1589   // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us
1590   // to use the live bitmap as the old mark bitmap.
1591   const size_t max_allocation_stack_size_;
1592   std::unique_ptr<accounting::ObjectStack> allocation_stack_;
1593 
1594   // Second allocation stack so that we can process allocation with the heap unlocked.
1595   std::unique_ptr<accounting::ObjectStack> live_stack_;
1596 
1597   // Allocator type.
1598   AllocatorType current_allocator_;
1599   const AllocatorType current_non_moving_allocator_;
1600 
1601   // Which GCs we run in order when an allocation fails.
1602   std::vector<collector::GcType> gc_plan_;
1603 
1604   // Bump pointer spaces.
1605   space::BumpPointerSpace* bump_pointer_space_;
1606   // Temp space is the space which the semispace collector copies to.
1607   space::BumpPointerSpace* temp_space_;
1608 
1609   // Region space, used by the concurrent collector.
1610   space::RegionSpace* region_space_;
1611 
1612   // Minimum free guarantees that you always have at least min_free_ free bytes after growing for
1613   // utilization, regardless of target utilization ratio.
1614   const size_t min_free_;
1615 
1616   // The ideal maximum free size, when we grow the heap for utilization.
1617   const size_t max_free_;
1618 
1619   // Target ideal heap utilization ratio.
1620   double target_utilization_;
1621 
1622   // How much more we grow the heap when we are a foreground app instead of background.
1623   double foreground_heap_growth_multiplier_;
1624 
1625   // The amount of native memory allocation since the last GC required to cause us to wait for a
1626   // collection as a result of native allocation. Very large values can cause the device to run
1627   // out of memory, due to lack of finalization to reclaim native memory.  Making it too small can
1628   // cause jank in apps like launcher that intentionally allocate large amounts of memory in rapid
1629   // succession. (b/122099093) 1/4 to 1/3 of physical memory seems to be a good number.
1630   const size_t stop_for_native_allocs_;
1631 
1632   // Total time which mutators are paused or waiting for GC to complete.
1633   uint64_t total_wait_time_;
1634 
1635   // The current state of heap verification, may be enabled or disabled.
1636   VerifyObjectMode verify_object_mode_;
1637 
1638   // Compacting GC disable count, prevents compacting GC from running iff > 0.
1639   size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_);
1640 
1641   std::vector<collector::GarbageCollector*> garbage_collectors_;
1642   collector::SemiSpace* semi_space_collector_;
1643   collector::MarkCompact* mark_compact_;
1644   Atomic<collector::ConcurrentCopying*> active_concurrent_copying_collector_;
1645   collector::ConcurrentCopying* young_concurrent_copying_collector_;
1646   collector::ConcurrentCopying* concurrent_copying_collector_;
1647 
1648   const bool is_running_on_memory_tool_;
1649   const bool use_tlab_;
1650 
1651   // Pointer to the space which becomes the new main space when we do homogeneous space compaction.
1652   // Use unique_ptr since the space is only added during the homogeneous compaction phase.
1653   std::unique_ptr<space::MallocSpace> main_space_backup_;
1654 
1655   // Minimal interval allowed between two homogeneous space compactions caused by OOM.
1656   uint64_t min_interval_homogeneous_space_compaction_by_oom_;
1657 
1658   // Times of the last homogeneous space compaction caused by OOM.
1659   uint64_t last_time_homogeneous_space_compaction_by_oom_;
1660 
1661   // Saved OOMs by homogeneous space compaction.
1662   Atomic<size_t> count_delayed_oom_;
1663 
1664   // Count for requested homogeneous space compaction.
1665   Atomic<size_t> count_requested_homogeneous_space_compaction_;
1666 
1667   // Count for ignored homogeneous space compaction.
1668   Atomic<size_t> count_ignored_homogeneous_space_compaction_;
1669 
1670   // Count for performed homogeneous space compaction.
1671   Atomic<size_t> count_performed_homogeneous_space_compaction_;
1672 
1673   // The number of garbage collections (either young or full, not trims or the like) we have
1674   // completed since heap creation. We include requests that turned out to be impossible
1675   // because they were disabled. We guard against wrapping, though that's unlikely.
1676   // Increment is guarded by gc_complete_lock_.
1677   Atomic<uint32_t> gcs_completed_;
1678 
1679   // The number of the last garbage collection that has been requested.  A value of gcs_completed
1680   // + 1 indicates that another collection is needed or in progress. A value of gcs_completed_ or
1681   // (logically) less means that no new GC has been requested.
1682   Atomic<uint32_t> max_gc_requested_;
1683 
1684   // Active tasks which we can modify (change target time, desired collector type, etc..).
1685   CollectorTransitionTask* pending_collector_transition_ GUARDED_BY(pending_task_lock_);
1686   HeapTrimTask* pending_heap_trim_ GUARDED_BY(pending_task_lock_);
1687 
1688   // Whether or not we use homogeneous space compaction to avoid OOM errors.
1689   bool use_homogeneous_space_compaction_for_oom_;
1690 
1691   // If true, enable generational collection when using the Concurrent Copying
1692   // (CC) collector, i.e. use sticky-bit CC for minor collections and (full) CC
1693   // for major collections. Set in Heap constructor.
1694   const bool use_generational_cc_;
1695 
1696   // True if the currently running collection has made some thread wait.
1697   bool running_collection_is_blocking_ GUARDED_BY(gc_complete_lock_);
1698   // The number of blocking GC runs.
1699   uint64_t blocking_gc_count_;
1700   // The total duration of blocking GC runs.
1701   uint64_t blocking_gc_time_;
1702   // The duration of the window for the GC count rate histograms.
1703   static constexpr uint64_t kGcCountRateHistogramWindowDuration = MsToNs(10 * 1000);  // 10s.
1704   // Maximum number of missed histogram windows for which statistics will be collected.
1705   static constexpr uint64_t kGcCountRateHistogramMaxNumMissedWindows = 100;
1706   // The last time when the GC count rate histograms were updated.
1707   // This is rounded by kGcCountRateHistogramWindowDuration (a multiple of 10s).
1708   uint64_t last_update_time_gc_count_rate_histograms_;
1709   // The running count of GC runs in the last window.
1710   uint64_t gc_count_last_window_;
1711   // The running count of blocking GC runs in the last window.
1712   uint64_t blocking_gc_count_last_window_;
1713   // The maximum number of buckets in the GC count rate histograms.
1714   static constexpr size_t kGcCountRateMaxBucketCount = 200;
1715   // The histogram of the number of GC invocations per window duration.
1716   Histogram<uint64_t> gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
1717   // The histogram of the number of blocking GC invocations per window duration.
1718   Histogram<uint64_t> blocking_gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
1719 
1720   // Allocation tracking support
1721   Atomic<bool> alloc_tracking_enabled_;
1722   std::unique_ptr<AllocRecordObjectMap> allocation_records_;
1723   size_t alloc_record_depth_;
1724 
1725   // Perfetto Java Heap Profiler support.
1726   HeapSampler heap_sampler_;
1727 
1728   // GC stress related data structures.
1729   Mutex* backtrace_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
1730   // Debugging variables, seen backtraces vs unique backtraces.
1731   Atomic<uint64_t> seen_backtrace_count_;
1732   Atomic<uint64_t> unique_backtrace_count_;
1733   // Stack trace hashes that we already saw,
1734   std::unordered_set<uint64_t> seen_backtraces_ GUARDED_BY(backtrace_lock_);
1735 
1736   // We disable GC when we are shutting down the runtime in case there are daemon threads still
1737   // allocating.
1738   bool gc_disabled_for_shutdown_ GUARDED_BY(gc_complete_lock_);
1739 
1740   // Turned on by -XX:DumpRegionInfoBeforeGC and -XX:DumpRegionInfoAfterGC to
1741   // emit region info before and after each GC cycle.
1742   bool dump_region_info_before_gc_;
1743   bool dump_region_info_after_gc_;
1744 
1745   // Boot image spaces.
1746   std::vector<space::ImageSpace*> boot_image_spaces_;
1747 
1748   // Boot image address range. Includes images and oat files.
1749   uint32_t boot_images_start_address_;
1750   uint32_t boot_images_size_;
1751 
1752   // The number of times we initiated a GC of last resort to try to avoid an OOME.
1753   Atomic<uint64_t> pre_oome_gc_count_;
1754 
1755   // An installed allocation listener.
1756   Atomic<AllocationListener*> alloc_listener_;
1757   // An installed GC Pause listener.
1758   Atomic<GcPauseListener*> gc_pause_listener_;
1759 
1760   std::unique_ptr<Verification> verification_;
1761 
1762   friend class CollectorTransitionTask;
1763   friend class collector::GarbageCollector;
1764   friend class collector::ConcurrentCopying;
1765   friend class collector::MarkCompact;
1766   friend class collector::MarkSweep;
1767   friend class collector::SemiSpace;
1768   friend class GCCriticalSection;
1769   friend class ReferenceQueue;
1770   friend class ScopedGCCriticalSection;
1771   friend class ScopedInterruptibleGCCriticalSection;
1772   friend class VerifyReferenceCardVisitor;
1773   friend class VerifyReferenceVisitor;
1774   friend class VerifyObjectVisitor;
1775 
1776   DISALLOW_IMPLICIT_CONSTRUCTORS(Heap);
1777 };
1778 
1779 }  // namespace gc
1780 }  // namespace art
1781 
1782 #endif  // ART_RUNTIME_GC_HEAP_H_
1783