1 //===- SPIRVBuiltins.cpp - SPIR-V Built-in Functions ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements lowering builtin function calls and types using their
10 // demangled names and TableGen records.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SPIRVBuiltins.h"
15 #include "SPIRV.h"
16 #include "SPIRVUtils.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/IR/IntrinsicsSPIRV.h"
19 #include <string>
20 #include <tuple>
21
22 #define DEBUG_TYPE "spirv-builtins"
23
24 namespace llvm {
25 namespace SPIRV {
26 #define GET_BuiltinGroup_DECL
27 #include "SPIRVGenTables.inc"
28
29 struct DemangledBuiltin {
30 StringRef Name;
31 InstructionSet::InstructionSet Set;
32 BuiltinGroup Group;
33 uint8_t MinNumArgs;
34 uint8_t MaxNumArgs;
35 };
36
37 #define GET_DemangledBuiltins_DECL
38 #define GET_DemangledBuiltins_IMPL
39
40 struct IncomingCall {
41 const std::string BuiltinName;
42 const DemangledBuiltin *Builtin;
43
44 const Register ReturnRegister;
45 const SPIRVType *ReturnType;
46 const SmallVectorImpl<Register> &Arguments;
47
IncomingCallllvm::SPIRV::IncomingCall48 IncomingCall(const std::string BuiltinName, const DemangledBuiltin *Builtin,
49 const Register ReturnRegister, const SPIRVType *ReturnType,
50 const SmallVectorImpl<Register> &Arguments)
51 : BuiltinName(BuiltinName), Builtin(Builtin),
52 ReturnRegister(ReturnRegister), ReturnType(ReturnType),
53 Arguments(Arguments) {}
54 };
55
56 struct NativeBuiltin {
57 StringRef Name;
58 InstructionSet::InstructionSet Set;
59 uint32_t Opcode;
60 };
61
62 #define GET_NativeBuiltins_DECL
63 #define GET_NativeBuiltins_IMPL
64
65 struct GroupBuiltin {
66 StringRef Name;
67 uint32_t Opcode;
68 uint32_t GroupOperation;
69 bool IsElect;
70 bool IsAllOrAny;
71 bool IsAllEqual;
72 bool IsBallot;
73 bool IsInverseBallot;
74 bool IsBallotBitExtract;
75 bool IsBallotFindBit;
76 bool IsLogical;
77 bool NoGroupOperation;
78 bool HasBoolArg;
79 };
80
81 #define GET_GroupBuiltins_DECL
82 #define GET_GroupBuiltins_IMPL
83
84 struct GetBuiltin {
85 StringRef Name;
86 InstructionSet::InstructionSet Set;
87 BuiltIn::BuiltIn Value;
88 };
89
90 using namespace BuiltIn;
91 #define GET_GetBuiltins_DECL
92 #define GET_GetBuiltins_IMPL
93
94 struct ImageQueryBuiltin {
95 StringRef Name;
96 InstructionSet::InstructionSet Set;
97 uint32_t Component;
98 };
99
100 #define GET_ImageQueryBuiltins_DECL
101 #define GET_ImageQueryBuiltins_IMPL
102
103 struct ConvertBuiltin {
104 StringRef Name;
105 InstructionSet::InstructionSet Set;
106 bool IsDestinationSigned;
107 bool IsSaturated;
108 bool IsRounded;
109 FPRoundingMode::FPRoundingMode RoundingMode;
110 };
111
112 struct VectorLoadStoreBuiltin {
113 StringRef Name;
114 InstructionSet::InstructionSet Set;
115 uint32_t Number;
116 bool IsRounded;
117 FPRoundingMode::FPRoundingMode RoundingMode;
118 };
119
120 using namespace FPRoundingMode;
121 #define GET_ConvertBuiltins_DECL
122 #define GET_ConvertBuiltins_IMPL
123
124 using namespace InstructionSet;
125 #define GET_VectorLoadStoreBuiltins_DECL
126 #define GET_VectorLoadStoreBuiltins_IMPL
127
128 #define GET_CLMemoryScope_DECL
129 #define GET_CLSamplerAddressingMode_DECL
130 #define GET_CLMemoryFenceFlags_DECL
131 #define GET_ExtendedBuiltins_DECL
132 #include "SPIRVGenTables.inc"
133 } // namespace SPIRV
134
135 //===----------------------------------------------------------------------===//
136 // Misc functions for looking up builtins and veryfying requirements using
137 // TableGen records
138 //===----------------------------------------------------------------------===//
139
140 /// Looks up the demangled builtin call in the SPIRVBuiltins.td records using
141 /// the provided \p DemangledCall and specified \p Set.
142 ///
143 /// The lookup follows the following algorithm, returning the first successful
144 /// match:
145 /// 1. Search with the plain demangled name (expecting a 1:1 match).
146 /// 2. Search with the prefix before or suffix after the demangled name
147 /// signyfying the type of the first argument.
148 ///
149 /// \returns Wrapper around the demangled call and found builtin definition.
150 static std::unique_ptr<const SPIRV::IncomingCall>
lookupBuiltin(StringRef DemangledCall,SPIRV::InstructionSet::InstructionSet Set,Register ReturnRegister,const SPIRVType * ReturnType,const SmallVectorImpl<Register> & Arguments)151 lookupBuiltin(StringRef DemangledCall,
152 SPIRV::InstructionSet::InstructionSet Set,
153 Register ReturnRegister, const SPIRVType *ReturnType,
154 const SmallVectorImpl<Register> &Arguments) {
155 // Extract the builtin function name and types of arguments from the call
156 // skeleton.
157 std::string BuiltinName =
158 DemangledCall.substr(0, DemangledCall.find('(')).str();
159
160 // Check if the extracted name contains type information between angle
161 // brackets. If so, the builtin is an instantiated template - needs to have
162 // the information after angle brackets and return type removed.
163 if (BuiltinName.find('<') && BuiltinName.back() == '>') {
164 BuiltinName = BuiltinName.substr(0, BuiltinName.find('<'));
165 BuiltinName = BuiltinName.substr(BuiltinName.find_last_of(" ") + 1);
166 }
167
168 // Check if the extracted name begins with "__spirv_ImageSampleExplicitLod"
169 // contains return type information at the end "_R<type>", if so extract the
170 // plain builtin name without the type information.
171 if (StringRef(BuiltinName).contains("__spirv_ImageSampleExplicitLod") &&
172 StringRef(BuiltinName).contains("_R")) {
173 BuiltinName = BuiltinName.substr(0, BuiltinName.find("_R"));
174 }
175
176 SmallVector<StringRef, 10> BuiltinArgumentTypes;
177 StringRef BuiltinArgs =
178 DemangledCall.slice(DemangledCall.find('(') + 1, DemangledCall.find(')'));
179 BuiltinArgs.split(BuiltinArgumentTypes, ',', -1, false);
180
181 // Look up the builtin in the defined set. Start with the plain demangled
182 // name, expecting a 1:1 match in the defined builtin set.
183 const SPIRV::DemangledBuiltin *Builtin;
184 if ((Builtin = SPIRV::lookupBuiltin(BuiltinName, Set)))
185 return std::make_unique<SPIRV::IncomingCall>(
186 BuiltinName, Builtin, ReturnRegister, ReturnType, Arguments);
187
188 // If the initial look up was unsuccessful and the demangled call takes at
189 // least 1 argument, add a prefix or suffix signifying the type of the first
190 // argument and repeat the search.
191 if (BuiltinArgumentTypes.size() >= 1) {
192 char FirstArgumentType = BuiltinArgumentTypes[0][0];
193 // Prefix to be added to the builtin's name for lookup.
194 // For example, OpenCL "abs" taking an unsigned value has a prefix "u_".
195 std::string Prefix;
196
197 switch (FirstArgumentType) {
198 // Unsigned:
199 case 'u':
200 if (Set == SPIRV::InstructionSet::OpenCL_std)
201 Prefix = "u_";
202 else if (Set == SPIRV::InstructionSet::GLSL_std_450)
203 Prefix = "u";
204 break;
205 // Signed:
206 case 'c':
207 case 's':
208 case 'i':
209 case 'l':
210 if (Set == SPIRV::InstructionSet::OpenCL_std)
211 Prefix = "s_";
212 else if (Set == SPIRV::InstructionSet::GLSL_std_450)
213 Prefix = "s";
214 break;
215 // Floating-point:
216 case 'f':
217 case 'd':
218 case 'h':
219 if (Set == SPIRV::InstructionSet::OpenCL_std ||
220 Set == SPIRV::InstructionSet::GLSL_std_450)
221 Prefix = "f";
222 break;
223 }
224
225 // If argument-type name prefix was added, look up the builtin again.
226 if (!Prefix.empty() &&
227 (Builtin = SPIRV::lookupBuiltin(Prefix + BuiltinName, Set)))
228 return std::make_unique<SPIRV::IncomingCall>(
229 BuiltinName, Builtin, ReturnRegister, ReturnType, Arguments);
230
231 // If lookup with a prefix failed, find a suffix to be added to the
232 // builtin's name for lookup. For example, OpenCL "group_reduce_max" taking
233 // an unsigned value has a suffix "u".
234 std::string Suffix;
235
236 switch (FirstArgumentType) {
237 // Unsigned:
238 case 'u':
239 Suffix = "u";
240 break;
241 // Signed:
242 case 'c':
243 case 's':
244 case 'i':
245 case 'l':
246 Suffix = "s";
247 break;
248 // Floating-point:
249 case 'f':
250 case 'd':
251 case 'h':
252 Suffix = "f";
253 break;
254 }
255
256 // If argument-type name suffix was added, look up the builtin again.
257 if (!Suffix.empty() &&
258 (Builtin = SPIRV::lookupBuiltin(BuiltinName + Suffix, Set)))
259 return std::make_unique<SPIRV::IncomingCall>(
260 BuiltinName, Builtin, ReturnRegister, ReturnType, Arguments);
261 }
262
263 // No builtin with such name was found in the set.
264 return nullptr;
265 }
266
267 //===----------------------------------------------------------------------===//
268 // Helper functions for building misc instructions
269 //===----------------------------------------------------------------------===//
270
271 /// Helper function building either a resulting scalar or vector bool register
272 /// depending on the expected \p ResultType.
273 ///
274 /// \returns Tuple of the resulting register and its type.
275 static std::tuple<Register, SPIRVType *>
buildBoolRegister(MachineIRBuilder & MIRBuilder,const SPIRVType * ResultType,SPIRVGlobalRegistry * GR)276 buildBoolRegister(MachineIRBuilder &MIRBuilder, const SPIRVType *ResultType,
277 SPIRVGlobalRegistry *GR) {
278 LLT Type;
279 SPIRVType *BoolType = GR->getOrCreateSPIRVBoolType(MIRBuilder);
280
281 if (ResultType->getOpcode() == SPIRV::OpTypeVector) {
282 unsigned VectorElements = ResultType->getOperand(2).getImm();
283 BoolType =
284 GR->getOrCreateSPIRVVectorType(BoolType, VectorElements, MIRBuilder);
285 const FixedVectorType *LLVMVectorType =
286 cast<FixedVectorType>(GR->getTypeForSPIRVType(BoolType));
287 Type = LLT::vector(LLVMVectorType->getElementCount(), 1);
288 } else {
289 Type = LLT::scalar(1);
290 }
291
292 Register ResultRegister =
293 MIRBuilder.getMRI()->createGenericVirtualRegister(Type);
294 GR->assignSPIRVTypeToVReg(BoolType, ResultRegister, MIRBuilder.getMF());
295 return std::make_tuple(ResultRegister, BoolType);
296 }
297
298 /// Helper function for building either a vector or scalar select instruction
299 /// depending on the expected \p ResultType.
buildSelectInst(MachineIRBuilder & MIRBuilder,Register ReturnRegister,Register SourceRegister,const SPIRVType * ReturnType,SPIRVGlobalRegistry * GR)300 static bool buildSelectInst(MachineIRBuilder &MIRBuilder,
301 Register ReturnRegister, Register SourceRegister,
302 const SPIRVType *ReturnType,
303 SPIRVGlobalRegistry *GR) {
304 Register TrueConst, FalseConst;
305
306 if (ReturnType->getOpcode() == SPIRV::OpTypeVector) {
307 unsigned Bits = GR->getScalarOrVectorBitWidth(ReturnType);
308 uint64_t AllOnes = APInt::getAllOnesValue(Bits).getZExtValue();
309 TrueConst = GR->getOrCreateConsIntVector(AllOnes, MIRBuilder, ReturnType);
310 FalseConst = GR->getOrCreateConsIntVector(0, MIRBuilder, ReturnType);
311 } else {
312 TrueConst = GR->buildConstantInt(1, MIRBuilder, ReturnType);
313 FalseConst = GR->buildConstantInt(0, MIRBuilder, ReturnType);
314 }
315 return MIRBuilder.buildSelect(ReturnRegister, SourceRegister, TrueConst,
316 FalseConst);
317 }
318
319 /// Helper function for building a load instruction loading into the
320 /// \p DestinationReg.
buildLoadInst(SPIRVType * BaseType,Register PtrRegister,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR,LLT LowLevelType,Register DestinationReg=Register (0))321 static Register buildLoadInst(SPIRVType *BaseType, Register PtrRegister,
322 MachineIRBuilder &MIRBuilder,
323 SPIRVGlobalRegistry *GR, LLT LowLevelType,
324 Register DestinationReg = Register(0)) {
325 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
326 if (!DestinationReg.isValid()) {
327 DestinationReg = MRI->createVirtualRegister(&SPIRV::IDRegClass);
328 MRI->setType(DestinationReg, LLT::scalar(32));
329 GR->assignSPIRVTypeToVReg(BaseType, DestinationReg, MIRBuilder.getMF());
330 }
331 // TODO: consider using correct address space and alignment (p0 is canonical
332 // type for selection though).
333 MachinePointerInfo PtrInfo = MachinePointerInfo();
334 MIRBuilder.buildLoad(DestinationReg, PtrRegister, PtrInfo, Align());
335 return DestinationReg;
336 }
337
338 /// Helper function for building a load instruction for loading a builtin global
339 /// variable of \p BuiltinValue value.
buildBuiltinVariableLoad(MachineIRBuilder & MIRBuilder,SPIRVType * VariableType,SPIRVGlobalRegistry * GR,SPIRV::BuiltIn::BuiltIn BuiltinValue,LLT LLType,Register Reg=Register (0))340 static Register buildBuiltinVariableLoad(MachineIRBuilder &MIRBuilder,
341 SPIRVType *VariableType,
342 SPIRVGlobalRegistry *GR,
343 SPIRV::BuiltIn::BuiltIn BuiltinValue,
344 LLT LLType,
345 Register Reg = Register(0)) {
346 Register NewRegister =
347 MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::IDRegClass);
348 MIRBuilder.getMRI()->setType(NewRegister,
349 LLT::pointer(0, GR->getPointerSize()));
350 SPIRVType *PtrType = GR->getOrCreateSPIRVPointerType(
351 VariableType, MIRBuilder, SPIRV::StorageClass::Input);
352 GR->assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
353
354 // Set up the global OpVariable with the necessary builtin decorations.
355 Register Variable = GR->buildGlobalVariable(
356 NewRegister, PtrType, getLinkStringForBuiltIn(BuiltinValue), nullptr,
357 SPIRV::StorageClass::Input, nullptr, true, true,
358 SPIRV::LinkageType::Import, MIRBuilder, false);
359
360 // Load the value from the global variable.
361 Register LoadedRegister =
362 buildLoadInst(VariableType, Variable, MIRBuilder, GR, LLType, Reg);
363 MIRBuilder.getMRI()->setType(LoadedRegister, LLType);
364 return LoadedRegister;
365 }
366
367 /// Helper external function for inserting ASSIGN_TYPE instuction between \p Reg
368 /// and its definition, set the new register as a destination of the definition,
369 /// assign SPIRVType to both registers. If SpirvTy is provided, use it as
370 /// SPIRVType in ASSIGN_TYPE, otherwise create it from \p Ty. Defined in
371 /// SPIRVPreLegalizer.cpp.
372 extern Register insertAssignInstr(Register Reg, Type *Ty, SPIRVType *SpirvTy,
373 SPIRVGlobalRegistry *GR,
374 MachineIRBuilder &MIB,
375 MachineRegisterInfo &MRI);
376
377 // TODO: Move to TableGen.
378 static SPIRV::MemorySemantics::MemorySemantics
getSPIRVMemSemantics(std::memory_order MemOrder)379 getSPIRVMemSemantics(std::memory_order MemOrder) {
380 switch (MemOrder) {
381 case std::memory_order::memory_order_relaxed:
382 return SPIRV::MemorySemantics::None;
383 case std::memory_order::memory_order_acquire:
384 return SPIRV::MemorySemantics::Acquire;
385 case std::memory_order::memory_order_release:
386 return SPIRV::MemorySemantics::Release;
387 case std::memory_order::memory_order_acq_rel:
388 return SPIRV::MemorySemantics::AcquireRelease;
389 case std::memory_order::memory_order_seq_cst:
390 return SPIRV::MemorySemantics::SequentiallyConsistent;
391 default:
392 llvm_unreachable("Unknown CL memory scope");
393 }
394 }
395
getSPIRVScope(SPIRV::CLMemoryScope ClScope)396 static SPIRV::Scope::Scope getSPIRVScope(SPIRV::CLMemoryScope ClScope) {
397 switch (ClScope) {
398 case SPIRV::CLMemoryScope::memory_scope_work_item:
399 return SPIRV::Scope::Invocation;
400 case SPIRV::CLMemoryScope::memory_scope_work_group:
401 return SPIRV::Scope::Workgroup;
402 case SPIRV::CLMemoryScope::memory_scope_device:
403 return SPIRV::Scope::Device;
404 case SPIRV::CLMemoryScope::memory_scope_all_svm_devices:
405 return SPIRV::Scope::CrossDevice;
406 case SPIRV::CLMemoryScope::memory_scope_sub_group:
407 return SPIRV::Scope::Subgroup;
408 }
409 llvm_unreachable("Unknown CL memory scope");
410 }
411
buildConstantIntReg(uint64_t Val,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR,unsigned BitWidth=32)412 static Register buildConstantIntReg(uint64_t Val, MachineIRBuilder &MIRBuilder,
413 SPIRVGlobalRegistry *GR,
414 unsigned BitWidth = 32) {
415 SPIRVType *IntType = GR->getOrCreateSPIRVIntegerType(BitWidth, MIRBuilder);
416 return GR->buildConstantInt(Val, MIRBuilder, IntType);
417 }
418
buildScopeReg(Register CLScopeRegister,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR,const MachineRegisterInfo * MRI)419 static Register buildScopeReg(Register CLScopeRegister,
420 MachineIRBuilder &MIRBuilder,
421 SPIRVGlobalRegistry *GR,
422 const MachineRegisterInfo *MRI) {
423 auto CLScope =
424 static_cast<SPIRV::CLMemoryScope>(getIConstVal(CLScopeRegister, MRI));
425 SPIRV::Scope::Scope Scope = getSPIRVScope(CLScope);
426
427 if (CLScope == static_cast<unsigned>(Scope))
428 return CLScopeRegister;
429
430 return buildConstantIntReg(Scope, MIRBuilder, GR);
431 }
432
buildMemSemanticsReg(Register SemanticsRegister,Register PtrRegister,const MachineRegisterInfo * MRI,SPIRVGlobalRegistry * GR)433 static Register buildMemSemanticsReg(Register SemanticsRegister,
434 Register PtrRegister,
435 const MachineRegisterInfo *MRI,
436 SPIRVGlobalRegistry *GR) {
437 std::memory_order Order =
438 static_cast<std::memory_order>(getIConstVal(SemanticsRegister, MRI));
439 unsigned Semantics =
440 getSPIRVMemSemantics(Order) |
441 getMemSemanticsForStorageClass(GR->getPointerStorageClass(PtrRegister));
442
443 if (Order == Semantics)
444 return SemanticsRegister;
445
446 return Register();
447 }
448
449 /// Helper function for translating atomic init to OpStore.
buildAtomicInitInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder)450 static bool buildAtomicInitInst(const SPIRV::IncomingCall *Call,
451 MachineIRBuilder &MIRBuilder) {
452 assert(Call->Arguments.size() == 2 &&
453 "Need 2 arguments for atomic init translation");
454
455 MIRBuilder.buildInstr(SPIRV::OpStore)
456 .addUse(Call->Arguments[0])
457 .addUse(Call->Arguments[1]);
458 return true;
459 }
460
461 /// Helper function for building an atomic load instruction.
buildAtomicLoadInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)462 static bool buildAtomicLoadInst(const SPIRV::IncomingCall *Call,
463 MachineIRBuilder &MIRBuilder,
464 SPIRVGlobalRegistry *GR) {
465 Register PtrRegister = Call->Arguments[0];
466 // TODO: if true insert call to __translate_ocl_memory_sccope before
467 // OpAtomicLoad and the function implementation. We can use Translator's
468 // output for transcoding/atomic_explicit_arguments.cl as an example.
469 Register ScopeRegister;
470 if (Call->Arguments.size() > 1)
471 ScopeRegister = Call->Arguments[1];
472 else
473 ScopeRegister = buildConstantIntReg(SPIRV::Scope::Device, MIRBuilder, GR);
474
475 Register MemSemanticsReg;
476 if (Call->Arguments.size() > 2) {
477 // TODO: Insert call to __translate_ocl_memory_order before OpAtomicLoad.
478 MemSemanticsReg = Call->Arguments[2];
479 } else {
480 int Semantics =
481 SPIRV::MemorySemantics::SequentiallyConsistent |
482 getMemSemanticsForStorageClass(GR->getPointerStorageClass(PtrRegister));
483 MemSemanticsReg = buildConstantIntReg(Semantics, MIRBuilder, GR);
484 }
485
486 MIRBuilder.buildInstr(SPIRV::OpAtomicLoad)
487 .addDef(Call->ReturnRegister)
488 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
489 .addUse(PtrRegister)
490 .addUse(ScopeRegister)
491 .addUse(MemSemanticsReg);
492 return true;
493 }
494
495 /// Helper function for building an atomic store instruction.
buildAtomicStoreInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)496 static bool buildAtomicStoreInst(const SPIRV::IncomingCall *Call,
497 MachineIRBuilder &MIRBuilder,
498 SPIRVGlobalRegistry *GR) {
499 Register ScopeRegister =
500 buildConstantIntReg(SPIRV::Scope::Device, MIRBuilder, GR);
501 Register PtrRegister = Call->Arguments[0];
502 int Semantics =
503 SPIRV::MemorySemantics::SequentiallyConsistent |
504 getMemSemanticsForStorageClass(GR->getPointerStorageClass(PtrRegister));
505 Register MemSemanticsReg = buildConstantIntReg(Semantics, MIRBuilder, GR);
506
507 MIRBuilder.buildInstr(SPIRV::OpAtomicStore)
508 .addUse(PtrRegister)
509 .addUse(ScopeRegister)
510 .addUse(MemSemanticsReg)
511 .addUse(Call->Arguments[1]);
512 return true;
513 }
514
515 /// Helper function for building an atomic compare-exchange instruction.
buildAtomicCompareExchangeInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)516 static bool buildAtomicCompareExchangeInst(const SPIRV::IncomingCall *Call,
517 MachineIRBuilder &MIRBuilder,
518 SPIRVGlobalRegistry *GR) {
519 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
520 unsigned Opcode =
521 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
522 bool IsCmpxchg = Call->Builtin->Name.contains("cmpxchg");
523 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
524
525 Register ObjectPtr = Call->Arguments[0]; // Pointer (volatile A *object.)
526 Register ExpectedArg = Call->Arguments[1]; // Comparator (C* expected).
527 Register Desired = Call->Arguments[2]; // Value (C Desired).
528 SPIRVType *SpvDesiredTy = GR->getSPIRVTypeForVReg(Desired);
529 LLT DesiredLLT = MRI->getType(Desired);
530
531 assert(GR->getSPIRVTypeForVReg(ObjectPtr)->getOpcode() ==
532 SPIRV::OpTypePointer);
533 unsigned ExpectedType = GR->getSPIRVTypeForVReg(ExpectedArg)->getOpcode();
534 assert(IsCmpxchg ? ExpectedType == SPIRV::OpTypeInt
535 : ExpectedType == SPIRV::OpTypePointer);
536 assert(GR->isScalarOfType(Desired, SPIRV::OpTypeInt));
537
538 SPIRVType *SpvObjectPtrTy = GR->getSPIRVTypeForVReg(ObjectPtr);
539 assert(SpvObjectPtrTy->getOperand(2).isReg() && "SPIRV type is expected");
540 auto StorageClass = static_cast<SPIRV::StorageClass::StorageClass>(
541 SpvObjectPtrTy->getOperand(1).getImm());
542 auto MemSemStorage = getMemSemanticsForStorageClass(StorageClass);
543
544 Register MemSemEqualReg;
545 Register MemSemUnequalReg;
546 uint64_t MemSemEqual =
547 IsCmpxchg
548 ? SPIRV::MemorySemantics::None
549 : SPIRV::MemorySemantics::SequentiallyConsistent | MemSemStorage;
550 uint64_t MemSemUnequal =
551 IsCmpxchg
552 ? SPIRV::MemorySemantics::None
553 : SPIRV::MemorySemantics::SequentiallyConsistent | MemSemStorage;
554 if (Call->Arguments.size() >= 4) {
555 assert(Call->Arguments.size() >= 5 &&
556 "Need 5+ args for explicit atomic cmpxchg");
557 auto MemOrdEq =
558 static_cast<std::memory_order>(getIConstVal(Call->Arguments[3], MRI));
559 auto MemOrdNeq =
560 static_cast<std::memory_order>(getIConstVal(Call->Arguments[4], MRI));
561 MemSemEqual = getSPIRVMemSemantics(MemOrdEq) | MemSemStorage;
562 MemSemUnequal = getSPIRVMemSemantics(MemOrdNeq) | MemSemStorage;
563 if (MemOrdEq == MemSemEqual)
564 MemSemEqualReg = Call->Arguments[3];
565 if (MemOrdNeq == MemSemEqual)
566 MemSemUnequalReg = Call->Arguments[4];
567 }
568 if (!MemSemEqualReg.isValid())
569 MemSemEqualReg = buildConstantIntReg(MemSemEqual, MIRBuilder, GR);
570 if (!MemSemUnequalReg.isValid())
571 MemSemUnequalReg = buildConstantIntReg(MemSemUnequal, MIRBuilder, GR);
572
573 Register ScopeReg;
574 auto Scope = IsCmpxchg ? SPIRV::Scope::Workgroup : SPIRV::Scope::Device;
575 if (Call->Arguments.size() >= 6) {
576 assert(Call->Arguments.size() == 6 &&
577 "Extra args for explicit atomic cmpxchg");
578 auto ClScope = static_cast<SPIRV::CLMemoryScope>(
579 getIConstVal(Call->Arguments[5], MRI));
580 Scope = getSPIRVScope(ClScope);
581 if (ClScope == static_cast<unsigned>(Scope))
582 ScopeReg = Call->Arguments[5];
583 }
584 if (!ScopeReg.isValid())
585 ScopeReg = buildConstantIntReg(Scope, MIRBuilder, GR);
586
587 Register Expected = IsCmpxchg
588 ? ExpectedArg
589 : buildLoadInst(SpvDesiredTy, ExpectedArg, MIRBuilder,
590 GR, LLT::scalar(32));
591 MRI->setType(Expected, DesiredLLT);
592 Register Tmp = !IsCmpxchg ? MRI->createGenericVirtualRegister(DesiredLLT)
593 : Call->ReturnRegister;
594 GR->assignSPIRVTypeToVReg(SpvDesiredTy, Tmp, MIRBuilder.getMF());
595
596 SPIRVType *IntTy = GR->getOrCreateSPIRVIntegerType(32, MIRBuilder);
597 MIRBuilder.buildInstr(Opcode)
598 .addDef(Tmp)
599 .addUse(GR->getSPIRVTypeID(IntTy))
600 .addUse(ObjectPtr)
601 .addUse(ScopeReg)
602 .addUse(MemSemEqualReg)
603 .addUse(MemSemUnequalReg)
604 .addUse(Desired)
605 .addUse(Expected);
606 if (!IsCmpxchg) {
607 MIRBuilder.buildInstr(SPIRV::OpStore).addUse(ExpectedArg).addUse(Tmp);
608 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Call->ReturnRegister, Tmp, Expected);
609 }
610 return true;
611 }
612
613 /// Helper function for building an atomic load instruction.
buildAtomicRMWInst(const SPIRV::IncomingCall * Call,unsigned Opcode,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)614 static bool buildAtomicRMWInst(const SPIRV::IncomingCall *Call, unsigned Opcode,
615 MachineIRBuilder &MIRBuilder,
616 SPIRVGlobalRegistry *GR) {
617 const MachineRegisterInfo *MRI = MIRBuilder.getMRI();
618 SPIRV::Scope::Scope Scope = SPIRV::Scope::Workgroup;
619 Register ScopeRegister;
620
621 if (Call->Arguments.size() >= 4) {
622 assert(Call->Arguments.size() == 4 &&
623 "Too many args for explicit atomic RMW");
624 ScopeRegister = buildScopeReg(Call->Arguments[3], MIRBuilder, GR, MRI);
625 }
626
627 if (!ScopeRegister.isValid())
628 ScopeRegister = buildConstantIntReg(Scope, MIRBuilder, GR);
629
630 Register PtrRegister = Call->Arguments[0];
631 unsigned Semantics = SPIRV::MemorySemantics::None;
632 Register MemSemanticsReg;
633
634 if (Call->Arguments.size() >= 3)
635 MemSemanticsReg =
636 buildMemSemanticsReg(Call->Arguments[2], PtrRegister, MRI, GR);
637
638 if (!MemSemanticsReg.isValid())
639 MemSemanticsReg = buildConstantIntReg(Semantics, MIRBuilder, GR);
640
641 MIRBuilder.buildInstr(Opcode)
642 .addDef(Call->ReturnRegister)
643 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
644 .addUse(PtrRegister)
645 .addUse(ScopeRegister)
646 .addUse(MemSemanticsReg)
647 .addUse(Call->Arguments[1]);
648 return true;
649 }
650
651 /// Helper function for building atomic flag instructions (e.g.
652 /// OpAtomicFlagTestAndSet).
buildAtomicFlagInst(const SPIRV::IncomingCall * Call,unsigned Opcode,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)653 static bool buildAtomicFlagInst(const SPIRV::IncomingCall *Call,
654 unsigned Opcode, MachineIRBuilder &MIRBuilder,
655 SPIRVGlobalRegistry *GR) {
656 const MachineRegisterInfo *MRI = MIRBuilder.getMRI();
657
658 Register PtrRegister = Call->Arguments[0];
659 unsigned Semantics = SPIRV::MemorySemantics::SequentiallyConsistent;
660 Register MemSemanticsReg;
661
662 if (Call->Arguments.size() >= 2)
663 MemSemanticsReg =
664 buildMemSemanticsReg(Call->Arguments[1], PtrRegister, MRI, GR);
665
666 if (!MemSemanticsReg.isValid())
667 MemSemanticsReg = buildConstantIntReg(Semantics, MIRBuilder, GR);
668
669 assert((Opcode != SPIRV::OpAtomicFlagClear ||
670 (Semantics != SPIRV::MemorySemantics::Acquire &&
671 Semantics != SPIRV::MemorySemantics::AcquireRelease)) &&
672 "Invalid memory order argument!");
673
674 SPIRV::Scope::Scope Scope = SPIRV::Scope::Device;
675 Register ScopeRegister;
676
677 if (Call->Arguments.size() >= 3)
678 ScopeRegister = buildScopeReg(Call->Arguments[2], MIRBuilder, GR, MRI);
679
680 if (!ScopeRegister.isValid())
681 ScopeRegister = buildConstantIntReg(Scope, MIRBuilder, GR);
682
683 auto MIB = MIRBuilder.buildInstr(Opcode);
684 if (Opcode == SPIRV::OpAtomicFlagTestAndSet)
685 MIB.addDef(Call->ReturnRegister)
686 .addUse(GR->getSPIRVTypeID(Call->ReturnType));
687
688 MIB.addUse(PtrRegister).addUse(ScopeRegister).addUse(MemSemanticsReg);
689 return true;
690 }
691
692 /// Helper function for building barriers, i.e., memory/control ordering
693 /// operations.
buildBarrierInst(const SPIRV::IncomingCall * Call,unsigned Opcode,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)694 static bool buildBarrierInst(const SPIRV::IncomingCall *Call, unsigned Opcode,
695 MachineIRBuilder &MIRBuilder,
696 SPIRVGlobalRegistry *GR) {
697 const MachineRegisterInfo *MRI = MIRBuilder.getMRI();
698 unsigned MemFlags = getIConstVal(Call->Arguments[0], MRI);
699 unsigned MemSemantics = SPIRV::MemorySemantics::None;
700
701 if (MemFlags & SPIRV::CLK_LOCAL_MEM_FENCE)
702 MemSemantics |= SPIRV::MemorySemantics::WorkgroupMemory;
703
704 if (MemFlags & SPIRV::CLK_GLOBAL_MEM_FENCE)
705 MemSemantics |= SPIRV::MemorySemantics::CrossWorkgroupMemory;
706
707 if (MemFlags & SPIRV::CLK_IMAGE_MEM_FENCE)
708 MemSemantics |= SPIRV::MemorySemantics::ImageMemory;
709
710 if (Opcode == SPIRV::OpMemoryBarrier) {
711 std::memory_order MemOrder =
712 static_cast<std::memory_order>(getIConstVal(Call->Arguments[1], MRI));
713 MemSemantics = getSPIRVMemSemantics(MemOrder) | MemSemantics;
714 } else {
715 MemSemantics |= SPIRV::MemorySemantics::SequentiallyConsistent;
716 }
717
718 Register MemSemanticsReg;
719 if (MemFlags == MemSemantics)
720 MemSemanticsReg = Call->Arguments[0];
721 else
722 MemSemanticsReg = buildConstantIntReg(MemSemantics, MIRBuilder, GR);
723
724 Register ScopeReg;
725 SPIRV::Scope::Scope Scope = SPIRV::Scope::Workgroup;
726 SPIRV::Scope::Scope MemScope = Scope;
727 if (Call->Arguments.size() >= 2) {
728 assert(
729 ((Opcode != SPIRV::OpMemoryBarrier && Call->Arguments.size() == 2) ||
730 (Opcode == SPIRV::OpMemoryBarrier && Call->Arguments.size() == 3)) &&
731 "Extra args for explicitly scoped barrier");
732 Register ScopeArg = (Opcode == SPIRV::OpMemoryBarrier) ? Call->Arguments[2]
733 : Call->Arguments[1];
734 SPIRV::CLMemoryScope CLScope =
735 static_cast<SPIRV::CLMemoryScope>(getIConstVal(ScopeArg, MRI));
736 MemScope = getSPIRVScope(CLScope);
737 if (!(MemFlags & SPIRV::CLK_LOCAL_MEM_FENCE) ||
738 (Opcode == SPIRV::OpMemoryBarrier))
739 Scope = MemScope;
740
741 if (CLScope == static_cast<unsigned>(Scope))
742 ScopeReg = Call->Arguments[1];
743 }
744
745 if (!ScopeReg.isValid())
746 ScopeReg = buildConstantIntReg(Scope, MIRBuilder, GR);
747
748 auto MIB = MIRBuilder.buildInstr(Opcode).addUse(ScopeReg);
749 if (Opcode != SPIRV::OpMemoryBarrier)
750 MIB.addUse(buildConstantIntReg(MemScope, MIRBuilder, GR));
751 MIB.addUse(MemSemanticsReg);
752 return true;
753 }
754
getNumComponentsForDim(SPIRV::Dim::Dim dim)755 static unsigned getNumComponentsForDim(SPIRV::Dim::Dim dim) {
756 switch (dim) {
757 case SPIRV::Dim::DIM_1D:
758 case SPIRV::Dim::DIM_Buffer:
759 return 1;
760 case SPIRV::Dim::DIM_2D:
761 case SPIRV::Dim::DIM_Cube:
762 case SPIRV::Dim::DIM_Rect:
763 return 2;
764 case SPIRV::Dim::DIM_3D:
765 return 3;
766 default:
767 llvm_unreachable("Cannot get num components for given Dim");
768 }
769 }
770
771 /// Helper function for obtaining the number of size components.
getNumSizeComponents(SPIRVType * imgType)772 static unsigned getNumSizeComponents(SPIRVType *imgType) {
773 assert(imgType->getOpcode() == SPIRV::OpTypeImage);
774 auto dim = static_cast<SPIRV::Dim::Dim>(imgType->getOperand(2).getImm());
775 unsigned numComps = getNumComponentsForDim(dim);
776 bool arrayed = imgType->getOperand(4).getImm() == 1;
777 return arrayed ? numComps + 1 : numComps;
778 }
779
780 //===----------------------------------------------------------------------===//
781 // Implementation functions for each builtin group
782 //===----------------------------------------------------------------------===//
783
generateExtInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)784 static bool generateExtInst(const SPIRV::IncomingCall *Call,
785 MachineIRBuilder &MIRBuilder,
786 SPIRVGlobalRegistry *GR) {
787 // Lookup the extended instruction number in the TableGen records.
788 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
789 uint32_t Number =
790 SPIRV::lookupExtendedBuiltin(Builtin->Name, Builtin->Set)->Number;
791
792 // Build extended instruction.
793 auto MIB =
794 MIRBuilder.buildInstr(SPIRV::OpExtInst)
795 .addDef(Call->ReturnRegister)
796 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
797 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::OpenCL_std))
798 .addImm(Number);
799
800 for (auto Argument : Call->Arguments)
801 MIB.addUse(Argument);
802 return true;
803 }
804
generateRelationalInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)805 static bool generateRelationalInst(const SPIRV::IncomingCall *Call,
806 MachineIRBuilder &MIRBuilder,
807 SPIRVGlobalRegistry *GR) {
808 // Lookup the instruction opcode in the TableGen records.
809 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
810 unsigned Opcode =
811 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
812
813 Register CompareRegister;
814 SPIRVType *RelationType;
815 std::tie(CompareRegister, RelationType) =
816 buildBoolRegister(MIRBuilder, Call->ReturnType, GR);
817
818 // Build relational instruction.
819 auto MIB = MIRBuilder.buildInstr(Opcode)
820 .addDef(CompareRegister)
821 .addUse(GR->getSPIRVTypeID(RelationType));
822
823 for (auto Argument : Call->Arguments)
824 MIB.addUse(Argument);
825
826 // Build select instruction.
827 return buildSelectInst(MIRBuilder, Call->ReturnRegister, CompareRegister,
828 Call->ReturnType, GR);
829 }
830
generateGroupInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)831 static bool generateGroupInst(const SPIRV::IncomingCall *Call,
832 MachineIRBuilder &MIRBuilder,
833 SPIRVGlobalRegistry *GR) {
834 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
835 const SPIRV::GroupBuiltin *GroupBuiltin =
836 SPIRV::lookupGroupBuiltin(Builtin->Name);
837 const MachineRegisterInfo *MRI = MIRBuilder.getMRI();
838 Register Arg0;
839 if (GroupBuiltin->HasBoolArg) {
840 Register ConstRegister = Call->Arguments[0];
841 auto ArgInstruction = getDefInstrMaybeConstant(ConstRegister, MRI);
842 // TODO: support non-constant bool values.
843 assert(ArgInstruction->getOpcode() == TargetOpcode::G_CONSTANT &&
844 "Only constant bool value args are supported");
845 if (GR->getSPIRVTypeForVReg(Call->Arguments[0])->getOpcode() !=
846 SPIRV::OpTypeBool)
847 Arg0 = GR->buildConstantInt(getIConstVal(ConstRegister, MRI), MIRBuilder,
848 GR->getOrCreateSPIRVBoolType(MIRBuilder));
849 }
850
851 Register GroupResultRegister = Call->ReturnRegister;
852 SPIRVType *GroupResultType = Call->ReturnType;
853
854 // TODO: maybe we need to check whether the result type is already boolean
855 // and in this case do not insert select instruction.
856 const bool HasBoolReturnTy =
857 GroupBuiltin->IsElect || GroupBuiltin->IsAllOrAny ||
858 GroupBuiltin->IsAllEqual || GroupBuiltin->IsLogical ||
859 GroupBuiltin->IsInverseBallot || GroupBuiltin->IsBallotBitExtract;
860
861 if (HasBoolReturnTy)
862 std::tie(GroupResultRegister, GroupResultType) =
863 buildBoolRegister(MIRBuilder, Call->ReturnType, GR);
864
865 auto Scope = Builtin->Name.startswith("sub_group") ? SPIRV::Scope::Subgroup
866 : SPIRV::Scope::Workgroup;
867 Register ScopeRegister = buildConstantIntReg(Scope, MIRBuilder, GR);
868
869 // Build work/sub group instruction.
870 auto MIB = MIRBuilder.buildInstr(GroupBuiltin->Opcode)
871 .addDef(GroupResultRegister)
872 .addUse(GR->getSPIRVTypeID(GroupResultType))
873 .addUse(ScopeRegister);
874
875 if (!GroupBuiltin->NoGroupOperation)
876 MIB.addImm(GroupBuiltin->GroupOperation);
877 if (Call->Arguments.size() > 0) {
878 MIB.addUse(Arg0.isValid() ? Arg0 : Call->Arguments[0]);
879 for (unsigned i = 1; i < Call->Arguments.size(); i++)
880 MIB.addUse(Call->Arguments[i]);
881 }
882
883 // Build select instruction.
884 if (HasBoolReturnTy)
885 buildSelectInst(MIRBuilder, Call->ReturnRegister, GroupResultRegister,
886 Call->ReturnType, GR);
887 return true;
888 }
889
890 // These queries ask for a single size_t result for a given dimension index, e.g
891 // size_t get_global_id(uint dimindex). In SPIR-V, the builtins corresonding to
892 // these values are all vec3 types, so we need to extract the correct index or
893 // return defaultVal (0 or 1 depending on the query). We also handle extending
894 // or tuncating in case size_t does not match the expected result type's
895 // bitwidth.
896 //
897 // For a constant index >= 3 we generate:
898 // %res = OpConstant %SizeT 0
899 //
900 // For other indices we generate:
901 // %g = OpVariable %ptr_V3_SizeT Input
902 // OpDecorate %g BuiltIn XXX
903 // OpDecorate %g LinkageAttributes "__spirv_BuiltInXXX"
904 // OpDecorate %g Constant
905 // %loadedVec = OpLoad %V3_SizeT %g
906 //
907 // Then, if the index is constant < 3, we generate:
908 // %res = OpCompositeExtract %SizeT %loadedVec idx
909 // If the index is dynamic, we generate:
910 // %tmp = OpVectorExtractDynamic %SizeT %loadedVec %idx
911 // %cmp = OpULessThan %bool %idx %const_3
912 // %res = OpSelect %SizeT %cmp %tmp %const_0
913 //
914 // If the bitwidth of %res does not match the expected return type, we add an
915 // extend or truncate.
genWorkgroupQuery(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR,SPIRV::BuiltIn::BuiltIn BuiltinValue,uint64_t DefaultValue)916 static bool genWorkgroupQuery(const SPIRV::IncomingCall *Call,
917 MachineIRBuilder &MIRBuilder,
918 SPIRVGlobalRegistry *GR,
919 SPIRV::BuiltIn::BuiltIn BuiltinValue,
920 uint64_t DefaultValue) {
921 Register IndexRegister = Call->Arguments[0];
922 const unsigned ResultWidth = Call->ReturnType->getOperand(1).getImm();
923 const unsigned PointerSize = GR->getPointerSize();
924 const SPIRVType *PointerSizeType =
925 GR->getOrCreateSPIRVIntegerType(PointerSize, MIRBuilder);
926 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
927 auto IndexInstruction = getDefInstrMaybeConstant(IndexRegister, MRI);
928
929 // Set up the final register to do truncation or extension on at the end.
930 Register ToTruncate = Call->ReturnRegister;
931
932 // If the index is constant, we can statically determine if it is in range.
933 bool IsConstantIndex =
934 IndexInstruction->getOpcode() == TargetOpcode::G_CONSTANT;
935
936 // If it's out of range (max dimension is 3), we can just return the constant
937 // default value (0 or 1 depending on which query function).
938 if (IsConstantIndex && getIConstVal(IndexRegister, MRI) >= 3) {
939 Register defaultReg = Call->ReturnRegister;
940 if (PointerSize != ResultWidth) {
941 defaultReg = MRI->createGenericVirtualRegister(LLT::scalar(PointerSize));
942 GR->assignSPIRVTypeToVReg(PointerSizeType, defaultReg,
943 MIRBuilder.getMF());
944 ToTruncate = defaultReg;
945 }
946 auto NewRegister =
947 GR->buildConstantInt(DefaultValue, MIRBuilder, PointerSizeType);
948 MIRBuilder.buildCopy(defaultReg, NewRegister);
949 } else { // If it could be in range, we need to load from the given builtin.
950 auto Vec3Ty =
951 GR->getOrCreateSPIRVVectorType(PointerSizeType, 3, MIRBuilder);
952 Register LoadedVector =
953 buildBuiltinVariableLoad(MIRBuilder, Vec3Ty, GR, BuiltinValue,
954 LLT::fixed_vector(3, PointerSize));
955 // Set up the vreg to extract the result to (possibly a new temporary one).
956 Register Extracted = Call->ReturnRegister;
957 if (!IsConstantIndex || PointerSize != ResultWidth) {
958 Extracted = MRI->createGenericVirtualRegister(LLT::scalar(PointerSize));
959 GR->assignSPIRVTypeToVReg(PointerSizeType, Extracted, MIRBuilder.getMF());
960 }
961 // Use Intrinsic::spv_extractelt so dynamic vs static extraction is
962 // handled later: extr = spv_extractelt LoadedVector, IndexRegister.
963 MachineInstrBuilder ExtractInst = MIRBuilder.buildIntrinsic(
964 Intrinsic::spv_extractelt, ArrayRef<Register>{Extracted}, true);
965 ExtractInst.addUse(LoadedVector).addUse(IndexRegister);
966
967 // If the index is dynamic, need check if it's < 3, and then use a select.
968 if (!IsConstantIndex) {
969 insertAssignInstr(Extracted, nullptr, PointerSizeType, GR, MIRBuilder,
970 *MRI);
971
972 auto IndexType = GR->getSPIRVTypeForVReg(IndexRegister);
973 auto BoolType = GR->getOrCreateSPIRVBoolType(MIRBuilder);
974
975 Register CompareRegister =
976 MRI->createGenericVirtualRegister(LLT::scalar(1));
977 GR->assignSPIRVTypeToVReg(BoolType, CompareRegister, MIRBuilder.getMF());
978
979 // Use G_ICMP to check if idxVReg < 3.
980 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CompareRegister, IndexRegister,
981 GR->buildConstantInt(3, MIRBuilder, IndexType));
982
983 // Get constant for the default value (0 or 1 depending on which
984 // function).
985 Register DefaultRegister =
986 GR->buildConstantInt(DefaultValue, MIRBuilder, PointerSizeType);
987
988 // Get a register for the selection result (possibly a new temporary one).
989 Register SelectionResult = Call->ReturnRegister;
990 if (PointerSize != ResultWidth) {
991 SelectionResult =
992 MRI->createGenericVirtualRegister(LLT::scalar(PointerSize));
993 GR->assignSPIRVTypeToVReg(PointerSizeType, SelectionResult,
994 MIRBuilder.getMF());
995 }
996 // Create the final G_SELECT to return the extracted value or the default.
997 MIRBuilder.buildSelect(SelectionResult, CompareRegister, Extracted,
998 DefaultRegister);
999 ToTruncate = SelectionResult;
1000 } else {
1001 ToTruncate = Extracted;
1002 }
1003 }
1004 // Alter the result's bitwidth if it does not match the SizeT value extracted.
1005 if (PointerSize != ResultWidth)
1006 MIRBuilder.buildZExtOrTrunc(Call->ReturnRegister, ToTruncate);
1007 return true;
1008 }
1009
generateBuiltinVar(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1010 static bool generateBuiltinVar(const SPIRV::IncomingCall *Call,
1011 MachineIRBuilder &MIRBuilder,
1012 SPIRVGlobalRegistry *GR) {
1013 // Lookup the builtin variable record.
1014 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1015 SPIRV::BuiltIn::BuiltIn Value =
1016 SPIRV::lookupGetBuiltin(Builtin->Name, Builtin->Set)->Value;
1017
1018 if (Value == SPIRV::BuiltIn::GlobalInvocationId)
1019 return genWorkgroupQuery(Call, MIRBuilder, GR, Value, 0);
1020
1021 // Build a load instruction for the builtin variable.
1022 unsigned BitWidth = GR->getScalarOrVectorBitWidth(Call->ReturnType);
1023 LLT LLType;
1024 if (Call->ReturnType->getOpcode() == SPIRV::OpTypeVector)
1025 LLType =
1026 LLT::fixed_vector(Call->ReturnType->getOperand(2).getImm(), BitWidth);
1027 else
1028 LLType = LLT::scalar(BitWidth);
1029
1030 return buildBuiltinVariableLoad(MIRBuilder, Call->ReturnType, GR, Value,
1031 LLType, Call->ReturnRegister);
1032 }
1033
generateAtomicInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1034 static bool generateAtomicInst(const SPIRV::IncomingCall *Call,
1035 MachineIRBuilder &MIRBuilder,
1036 SPIRVGlobalRegistry *GR) {
1037 // Lookup the instruction opcode in the TableGen records.
1038 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1039 unsigned Opcode =
1040 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1041
1042 switch (Opcode) {
1043 case SPIRV::OpStore:
1044 return buildAtomicInitInst(Call, MIRBuilder);
1045 case SPIRV::OpAtomicLoad:
1046 return buildAtomicLoadInst(Call, MIRBuilder, GR);
1047 case SPIRV::OpAtomicStore:
1048 return buildAtomicStoreInst(Call, MIRBuilder, GR);
1049 case SPIRV::OpAtomicCompareExchange:
1050 case SPIRV::OpAtomicCompareExchangeWeak:
1051 return buildAtomicCompareExchangeInst(Call, MIRBuilder, GR);
1052 case SPIRV::OpAtomicIAdd:
1053 case SPIRV::OpAtomicISub:
1054 case SPIRV::OpAtomicOr:
1055 case SPIRV::OpAtomicXor:
1056 case SPIRV::OpAtomicAnd:
1057 case SPIRV::OpAtomicExchange:
1058 return buildAtomicRMWInst(Call, Opcode, MIRBuilder, GR);
1059 case SPIRV::OpMemoryBarrier:
1060 return buildBarrierInst(Call, SPIRV::OpMemoryBarrier, MIRBuilder, GR);
1061 case SPIRV::OpAtomicFlagTestAndSet:
1062 case SPIRV::OpAtomicFlagClear:
1063 return buildAtomicFlagInst(Call, Opcode, MIRBuilder, GR);
1064 default:
1065 return false;
1066 }
1067 }
1068
generateBarrierInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1069 static bool generateBarrierInst(const SPIRV::IncomingCall *Call,
1070 MachineIRBuilder &MIRBuilder,
1071 SPIRVGlobalRegistry *GR) {
1072 // Lookup the instruction opcode in the TableGen records.
1073 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1074 unsigned Opcode =
1075 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1076
1077 return buildBarrierInst(Call, Opcode, MIRBuilder, GR);
1078 }
1079
generateDotOrFMulInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1080 static bool generateDotOrFMulInst(const SPIRV::IncomingCall *Call,
1081 MachineIRBuilder &MIRBuilder,
1082 SPIRVGlobalRegistry *GR) {
1083 unsigned Opcode = GR->getSPIRVTypeForVReg(Call->Arguments[0])->getOpcode();
1084 bool IsVec = Opcode == SPIRV::OpTypeVector;
1085 // Use OpDot only in case of vector args and OpFMul in case of scalar args.
1086 MIRBuilder.buildInstr(IsVec ? SPIRV::OpDot : SPIRV::OpFMulS)
1087 .addDef(Call->ReturnRegister)
1088 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1089 .addUse(Call->Arguments[0])
1090 .addUse(Call->Arguments[1]);
1091 return true;
1092 }
1093
generateGetQueryInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1094 static bool generateGetQueryInst(const SPIRV::IncomingCall *Call,
1095 MachineIRBuilder &MIRBuilder,
1096 SPIRVGlobalRegistry *GR) {
1097 // Lookup the builtin record.
1098 SPIRV::BuiltIn::BuiltIn Value =
1099 SPIRV::lookupGetBuiltin(Call->Builtin->Name, Call->Builtin->Set)->Value;
1100 uint64_t IsDefault = (Value == SPIRV::BuiltIn::GlobalSize ||
1101 Value == SPIRV::BuiltIn::WorkgroupSize ||
1102 Value == SPIRV::BuiltIn::EnqueuedWorkgroupSize);
1103 return genWorkgroupQuery(Call, MIRBuilder, GR, Value, IsDefault ? 1 : 0);
1104 }
1105
generateImageSizeQueryInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1106 static bool generateImageSizeQueryInst(const SPIRV::IncomingCall *Call,
1107 MachineIRBuilder &MIRBuilder,
1108 SPIRVGlobalRegistry *GR) {
1109 // Lookup the image size query component number in the TableGen records.
1110 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1111 uint32_t Component =
1112 SPIRV::lookupImageQueryBuiltin(Builtin->Name, Builtin->Set)->Component;
1113 // Query result may either be a vector or a scalar. If return type is not a
1114 // vector, expect only a single size component. Otherwise get the number of
1115 // expected components.
1116 SPIRVType *RetTy = Call->ReturnType;
1117 unsigned NumExpectedRetComponents = RetTy->getOpcode() == SPIRV::OpTypeVector
1118 ? RetTy->getOperand(2).getImm()
1119 : 1;
1120 // Get the actual number of query result/size components.
1121 SPIRVType *ImgType = GR->getSPIRVTypeForVReg(Call->Arguments[0]);
1122 unsigned NumActualRetComponents = getNumSizeComponents(ImgType);
1123 Register QueryResult = Call->ReturnRegister;
1124 SPIRVType *QueryResultType = Call->ReturnType;
1125 if (NumExpectedRetComponents != NumActualRetComponents) {
1126 QueryResult = MIRBuilder.getMRI()->createGenericVirtualRegister(
1127 LLT::fixed_vector(NumActualRetComponents, 32));
1128 SPIRVType *IntTy = GR->getOrCreateSPIRVIntegerType(32, MIRBuilder);
1129 QueryResultType = GR->getOrCreateSPIRVVectorType(
1130 IntTy, NumActualRetComponents, MIRBuilder);
1131 GR->assignSPIRVTypeToVReg(QueryResultType, QueryResult, MIRBuilder.getMF());
1132 }
1133 bool IsDimBuf = ImgType->getOperand(2).getImm() == SPIRV::Dim::DIM_Buffer;
1134 unsigned Opcode =
1135 IsDimBuf ? SPIRV::OpImageQuerySize : SPIRV::OpImageQuerySizeLod;
1136 auto MIB = MIRBuilder.buildInstr(Opcode)
1137 .addDef(QueryResult)
1138 .addUse(GR->getSPIRVTypeID(QueryResultType))
1139 .addUse(Call->Arguments[0]);
1140 if (!IsDimBuf)
1141 MIB.addUse(buildConstantIntReg(0, MIRBuilder, GR)); // Lod id.
1142 if (NumExpectedRetComponents == NumActualRetComponents)
1143 return true;
1144 if (NumExpectedRetComponents == 1) {
1145 // Only 1 component is expected, build OpCompositeExtract instruction.
1146 unsigned ExtractedComposite =
1147 Component == 3 ? NumActualRetComponents - 1 : Component;
1148 assert(ExtractedComposite < NumActualRetComponents &&
1149 "Invalid composite index!");
1150 MIRBuilder.buildInstr(SPIRV::OpCompositeExtract)
1151 .addDef(Call->ReturnRegister)
1152 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1153 .addUse(QueryResult)
1154 .addImm(ExtractedComposite);
1155 } else {
1156 // More than 1 component is expected, fill a new vector.
1157 auto MIB = MIRBuilder.buildInstr(SPIRV::OpVectorShuffle)
1158 .addDef(Call->ReturnRegister)
1159 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1160 .addUse(QueryResult)
1161 .addUse(QueryResult);
1162 for (unsigned i = 0; i < NumExpectedRetComponents; ++i)
1163 MIB.addImm(i < NumActualRetComponents ? i : 0xffffffff);
1164 }
1165 return true;
1166 }
1167
generateImageMiscQueryInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1168 static bool generateImageMiscQueryInst(const SPIRV::IncomingCall *Call,
1169 MachineIRBuilder &MIRBuilder,
1170 SPIRVGlobalRegistry *GR) {
1171 assert(Call->ReturnType->getOpcode() == SPIRV::OpTypeInt &&
1172 "Image samples query result must be of int type!");
1173
1174 // Lookup the instruction opcode in the TableGen records.
1175 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1176 unsigned Opcode =
1177 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1178
1179 Register Image = Call->Arguments[0];
1180 SPIRV::Dim::Dim ImageDimensionality = static_cast<SPIRV::Dim::Dim>(
1181 GR->getSPIRVTypeForVReg(Image)->getOperand(2).getImm());
1182
1183 switch (Opcode) {
1184 case SPIRV::OpImageQuerySamples:
1185 assert(ImageDimensionality == SPIRV::Dim::DIM_2D &&
1186 "Image must be of 2D dimensionality");
1187 break;
1188 case SPIRV::OpImageQueryLevels:
1189 assert((ImageDimensionality == SPIRV::Dim::DIM_1D ||
1190 ImageDimensionality == SPIRV::Dim::DIM_2D ||
1191 ImageDimensionality == SPIRV::Dim::DIM_3D ||
1192 ImageDimensionality == SPIRV::Dim::DIM_Cube) &&
1193 "Image must be of 1D/2D/3D/Cube dimensionality");
1194 break;
1195 }
1196
1197 MIRBuilder.buildInstr(Opcode)
1198 .addDef(Call->ReturnRegister)
1199 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1200 .addUse(Image);
1201 return true;
1202 }
1203
1204 // TODO: Move to TableGen.
1205 static SPIRV::SamplerAddressingMode::SamplerAddressingMode
getSamplerAddressingModeFromBitmask(unsigned Bitmask)1206 getSamplerAddressingModeFromBitmask(unsigned Bitmask) {
1207 switch (Bitmask & SPIRV::CLK_ADDRESS_MODE_MASK) {
1208 case SPIRV::CLK_ADDRESS_CLAMP:
1209 return SPIRV::SamplerAddressingMode::Clamp;
1210 case SPIRV::CLK_ADDRESS_CLAMP_TO_EDGE:
1211 return SPIRV::SamplerAddressingMode::ClampToEdge;
1212 case SPIRV::CLK_ADDRESS_REPEAT:
1213 return SPIRV::SamplerAddressingMode::Repeat;
1214 case SPIRV::CLK_ADDRESS_MIRRORED_REPEAT:
1215 return SPIRV::SamplerAddressingMode::RepeatMirrored;
1216 case SPIRV::CLK_ADDRESS_NONE:
1217 return SPIRV::SamplerAddressingMode::None;
1218 default:
1219 llvm_unreachable("Unknown CL address mode");
1220 }
1221 }
1222
getSamplerParamFromBitmask(unsigned Bitmask)1223 static unsigned getSamplerParamFromBitmask(unsigned Bitmask) {
1224 return (Bitmask & SPIRV::CLK_NORMALIZED_COORDS_TRUE) ? 1 : 0;
1225 }
1226
1227 static SPIRV::SamplerFilterMode::SamplerFilterMode
getSamplerFilterModeFromBitmask(unsigned Bitmask)1228 getSamplerFilterModeFromBitmask(unsigned Bitmask) {
1229 if (Bitmask & SPIRV::CLK_FILTER_LINEAR)
1230 return SPIRV::SamplerFilterMode::Linear;
1231 if (Bitmask & SPIRV::CLK_FILTER_NEAREST)
1232 return SPIRV::SamplerFilterMode::Nearest;
1233 return SPIRV::SamplerFilterMode::Nearest;
1234 }
1235
generateReadImageInst(const StringRef DemangledCall,const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1236 static bool generateReadImageInst(const StringRef DemangledCall,
1237 const SPIRV::IncomingCall *Call,
1238 MachineIRBuilder &MIRBuilder,
1239 SPIRVGlobalRegistry *GR) {
1240 Register Image = Call->Arguments[0];
1241 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1242
1243 if (DemangledCall.contains_insensitive("ocl_sampler")) {
1244 Register Sampler = Call->Arguments[1];
1245
1246 if (!GR->isScalarOfType(Sampler, SPIRV::OpTypeSampler) &&
1247 getDefInstrMaybeConstant(Sampler, MRI)->getOperand(1).isCImm()) {
1248 uint64_t SamplerMask = getIConstVal(Sampler, MRI);
1249 Sampler = GR->buildConstantSampler(
1250 Register(), getSamplerAddressingModeFromBitmask(SamplerMask),
1251 getSamplerParamFromBitmask(SamplerMask),
1252 getSamplerFilterModeFromBitmask(SamplerMask), MIRBuilder,
1253 GR->getSPIRVTypeForVReg(Sampler));
1254 }
1255 SPIRVType *ImageType = GR->getSPIRVTypeForVReg(Image);
1256 SPIRVType *SampledImageType =
1257 GR->getOrCreateOpTypeSampledImage(ImageType, MIRBuilder);
1258 Register SampledImage = MRI->createVirtualRegister(&SPIRV::IDRegClass);
1259
1260 MIRBuilder.buildInstr(SPIRV::OpSampledImage)
1261 .addDef(SampledImage)
1262 .addUse(GR->getSPIRVTypeID(SampledImageType))
1263 .addUse(Image)
1264 .addUse(Sampler);
1265
1266 Register Lod = GR->buildConstantFP(APFloat::getZero(APFloat::IEEEsingle()),
1267 MIRBuilder);
1268 SPIRVType *TempType = Call->ReturnType;
1269 bool NeedsExtraction = false;
1270 if (TempType->getOpcode() != SPIRV::OpTypeVector) {
1271 TempType =
1272 GR->getOrCreateSPIRVVectorType(Call->ReturnType, 4, MIRBuilder);
1273 NeedsExtraction = true;
1274 }
1275 LLT LLType = LLT::scalar(GR->getScalarOrVectorBitWidth(TempType));
1276 Register TempRegister = MRI->createGenericVirtualRegister(LLType);
1277 GR->assignSPIRVTypeToVReg(TempType, TempRegister, MIRBuilder.getMF());
1278
1279 MIRBuilder.buildInstr(SPIRV::OpImageSampleExplicitLod)
1280 .addDef(NeedsExtraction ? TempRegister : Call->ReturnRegister)
1281 .addUse(GR->getSPIRVTypeID(TempType))
1282 .addUse(SampledImage)
1283 .addUse(Call->Arguments[2]) // Coordinate.
1284 .addImm(SPIRV::ImageOperand::Lod)
1285 .addUse(Lod);
1286
1287 if (NeedsExtraction)
1288 MIRBuilder.buildInstr(SPIRV::OpCompositeExtract)
1289 .addDef(Call->ReturnRegister)
1290 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1291 .addUse(TempRegister)
1292 .addImm(0);
1293 } else if (DemangledCall.contains_insensitive("msaa")) {
1294 MIRBuilder.buildInstr(SPIRV::OpImageRead)
1295 .addDef(Call->ReturnRegister)
1296 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1297 .addUse(Image)
1298 .addUse(Call->Arguments[1]) // Coordinate.
1299 .addImm(SPIRV::ImageOperand::Sample)
1300 .addUse(Call->Arguments[2]);
1301 } else {
1302 MIRBuilder.buildInstr(SPIRV::OpImageRead)
1303 .addDef(Call->ReturnRegister)
1304 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1305 .addUse(Image)
1306 .addUse(Call->Arguments[1]); // Coordinate.
1307 }
1308 return true;
1309 }
1310
generateWriteImageInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1311 static bool generateWriteImageInst(const SPIRV::IncomingCall *Call,
1312 MachineIRBuilder &MIRBuilder,
1313 SPIRVGlobalRegistry *GR) {
1314 MIRBuilder.buildInstr(SPIRV::OpImageWrite)
1315 .addUse(Call->Arguments[0]) // Image.
1316 .addUse(Call->Arguments[1]) // Coordinate.
1317 .addUse(Call->Arguments[2]); // Texel.
1318 return true;
1319 }
1320
generateSampleImageInst(const StringRef DemangledCall,const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1321 static bool generateSampleImageInst(const StringRef DemangledCall,
1322 const SPIRV::IncomingCall *Call,
1323 MachineIRBuilder &MIRBuilder,
1324 SPIRVGlobalRegistry *GR) {
1325 if (Call->Builtin->Name.contains_insensitive(
1326 "__translate_sampler_initializer")) {
1327 // Build sampler literal.
1328 uint64_t Bitmask = getIConstVal(Call->Arguments[0], MIRBuilder.getMRI());
1329 Register Sampler = GR->buildConstantSampler(
1330 Call->ReturnRegister, getSamplerAddressingModeFromBitmask(Bitmask),
1331 getSamplerParamFromBitmask(Bitmask),
1332 getSamplerFilterModeFromBitmask(Bitmask), MIRBuilder, Call->ReturnType);
1333 return Sampler.isValid();
1334 } else if (Call->Builtin->Name.contains_insensitive("__spirv_SampledImage")) {
1335 // Create OpSampledImage.
1336 Register Image = Call->Arguments[0];
1337 SPIRVType *ImageType = GR->getSPIRVTypeForVReg(Image);
1338 SPIRVType *SampledImageType =
1339 GR->getOrCreateOpTypeSampledImage(ImageType, MIRBuilder);
1340 Register SampledImage =
1341 Call->ReturnRegister.isValid()
1342 ? Call->ReturnRegister
1343 : MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::IDRegClass);
1344 MIRBuilder.buildInstr(SPIRV::OpSampledImage)
1345 .addDef(SampledImage)
1346 .addUse(GR->getSPIRVTypeID(SampledImageType))
1347 .addUse(Image)
1348 .addUse(Call->Arguments[1]); // Sampler.
1349 return true;
1350 } else if (Call->Builtin->Name.contains_insensitive(
1351 "__spirv_ImageSampleExplicitLod")) {
1352 // Sample an image using an explicit level of detail.
1353 std::string ReturnType = DemangledCall.str();
1354 if (DemangledCall.contains("_R")) {
1355 ReturnType = ReturnType.substr(ReturnType.find("_R") + 2);
1356 ReturnType = ReturnType.substr(0, ReturnType.find('('));
1357 }
1358 SPIRVType *Type = GR->getOrCreateSPIRVTypeByName(ReturnType, MIRBuilder);
1359 MIRBuilder.buildInstr(SPIRV::OpImageSampleExplicitLod)
1360 .addDef(Call->ReturnRegister)
1361 .addUse(GR->getSPIRVTypeID(Type))
1362 .addUse(Call->Arguments[0]) // Image.
1363 .addUse(Call->Arguments[1]) // Coordinate.
1364 .addImm(SPIRV::ImageOperand::Lod)
1365 .addUse(Call->Arguments[3]);
1366 return true;
1367 }
1368 return false;
1369 }
1370
generateSelectInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder)1371 static bool generateSelectInst(const SPIRV::IncomingCall *Call,
1372 MachineIRBuilder &MIRBuilder) {
1373 MIRBuilder.buildSelect(Call->ReturnRegister, Call->Arguments[0],
1374 Call->Arguments[1], Call->Arguments[2]);
1375 return true;
1376 }
1377
generateSpecConstantInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1378 static bool generateSpecConstantInst(const SPIRV::IncomingCall *Call,
1379 MachineIRBuilder &MIRBuilder,
1380 SPIRVGlobalRegistry *GR) {
1381 // Lookup the instruction opcode in the TableGen records.
1382 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1383 unsigned Opcode =
1384 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1385 const MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1386
1387 switch (Opcode) {
1388 case SPIRV::OpSpecConstant: {
1389 // Build the SpecID decoration.
1390 unsigned SpecId =
1391 static_cast<unsigned>(getIConstVal(Call->Arguments[0], MRI));
1392 buildOpDecorate(Call->ReturnRegister, MIRBuilder, SPIRV::Decoration::SpecId,
1393 {SpecId});
1394 // Determine the constant MI.
1395 Register ConstRegister = Call->Arguments[1];
1396 const MachineInstr *Const = getDefInstrMaybeConstant(ConstRegister, MRI);
1397 assert(Const &&
1398 (Const->getOpcode() == TargetOpcode::G_CONSTANT ||
1399 Const->getOpcode() == TargetOpcode::G_FCONSTANT) &&
1400 "Argument should be either an int or floating-point constant");
1401 // Determine the opcode and built the OpSpec MI.
1402 const MachineOperand &ConstOperand = Const->getOperand(1);
1403 if (Call->ReturnType->getOpcode() == SPIRV::OpTypeBool) {
1404 assert(ConstOperand.isCImm() && "Int constant operand is expected");
1405 Opcode = ConstOperand.getCImm()->getValue().getZExtValue()
1406 ? SPIRV::OpSpecConstantTrue
1407 : SPIRV::OpSpecConstantFalse;
1408 }
1409 auto MIB = MIRBuilder.buildInstr(Opcode)
1410 .addDef(Call->ReturnRegister)
1411 .addUse(GR->getSPIRVTypeID(Call->ReturnType));
1412
1413 if (Call->ReturnType->getOpcode() != SPIRV::OpTypeBool) {
1414 if (Const->getOpcode() == TargetOpcode::G_CONSTANT)
1415 addNumImm(ConstOperand.getCImm()->getValue(), MIB);
1416 else
1417 addNumImm(ConstOperand.getFPImm()->getValueAPF().bitcastToAPInt(), MIB);
1418 }
1419 return true;
1420 }
1421 case SPIRV::OpSpecConstantComposite: {
1422 auto MIB = MIRBuilder.buildInstr(Opcode)
1423 .addDef(Call->ReturnRegister)
1424 .addUse(GR->getSPIRVTypeID(Call->ReturnType));
1425 for (unsigned i = 0; i < Call->Arguments.size(); i++)
1426 MIB.addUse(Call->Arguments[i]);
1427 return true;
1428 }
1429 default:
1430 return false;
1431 }
1432 }
1433
getBlockStructInstr(Register ParamReg,MachineRegisterInfo * MRI)1434 static MachineInstr *getBlockStructInstr(Register ParamReg,
1435 MachineRegisterInfo *MRI) {
1436 // We expect the following sequence of instructions:
1437 // %0:_(pN) = G_INTRINSIC_W_SIDE_EFFECTS intrinsic(@llvm.spv.alloca)
1438 // or = G_GLOBAL_VALUE @block_literal_global
1439 // %1:_(pN) = G_INTRINSIC_W_SIDE_EFFECTS intrinsic(@llvm.spv.bitcast), %0
1440 // %2:_(p4) = G_ADDRSPACE_CAST %1:_(pN)
1441 MachineInstr *MI = MRI->getUniqueVRegDef(ParamReg);
1442 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST &&
1443 MI->getOperand(1).isReg());
1444 Register BitcastReg = MI->getOperand(1).getReg();
1445 MachineInstr *BitcastMI = MRI->getUniqueVRegDef(BitcastReg);
1446 assert(isSpvIntrinsic(*BitcastMI, Intrinsic::spv_bitcast) &&
1447 BitcastMI->getOperand(2).isReg());
1448 Register ValueReg = BitcastMI->getOperand(2).getReg();
1449 MachineInstr *ValueMI = MRI->getUniqueVRegDef(ValueReg);
1450 return ValueMI;
1451 }
1452
1453 // Return an integer constant corresponding to the given register and
1454 // defined in spv_track_constant.
1455 // TODO: maybe unify with prelegalizer pass.
getConstFromIntrinsic(Register Reg,MachineRegisterInfo * MRI)1456 static unsigned getConstFromIntrinsic(Register Reg, MachineRegisterInfo *MRI) {
1457 MachineInstr *DefMI = MRI->getUniqueVRegDef(Reg);
1458 assert(isSpvIntrinsic(*DefMI, Intrinsic::spv_track_constant) &&
1459 DefMI->getOperand(2).isReg());
1460 MachineInstr *DefMI2 = MRI->getUniqueVRegDef(DefMI->getOperand(2).getReg());
1461 assert(DefMI2->getOpcode() == TargetOpcode::G_CONSTANT &&
1462 DefMI2->getOperand(1).isCImm());
1463 return DefMI2->getOperand(1).getCImm()->getValue().getZExtValue();
1464 }
1465
1466 // Return type of the instruction result from spv_assign_type intrinsic.
1467 // TODO: maybe unify with prelegalizer pass.
getMachineInstrType(MachineInstr * MI)1468 static const Type *getMachineInstrType(MachineInstr *MI) {
1469 MachineInstr *NextMI = MI->getNextNode();
1470 if (isSpvIntrinsic(*NextMI, Intrinsic::spv_assign_name))
1471 NextMI = NextMI->getNextNode();
1472 Register ValueReg = MI->getOperand(0).getReg();
1473 if (!isSpvIntrinsic(*NextMI, Intrinsic::spv_assign_type) ||
1474 NextMI->getOperand(1).getReg() != ValueReg)
1475 return nullptr;
1476 Type *Ty = getMDOperandAsType(NextMI->getOperand(2).getMetadata(), 0);
1477 assert(Ty && "Type is expected");
1478 return getTypedPtrEltType(Ty);
1479 }
1480
getBlockStructType(Register ParamReg,MachineRegisterInfo * MRI)1481 static const Type *getBlockStructType(Register ParamReg,
1482 MachineRegisterInfo *MRI) {
1483 // In principle, this information should be passed to us from Clang via
1484 // an elementtype attribute. However, said attribute requires that
1485 // the function call be an intrinsic, which is not. Instead, we rely on being
1486 // able to trace this to the declaration of a variable: OpenCL C specification
1487 // section 6.12.5 should guarantee that we can do this.
1488 MachineInstr *MI = getBlockStructInstr(ParamReg, MRI);
1489 if (MI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE)
1490 return getTypedPtrEltType(MI->getOperand(1).getGlobal()->getType());
1491 assert(isSpvIntrinsic(*MI, Intrinsic::spv_alloca) &&
1492 "Blocks in OpenCL C must be traceable to allocation site");
1493 return getMachineInstrType(MI);
1494 }
1495
1496 // TODO: maybe move to the global register.
1497 static SPIRVType *
getOrCreateSPIRVDeviceEventPointer(MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1498 getOrCreateSPIRVDeviceEventPointer(MachineIRBuilder &MIRBuilder,
1499 SPIRVGlobalRegistry *GR) {
1500 LLVMContext &Context = MIRBuilder.getMF().getFunction().getContext();
1501 Type *OpaqueType = StructType::getTypeByName(Context, "spirv.DeviceEvent");
1502 if (!OpaqueType)
1503 OpaqueType = StructType::getTypeByName(Context, "opencl.clk_event_t");
1504 if (!OpaqueType)
1505 OpaqueType = StructType::create(Context, "spirv.DeviceEvent");
1506 unsigned SC0 = storageClassToAddressSpace(SPIRV::StorageClass::Function);
1507 unsigned SC1 = storageClassToAddressSpace(SPIRV::StorageClass::Generic);
1508 Type *PtrType = PointerType::get(PointerType::get(OpaqueType, SC0), SC1);
1509 return GR->getOrCreateSPIRVType(PtrType, MIRBuilder);
1510 }
1511
buildEnqueueKernel(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1512 static bool buildEnqueueKernel(const SPIRV::IncomingCall *Call,
1513 MachineIRBuilder &MIRBuilder,
1514 SPIRVGlobalRegistry *GR) {
1515 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1516 const DataLayout &DL = MIRBuilder.getDataLayout();
1517 bool HasEvents = Call->Builtin->Name.find("events") != StringRef::npos;
1518 const SPIRVType *Int32Ty = GR->getOrCreateSPIRVIntegerType(32, MIRBuilder);
1519
1520 // Make vararg instructions before OpEnqueueKernel.
1521 // Local sizes arguments: Sizes of block invoke arguments. Clang generates
1522 // local size operands as an array, so we need to unpack them.
1523 SmallVector<Register, 16> LocalSizes;
1524 if (Call->Builtin->Name.find("_varargs") != StringRef::npos) {
1525 const unsigned LocalSizeArrayIdx = HasEvents ? 9 : 6;
1526 Register GepReg = Call->Arguments[LocalSizeArrayIdx];
1527 MachineInstr *GepMI = MRI->getUniqueVRegDef(GepReg);
1528 assert(isSpvIntrinsic(*GepMI, Intrinsic::spv_gep) &&
1529 GepMI->getOperand(3).isReg());
1530 Register ArrayReg = GepMI->getOperand(3).getReg();
1531 MachineInstr *ArrayMI = MRI->getUniqueVRegDef(ArrayReg);
1532 const Type *LocalSizeTy = getMachineInstrType(ArrayMI);
1533 assert(LocalSizeTy && "Local size type is expected");
1534 const uint64_t LocalSizeNum =
1535 cast<ArrayType>(LocalSizeTy)->getNumElements();
1536 unsigned SC = storageClassToAddressSpace(SPIRV::StorageClass::Generic);
1537 const LLT LLType = LLT::pointer(SC, GR->getPointerSize());
1538 const SPIRVType *PointerSizeTy = GR->getOrCreateSPIRVPointerType(
1539 Int32Ty, MIRBuilder, SPIRV::StorageClass::Function);
1540 for (unsigned I = 0; I < LocalSizeNum; ++I) {
1541 Register Reg =
1542 MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::IDRegClass);
1543 MIRBuilder.getMRI()->setType(Reg, LLType);
1544 GR->assignSPIRVTypeToVReg(PointerSizeTy, Reg, MIRBuilder.getMF());
1545 auto GEPInst = MIRBuilder.buildIntrinsic(Intrinsic::spv_gep,
1546 ArrayRef<Register>{Reg}, true);
1547 GEPInst
1548 .addImm(GepMI->getOperand(2).getImm()) // In bound.
1549 .addUse(ArrayMI->getOperand(0).getReg()) // Alloca.
1550 .addUse(buildConstantIntReg(0, MIRBuilder, GR)) // Indices.
1551 .addUse(buildConstantIntReg(I, MIRBuilder, GR));
1552 LocalSizes.push_back(Reg);
1553 }
1554 }
1555
1556 // SPIRV OpEnqueueKernel instruction has 10+ arguments.
1557 auto MIB = MIRBuilder.buildInstr(SPIRV::OpEnqueueKernel)
1558 .addDef(Call->ReturnRegister)
1559 .addUse(GR->getSPIRVTypeID(Int32Ty));
1560
1561 // Copy all arguments before block invoke function pointer.
1562 const unsigned BlockFIdx = HasEvents ? 6 : 3;
1563 for (unsigned i = 0; i < BlockFIdx; i++)
1564 MIB.addUse(Call->Arguments[i]);
1565
1566 // If there are no event arguments in the original call, add dummy ones.
1567 if (!HasEvents) {
1568 MIB.addUse(buildConstantIntReg(0, MIRBuilder, GR)); // Dummy num events.
1569 Register NullPtr = GR->getOrCreateConstNullPtr(
1570 MIRBuilder, getOrCreateSPIRVDeviceEventPointer(MIRBuilder, GR));
1571 MIB.addUse(NullPtr); // Dummy wait events.
1572 MIB.addUse(NullPtr); // Dummy ret event.
1573 }
1574
1575 MachineInstr *BlockMI = getBlockStructInstr(Call->Arguments[BlockFIdx], MRI);
1576 assert(BlockMI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
1577 // Invoke: Pointer to invoke function.
1578 MIB.addGlobalAddress(BlockMI->getOperand(1).getGlobal());
1579
1580 Register BlockLiteralReg = Call->Arguments[BlockFIdx + 1];
1581 // Param: Pointer to block literal.
1582 MIB.addUse(BlockLiteralReg);
1583
1584 Type *PType = const_cast<Type *>(getBlockStructType(BlockLiteralReg, MRI));
1585 // TODO: these numbers should be obtained from block literal structure.
1586 // Param Size: Size of block literal structure.
1587 MIB.addUse(buildConstantIntReg(DL.getTypeStoreSize(PType), MIRBuilder, GR));
1588 // Param Aligment: Aligment of block literal structure.
1589 MIB.addUse(
1590 buildConstantIntReg(DL.getPrefTypeAlignment(PType), MIRBuilder, GR));
1591
1592 for (unsigned i = 0; i < LocalSizes.size(); i++)
1593 MIB.addUse(LocalSizes[i]);
1594 return true;
1595 }
1596
generateEnqueueInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1597 static bool generateEnqueueInst(const SPIRV::IncomingCall *Call,
1598 MachineIRBuilder &MIRBuilder,
1599 SPIRVGlobalRegistry *GR) {
1600 // Lookup the instruction opcode in the TableGen records.
1601 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1602 unsigned Opcode =
1603 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1604
1605 switch (Opcode) {
1606 case SPIRV::OpRetainEvent:
1607 case SPIRV::OpReleaseEvent:
1608 return MIRBuilder.buildInstr(Opcode).addUse(Call->Arguments[0]);
1609 case SPIRV::OpCreateUserEvent:
1610 case SPIRV::OpGetDefaultQueue:
1611 return MIRBuilder.buildInstr(Opcode)
1612 .addDef(Call->ReturnRegister)
1613 .addUse(GR->getSPIRVTypeID(Call->ReturnType));
1614 case SPIRV::OpIsValidEvent:
1615 return MIRBuilder.buildInstr(Opcode)
1616 .addDef(Call->ReturnRegister)
1617 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1618 .addUse(Call->Arguments[0]);
1619 case SPIRV::OpSetUserEventStatus:
1620 return MIRBuilder.buildInstr(Opcode)
1621 .addUse(Call->Arguments[0])
1622 .addUse(Call->Arguments[1]);
1623 case SPIRV::OpCaptureEventProfilingInfo:
1624 return MIRBuilder.buildInstr(Opcode)
1625 .addUse(Call->Arguments[0])
1626 .addUse(Call->Arguments[1])
1627 .addUse(Call->Arguments[2]);
1628 case SPIRV::OpBuildNDRange: {
1629 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1630 SPIRVType *PtrType = GR->getSPIRVTypeForVReg(Call->Arguments[0]);
1631 assert(PtrType->getOpcode() == SPIRV::OpTypePointer &&
1632 PtrType->getOperand(2).isReg());
1633 Register TypeReg = PtrType->getOperand(2).getReg();
1634 SPIRVType *StructType = GR->getSPIRVTypeForVReg(TypeReg);
1635 Register TmpReg = MRI->createVirtualRegister(&SPIRV::IDRegClass);
1636 GR->assignSPIRVTypeToVReg(StructType, TmpReg, MIRBuilder.getMF());
1637 // Skip the first arg, it's the destination pointer. OpBuildNDRange takes
1638 // three other arguments, so pass zero constant on absence.
1639 unsigned NumArgs = Call->Arguments.size();
1640 assert(NumArgs >= 2);
1641 Register GlobalWorkSize = Call->Arguments[NumArgs < 4 ? 1 : 2];
1642 Register LocalWorkSize =
1643 NumArgs == 2 ? Register(0) : Call->Arguments[NumArgs < 4 ? 2 : 3];
1644 Register GlobalWorkOffset = NumArgs <= 3 ? Register(0) : Call->Arguments[1];
1645 if (NumArgs < 4) {
1646 Register Const;
1647 SPIRVType *SpvTy = GR->getSPIRVTypeForVReg(GlobalWorkSize);
1648 if (SpvTy->getOpcode() == SPIRV::OpTypePointer) {
1649 MachineInstr *DefInstr = MRI->getUniqueVRegDef(GlobalWorkSize);
1650 assert(DefInstr && isSpvIntrinsic(*DefInstr, Intrinsic::spv_gep) &&
1651 DefInstr->getOperand(3).isReg());
1652 Register GWSPtr = DefInstr->getOperand(3).getReg();
1653 // TODO: Maybe simplify generation of the type of the fields.
1654 unsigned Size = Call->Builtin->Name.equals("ndrange_3D") ? 3 : 2;
1655 unsigned BitWidth = GR->getPointerSize() == 64 ? 64 : 32;
1656 Type *BaseTy = IntegerType::get(
1657 MIRBuilder.getMF().getFunction().getContext(), BitWidth);
1658 Type *FieldTy = ArrayType::get(BaseTy, Size);
1659 SPIRVType *SpvFieldTy = GR->getOrCreateSPIRVType(FieldTy, MIRBuilder);
1660 GlobalWorkSize = MRI->createVirtualRegister(&SPIRV::IDRegClass);
1661 GR->assignSPIRVTypeToVReg(SpvFieldTy, GlobalWorkSize,
1662 MIRBuilder.getMF());
1663 MIRBuilder.buildInstr(SPIRV::OpLoad)
1664 .addDef(GlobalWorkSize)
1665 .addUse(GR->getSPIRVTypeID(SpvFieldTy))
1666 .addUse(GWSPtr);
1667 Const = GR->getOrCreateConsIntArray(0, MIRBuilder, SpvFieldTy);
1668 } else {
1669 Const = GR->buildConstantInt(0, MIRBuilder, SpvTy);
1670 }
1671 if (!LocalWorkSize.isValid())
1672 LocalWorkSize = Const;
1673 if (!GlobalWorkOffset.isValid())
1674 GlobalWorkOffset = Const;
1675 }
1676 MIRBuilder.buildInstr(Opcode)
1677 .addDef(TmpReg)
1678 .addUse(TypeReg)
1679 .addUse(GlobalWorkSize)
1680 .addUse(LocalWorkSize)
1681 .addUse(GlobalWorkOffset);
1682 return MIRBuilder.buildInstr(SPIRV::OpStore)
1683 .addUse(Call->Arguments[0])
1684 .addUse(TmpReg);
1685 }
1686 case SPIRV::OpEnqueueKernel:
1687 return buildEnqueueKernel(Call, MIRBuilder, GR);
1688 default:
1689 return false;
1690 }
1691 }
1692
generateAsyncCopy(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1693 static bool generateAsyncCopy(const SPIRV::IncomingCall *Call,
1694 MachineIRBuilder &MIRBuilder,
1695 SPIRVGlobalRegistry *GR) {
1696 // Lookup the instruction opcode in the TableGen records.
1697 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1698 unsigned Opcode =
1699 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1700 auto Scope = buildConstantIntReg(SPIRV::Scope::Workgroup, MIRBuilder, GR);
1701
1702 switch (Opcode) {
1703 case SPIRV::OpGroupAsyncCopy:
1704 return MIRBuilder.buildInstr(Opcode)
1705 .addDef(Call->ReturnRegister)
1706 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1707 .addUse(Scope)
1708 .addUse(Call->Arguments[0])
1709 .addUse(Call->Arguments[1])
1710 .addUse(Call->Arguments[2])
1711 .addUse(buildConstantIntReg(1, MIRBuilder, GR))
1712 .addUse(Call->Arguments[3]);
1713 case SPIRV::OpGroupWaitEvents:
1714 return MIRBuilder.buildInstr(Opcode)
1715 .addUse(Scope)
1716 .addUse(Call->Arguments[0])
1717 .addUse(Call->Arguments[1]);
1718 default:
1719 return false;
1720 }
1721 }
1722
generateConvertInst(const StringRef DemangledCall,const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1723 static bool generateConvertInst(const StringRef DemangledCall,
1724 const SPIRV::IncomingCall *Call,
1725 MachineIRBuilder &MIRBuilder,
1726 SPIRVGlobalRegistry *GR) {
1727 // Lookup the conversion builtin in the TableGen records.
1728 const SPIRV::ConvertBuiltin *Builtin =
1729 SPIRV::lookupConvertBuiltin(Call->Builtin->Name, Call->Builtin->Set);
1730
1731 if (Builtin->IsSaturated)
1732 buildOpDecorate(Call->ReturnRegister, MIRBuilder,
1733 SPIRV::Decoration::SaturatedConversion, {});
1734 if (Builtin->IsRounded)
1735 buildOpDecorate(Call->ReturnRegister, MIRBuilder,
1736 SPIRV::Decoration::FPRoundingMode, {Builtin->RoundingMode});
1737
1738 unsigned Opcode = SPIRV::OpNop;
1739 if (GR->isScalarOrVectorOfType(Call->Arguments[0], SPIRV::OpTypeInt)) {
1740 // Int -> ...
1741 if (GR->isScalarOrVectorOfType(Call->ReturnRegister, SPIRV::OpTypeInt)) {
1742 // Int -> Int
1743 if (Builtin->IsSaturated)
1744 Opcode = Builtin->IsDestinationSigned ? SPIRV::OpSatConvertUToS
1745 : SPIRV::OpSatConvertSToU;
1746 else
1747 Opcode = Builtin->IsDestinationSigned ? SPIRV::OpUConvert
1748 : SPIRV::OpSConvert;
1749 } else if (GR->isScalarOrVectorOfType(Call->ReturnRegister,
1750 SPIRV::OpTypeFloat)) {
1751 // Int -> Float
1752 bool IsSourceSigned =
1753 DemangledCall[DemangledCall.find_first_of('(') + 1] != 'u';
1754 Opcode = IsSourceSigned ? SPIRV::OpConvertSToF : SPIRV::OpConvertUToF;
1755 }
1756 } else if (GR->isScalarOrVectorOfType(Call->Arguments[0],
1757 SPIRV::OpTypeFloat)) {
1758 // Float -> ...
1759 if (GR->isScalarOrVectorOfType(Call->ReturnRegister, SPIRV::OpTypeInt))
1760 // Float -> Int
1761 Opcode = Builtin->IsDestinationSigned ? SPIRV::OpConvertFToS
1762 : SPIRV::OpConvertFToU;
1763 else if (GR->isScalarOrVectorOfType(Call->ReturnRegister,
1764 SPIRV::OpTypeFloat))
1765 // Float -> Float
1766 Opcode = SPIRV::OpFConvert;
1767 }
1768
1769 assert(Opcode != SPIRV::OpNop &&
1770 "Conversion between the types not implemented!");
1771
1772 MIRBuilder.buildInstr(Opcode)
1773 .addDef(Call->ReturnRegister)
1774 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1775 .addUse(Call->Arguments[0]);
1776 return true;
1777 }
1778
generateVectorLoadStoreInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1779 static bool generateVectorLoadStoreInst(const SPIRV::IncomingCall *Call,
1780 MachineIRBuilder &MIRBuilder,
1781 SPIRVGlobalRegistry *GR) {
1782 // Lookup the vector load/store builtin in the TableGen records.
1783 const SPIRV::VectorLoadStoreBuiltin *Builtin =
1784 SPIRV::lookupVectorLoadStoreBuiltin(Call->Builtin->Name,
1785 Call->Builtin->Set);
1786 // Build extended instruction.
1787 auto MIB =
1788 MIRBuilder.buildInstr(SPIRV::OpExtInst)
1789 .addDef(Call->ReturnRegister)
1790 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1791 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::OpenCL_std))
1792 .addImm(Builtin->Number);
1793 for (auto Argument : Call->Arguments)
1794 MIB.addUse(Argument);
1795
1796 // Rounding mode should be passed as a last argument in the MI for builtins
1797 // like "vstorea_halfn_r".
1798 if (Builtin->IsRounded)
1799 MIB.addImm(static_cast<uint32_t>(Builtin->RoundingMode));
1800 return true;
1801 }
1802
generateLoadStoreInst(const SPIRV::IncomingCall * Call,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)1803 static bool generateLoadStoreInst(const SPIRV::IncomingCall *Call,
1804 MachineIRBuilder &MIRBuilder,
1805 SPIRVGlobalRegistry *GR) {
1806 // Lookup the instruction opcode in the TableGen records.
1807 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1808 unsigned Opcode =
1809 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1810 bool IsLoad = Opcode == SPIRV::OpLoad;
1811 // Build the instruction.
1812 auto MIB = MIRBuilder.buildInstr(Opcode);
1813 if (IsLoad) {
1814 MIB.addDef(Call->ReturnRegister);
1815 MIB.addUse(GR->getSPIRVTypeID(Call->ReturnType));
1816 }
1817 // Add a pointer to the value to load/store.
1818 MIB.addUse(Call->Arguments[0]);
1819 // Add a value to store.
1820 if (!IsLoad)
1821 MIB.addUse(Call->Arguments[1]);
1822 // Add optional memory attributes and an alignment.
1823 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1824 unsigned NumArgs = Call->Arguments.size();
1825 if ((IsLoad && NumArgs >= 2) || NumArgs >= 3)
1826 MIB.addImm(getConstFromIntrinsic(Call->Arguments[IsLoad ? 1 : 2], MRI));
1827 if ((IsLoad && NumArgs >= 3) || NumArgs >= 4)
1828 MIB.addImm(getConstFromIntrinsic(Call->Arguments[IsLoad ? 2 : 3], MRI));
1829 return true;
1830 }
1831
1832 /// Lowers a builtin funtion call using the provided \p DemangledCall skeleton
1833 /// and external instruction \p Set.
1834 namespace SPIRV {
lowerBuiltin(const StringRef DemangledCall,SPIRV::InstructionSet::InstructionSet Set,MachineIRBuilder & MIRBuilder,const Register OrigRet,const Type * OrigRetTy,const SmallVectorImpl<Register> & Args,SPIRVGlobalRegistry * GR)1835 std::optional<bool> lowerBuiltin(const StringRef DemangledCall,
1836 SPIRV::InstructionSet::InstructionSet Set,
1837 MachineIRBuilder &MIRBuilder,
1838 const Register OrigRet, const Type *OrigRetTy,
1839 const SmallVectorImpl<Register> &Args,
1840 SPIRVGlobalRegistry *GR) {
1841 LLVM_DEBUG(dbgs() << "Lowering builtin call: " << DemangledCall << "\n");
1842
1843 // SPIR-V type and return register.
1844 Register ReturnRegister = OrigRet;
1845 SPIRVType *ReturnType = nullptr;
1846 if (OrigRetTy && !OrigRetTy->isVoidTy()) {
1847 ReturnType = GR->assignTypeToVReg(OrigRetTy, OrigRet, MIRBuilder);
1848 } else if (OrigRetTy && OrigRetTy->isVoidTy()) {
1849 ReturnRegister = MIRBuilder.getMRI()->createVirtualRegister(&IDRegClass);
1850 MIRBuilder.getMRI()->setType(ReturnRegister, LLT::scalar(32));
1851 ReturnType = GR->assignTypeToVReg(OrigRetTy, ReturnRegister, MIRBuilder);
1852 }
1853
1854 // Lookup the builtin in the TableGen records.
1855 std::unique_ptr<const IncomingCall> Call =
1856 lookupBuiltin(DemangledCall, Set, ReturnRegister, ReturnType, Args);
1857
1858 if (!Call) {
1859 LLVM_DEBUG(dbgs() << "Builtin record was not found!\n");
1860 return std::nullopt;
1861 }
1862
1863 // TODO: check if the provided args meet the builtin requirments.
1864 assert(Args.size() >= Call->Builtin->MinNumArgs &&
1865 "Too few arguments to generate the builtin");
1866 if (Call->Builtin->MaxNumArgs && Args.size() > Call->Builtin->MaxNumArgs)
1867 LLVM_DEBUG(dbgs() << "More arguments provided than required!\n");
1868
1869 // Match the builtin with implementation based on the grouping.
1870 switch (Call->Builtin->Group) {
1871 case SPIRV::Extended:
1872 return generateExtInst(Call.get(), MIRBuilder, GR);
1873 case SPIRV::Relational:
1874 return generateRelationalInst(Call.get(), MIRBuilder, GR);
1875 case SPIRV::Group:
1876 return generateGroupInst(Call.get(), MIRBuilder, GR);
1877 case SPIRV::Variable:
1878 return generateBuiltinVar(Call.get(), MIRBuilder, GR);
1879 case SPIRV::Atomic:
1880 return generateAtomicInst(Call.get(), MIRBuilder, GR);
1881 case SPIRV::Barrier:
1882 return generateBarrierInst(Call.get(), MIRBuilder, GR);
1883 case SPIRV::Dot:
1884 return generateDotOrFMulInst(Call.get(), MIRBuilder, GR);
1885 case SPIRV::GetQuery:
1886 return generateGetQueryInst(Call.get(), MIRBuilder, GR);
1887 case SPIRV::ImageSizeQuery:
1888 return generateImageSizeQueryInst(Call.get(), MIRBuilder, GR);
1889 case SPIRV::ImageMiscQuery:
1890 return generateImageMiscQueryInst(Call.get(), MIRBuilder, GR);
1891 case SPIRV::ReadImage:
1892 return generateReadImageInst(DemangledCall, Call.get(), MIRBuilder, GR);
1893 case SPIRV::WriteImage:
1894 return generateWriteImageInst(Call.get(), MIRBuilder, GR);
1895 case SPIRV::SampleImage:
1896 return generateSampleImageInst(DemangledCall, Call.get(), MIRBuilder, GR);
1897 case SPIRV::Select:
1898 return generateSelectInst(Call.get(), MIRBuilder);
1899 case SPIRV::SpecConstant:
1900 return generateSpecConstantInst(Call.get(), MIRBuilder, GR);
1901 case SPIRV::Enqueue:
1902 return generateEnqueueInst(Call.get(), MIRBuilder, GR);
1903 case SPIRV::AsyncCopy:
1904 return generateAsyncCopy(Call.get(), MIRBuilder, GR);
1905 case SPIRV::Convert:
1906 return generateConvertInst(DemangledCall, Call.get(), MIRBuilder, GR);
1907 case SPIRV::VectorLoadStore:
1908 return generateVectorLoadStoreInst(Call.get(), MIRBuilder, GR);
1909 case SPIRV::LoadStore:
1910 return generateLoadStoreInst(Call.get(), MIRBuilder, GR);
1911 }
1912 return false;
1913 }
1914
1915 struct DemangledType {
1916 StringRef Name;
1917 uint32_t Opcode;
1918 };
1919
1920 #define GET_DemangledTypes_DECL
1921 #define GET_DemangledTypes_IMPL
1922
1923 struct ImageType {
1924 StringRef Name;
1925 StringRef SampledType;
1926 AccessQualifier::AccessQualifier Qualifier;
1927 Dim::Dim Dimensionality;
1928 bool Arrayed;
1929 bool Depth;
1930 bool Multisampled;
1931 bool Sampled;
1932 ImageFormat::ImageFormat Format;
1933 };
1934
1935 struct PipeType {
1936 StringRef Name;
1937 AccessQualifier::AccessQualifier Qualifier;
1938 };
1939
1940 using namespace AccessQualifier;
1941 using namespace Dim;
1942 using namespace ImageFormat;
1943 #define GET_ImageTypes_DECL
1944 #define GET_ImageTypes_IMPL
1945 #define GET_PipeTypes_DECL
1946 #define GET_PipeTypes_IMPL
1947 #include "SPIRVGenTables.inc"
1948 } // namespace SPIRV
1949
1950 //===----------------------------------------------------------------------===//
1951 // Misc functions for parsing builtin types and looking up implementation
1952 // details in TableGenerated tables.
1953 //===----------------------------------------------------------------------===//
1954
findBuiltinType(StringRef Name)1955 static const SPIRV::DemangledType *findBuiltinType(StringRef Name) {
1956 if (Name.startswith("opencl."))
1957 return SPIRV::lookupBuiltinType(Name);
1958 if (!Name.startswith("spirv."))
1959 return nullptr;
1960 // Some SPIR-V builtin types have a complex list of parameters as part of
1961 // their name (e.g. spirv.Image._void_1_0_0_0_0_0_0). Those parameters often
1962 // are numeric literals which cannot be easily represented by TableGen
1963 // records and should be parsed instead.
1964 unsigned BaseTypeNameLength =
1965 Name.contains('_') ? Name.find('_') - 1 : Name.size();
1966 return SPIRV::lookupBuiltinType(Name.substr(0, BaseTypeNameLength).str());
1967 }
1968
1969 static std::unique_ptr<const SPIRV::ImageType>
lookupOrParseBuiltinImageType(StringRef Name)1970 lookupOrParseBuiltinImageType(StringRef Name) {
1971 if (Name.startswith("opencl.")) {
1972 // Lookup OpenCL builtin image type lowering details in TableGen records.
1973 const SPIRV::ImageType *Record = SPIRV::lookupImageType(Name);
1974 return std::unique_ptr<SPIRV::ImageType>(new SPIRV::ImageType(*Record));
1975 }
1976 if (!Name.startswith("spirv."))
1977 llvm_unreachable("Unknown builtin image type name/literal");
1978 // Parse the literals of SPIR-V image builtin parameters. The name should
1979 // have the following format:
1980 // spirv.Image._Type_Dim_Depth_Arrayed_MS_Sampled_ImageFormat_AccessQualifier
1981 // e.g. %spirv.Image._void_1_0_0_0_0_0_0
1982 StringRef TypeParametersString = Name.substr(strlen("spirv.Image."));
1983 SmallVector<StringRef> TypeParameters;
1984 SplitString(TypeParametersString, TypeParameters, "_");
1985 assert(TypeParameters.size() == 8 &&
1986 "Wrong number of literals in SPIR-V builtin image type");
1987
1988 StringRef SampledType = TypeParameters[0];
1989 unsigned Dim, Depth, Arrayed, Multisampled, Sampled, Format, AccessQual;
1990 bool AreParameterLiteralsValid =
1991 !(TypeParameters[1].getAsInteger(10, Dim) ||
1992 TypeParameters[2].getAsInteger(10, Depth) ||
1993 TypeParameters[3].getAsInteger(10, Arrayed) ||
1994 TypeParameters[4].getAsInteger(10, Multisampled) ||
1995 TypeParameters[5].getAsInteger(10, Sampled) ||
1996 TypeParameters[6].getAsInteger(10, Format) ||
1997 TypeParameters[7].getAsInteger(10, AccessQual));
1998 assert(AreParameterLiteralsValid &&
1999 "Invalid format of SPIR-V image type parameter literals.");
2000
2001 return std::unique_ptr<SPIRV::ImageType>(new SPIRV::ImageType{
2002 Name, SampledType, SPIRV::AccessQualifier::AccessQualifier(AccessQual),
2003 SPIRV::Dim::Dim(Dim), static_cast<bool>(Arrayed),
2004 static_cast<bool>(Depth), static_cast<bool>(Multisampled),
2005 static_cast<bool>(Sampled), SPIRV::ImageFormat::ImageFormat(Format)});
2006 }
2007
2008 static std::unique_ptr<const SPIRV::PipeType>
lookupOrParseBuiltinPipeType(StringRef Name)2009 lookupOrParseBuiltinPipeType(StringRef Name) {
2010 if (Name.startswith("opencl.")) {
2011 // Lookup OpenCL builtin pipe type lowering details in TableGen records.
2012 const SPIRV::PipeType *Record = SPIRV::lookupPipeType(Name);
2013 return std::unique_ptr<SPIRV::PipeType>(new SPIRV::PipeType(*Record));
2014 }
2015 if (!Name.startswith("spirv."))
2016 llvm_unreachable("Unknown builtin pipe type name/literal");
2017 // Parse the access qualifier literal in the name of the SPIR-V pipe type.
2018 // The name should have the following format:
2019 // spirv.Pipe._AccessQualifier
2020 // e.g. %spirv.Pipe._1
2021 if (Name.endswith("_0"))
2022 return std::unique_ptr<SPIRV::PipeType>(
2023 new SPIRV::PipeType{Name, SPIRV::AccessQualifier::ReadOnly});
2024 if (Name.endswith("_1"))
2025 return std::unique_ptr<SPIRV::PipeType>(
2026 new SPIRV::PipeType{Name, SPIRV::AccessQualifier::WriteOnly});
2027 if (Name.endswith("_2"))
2028 return std::unique_ptr<SPIRV::PipeType>(
2029 new SPIRV::PipeType{Name, SPIRV::AccessQualifier::ReadWrite});
2030 llvm_unreachable("Unknown pipe type access qualifier literal");
2031 }
2032
2033 //===----------------------------------------------------------------------===//
2034 // Implementation functions for builtin types.
2035 //===----------------------------------------------------------------------===//
2036
getNonParametrizedType(const StructType * OpaqueType,const SPIRV::DemangledType * TypeRecord,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)2037 static SPIRVType *getNonParametrizedType(const StructType *OpaqueType,
2038 const SPIRV::DemangledType *TypeRecord,
2039 MachineIRBuilder &MIRBuilder,
2040 SPIRVGlobalRegistry *GR) {
2041 unsigned Opcode = TypeRecord->Opcode;
2042 // Create or get an existing type from GlobalRegistry.
2043 return GR->getOrCreateOpTypeByOpcode(OpaqueType, MIRBuilder, Opcode);
2044 }
2045
getSamplerType(MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)2046 static SPIRVType *getSamplerType(MachineIRBuilder &MIRBuilder,
2047 SPIRVGlobalRegistry *GR) {
2048 // Create or get an existing type from GlobalRegistry.
2049 return GR->getOrCreateOpTypeSampler(MIRBuilder);
2050 }
2051
getPipeType(const StructType * OpaqueType,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)2052 static SPIRVType *getPipeType(const StructType *OpaqueType,
2053 MachineIRBuilder &MIRBuilder,
2054 SPIRVGlobalRegistry *GR) {
2055 // Lookup pipe type lowering details in TableGen records or parse the
2056 // name/literal for details.
2057 std::unique_ptr<const SPIRV::PipeType> Record =
2058 lookupOrParseBuiltinPipeType(OpaqueType->getName());
2059 // Create or get an existing type from GlobalRegistry.
2060 return GR->getOrCreateOpTypePipe(MIRBuilder, Record.get()->Qualifier);
2061 }
2062
2063 static SPIRVType *
getImageType(const StructType * OpaqueType,SPIRV::AccessQualifier::AccessQualifier AccessQual,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)2064 getImageType(const StructType *OpaqueType,
2065 SPIRV::AccessQualifier::AccessQualifier AccessQual,
2066 MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR) {
2067 // Lookup image type lowering details in TableGen records or parse the
2068 // name/literal for details.
2069 std::unique_ptr<const SPIRV::ImageType> Record =
2070 lookupOrParseBuiltinImageType(OpaqueType->getName());
2071
2072 SPIRVType *SampledType =
2073 GR->getOrCreateSPIRVTypeByName(Record.get()->SampledType, MIRBuilder);
2074 return GR->getOrCreateOpTypeImage(
2075 MIRBuilder, SampledType, Record.get()->Dimensionality,
2076 Record.get()->Depth, Record.get()->Arrayed, Record.get()->Multisampled,
2077 Record.get()->Sampled, Record.get()->Format,
2078 AccessQual == SPIRV::AccessQualifier::WriteOnly
2079 ? SPIRV::AccessQualifier::WriteOnly
2080 : Record.get()->Qualifier);
2081 }
2082
getSampledImageType(const StructType * OpaqueType,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)2083 static SPIRVType *getSampledImageType(const StructType *OpaqueType,
2084 MachineIRBuilder &MIRBuilder,
2085 SPIRVGlobalRegistry *GR) {
2086 StringRef TypeParametersString =
2087 OpaqueType->getName().substr(strlen("spirv.SampledImage."));
2088 LLVMContext &Context = MIRBuilder.getMF().getFunction().getContext();
2089 Type *ImageOpaqueType = StructType::getTypeByName(
2090 Context, "spirv.Image." + TypeParametersString.str());
2091 SPIRVType *TargetImageType =
2092 GR->getOrCreateSPIRVType(ImageOpaqueType, MIRBuilder);
2093 return GR->getOrCreateOpTypeSampledImage(TargetImageType, MIRBuilder);
2094 }
2095
2096 namespace SPIRV {
lowerBuiltinType(const StructType * OpaqueType,SPIRV::AccessQualifier::AccessQualifier AccessQual,MachineIRBuilder & MIRBuilder,SPIRVGlobalRegistry * GR)2097 SPIRVType *lowerBuiltinType(const StructType *OpaqueType,
2098 SPIRV::AccessQualifier::AccessQualifier AccessQual,
2099 MachineIRBuilder &MIRBuilder,
2100 SPIRVGlobalRegistry *GR) {
2101 assert(OpaqueType->hasName() &&
2102 "Structs representing builtin types must have a parsable name");
2103 unsigned NumStartingVRegs = MIRBuilder.getMRI()->getNumVirtRegs();
2104
2105 const StringRef Name = OpaqueType->getName();
2106 LLVM_DEBUG(dbgs() << "Lowering builtin type: " << Name << "\n");
2107
2108 // Lookup the demangled builtin type in the TableGen records.
2109 const SPIRV::DemangledType *TypeRecord = findBuiltinType(Name);
2110 if (!TypeRecord)
2111 report_fatal_error("Missing TableGen record for builtin type: " + Name);
2112
2113 // "Lower" the BuiltinType into TargetType. The following get<...>Type methods
2114 // use the implementation details from TableGen records to either create a new
2115 // OpType<...> machine instruction or get an existing equivalent SPIRVType
2116 // from GlobalRegistry.
2117 SPIRVType *TargetType;
2118 switch (TypeRecord->Opcode) {
2119 case SPIRV::OpTypeImage:
2120 TargetType = getImageType(OpaqueType, AccessQual, MIRBuilder, GR);
2121 break;
2122 case SPIRV::OpTypePipe:
2123 TargetType = getPipeType(OpaqueType, MIRBuilder, GR);
2124 break;
2125 case SPIRV::OpTypeDeviceEvent:
2126 TargetType = GR->getOrCreateOpTypeDeviceEvent(MIRBuilder);
2127 break;
2128 case SPIRV::OpTypeSampler:
2129 TargetType = getSamplerType(MIRBuilder, GR);
2130 break;
2131 case SPIRV::OpTypeSampledImage:
2132 TargetType = getSampledImageType(OpaqueType, MIRBuilder, GR);
2133 break;
2134 default:
2135 TargetType = getNonParametrizedType(OpaqueType, TypeRecord, MIRBuilder, GR);
2136 break;
2137 }
2138
2139 // Emit OpName instruction if a new OpType<...> instruction was added
2140 // (equivalent type was not found in GlobalRegistry).
2141 if (NumStartingVRegs < MIRBuilder.getMRI()->getNumVirtRegs())
2142 buildOpName(GR->getSPIRVTypeID(TargetType), OpaqueType->getName(),
2143 MIRBuilder);
2144
2145 return TargetType;
2146 }
2147 } // namespace SPIRV
2148 } // namespace llvm
2149