1// Copyright 2014 Google Inc. All Rights Reserved.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//     http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15// Package graph collects a set of samples into a directed graph.
16package graph
17
18import (
19	"fmt"
20	"math"
21	"path/filepath"
22	"regexp"
23	"sort"
24	"strconv"
25	"strings"
26
27	"github.com/google/pprof/profile"
28)
29
30var (
31	// Removes package name and method arguments for Java method names.
32	// See tests for examples.
33	javaRegExp = regexp.MustCompile(`^(?:[a-z]\w*\.)*([A-Z][\w\$]*\.(?:<init>|[a-z][\w\$]*(?:\$\d+)?))(?:(?:\()|$)`)
34	// Removes package name and method arguments for Go function names.
35	// See tests for examples.
36	goRegExp = regexp.MustCompile(`^(?:[\w\-\.]+\/)+([^.]+\..+)`)
37	// Removes potential module versions in a package path.
38	goVerRegExp = regexp.MustCompile(`^(.*?)/v(?:[2-9]|[1-9][0-9]+)([./].*)$`)
39	// Strips C++ namespace prefix from a C++ function / method name.
40	// NOTE: Make sure to keep the template parameters in the name. Normally,
41	// template parameters are stripped from the C++ names but when
42	// -symbolize=demangle=templates flag is used, they will not be.
43	// See tests for examples.
44	cppRegExp                = regexp.MustCompile(`^(?:[_a-zA-Z]\w*::)+(_*[A-Z]\w*::~?[_a-zA-Z]\w*(?:<.*>)?)`)
45	cppAnonymousPrefixRegExp = regexp.MustCompile(`^\(anonymous namespace\)::`)
46)
47
48// Graph summarizes a performance profile into a format that is
49// suitable for visualization.
50type Graph struct {
51	Nodes Nodes
52}
53
54// Options encodes the options for constructing a graph
55type Options struct {
56	SampleValue       func(s []int64) int64      // Function to compute the value of a sample
57	SampleMeanDivisor func(s []int64) int64      // Function to compute the divisor for mean graphs, or nil
58	FormatTag         func(int64, string) string // Function to format a sample tag value into a string
59	ObjNames          bool                       // Always preserve obj filename
60	OrigFnNames       bool                       // Preserve original (eg mangled) function names
61
62	CallTree     bool // Build a tree instead of a graph
63	DropNegative bool // Drop nodes with overall negative values
64
65	KeptNodes NodeSet // If non-nil, only use nodes in this set
66}
67
68// Nodes is an ordered collection of graph nodes.
69type Nodes []*Node
70
71// Node is an entry on a profiling report. It represents a unique
72// program location.
73type Node struct {
74	// Info describes the source location associated to this node.
75	Info NodeInfo
76
77	// Function represents the function that this node belongs to. On
78	// graphs with sub-function resolution (eg line number or
79	// addresses), two nodes in a NodeMap that are part of the same
80	// function have the same value of Node.Function. If the Node
81	// represents the whole function, it points back to itself.
82	Function *Node
83
84	// Values associated to this node. Flat is exclusive to this node,
85	// Cum includes all descendents.
86	Flat, FlatDiv, Cum, CumDiv int64
87
88	// In and out Contains the nodes immediately reaching or reached by
89	// this node.
90	In, Out EdgeMap
91
92	// LabelTags provide additional information about subsets of a sample.
93	LabelTags TagMap
94
95	// NumericTags provide additional values for subsets of a sample.
96	// Numeric tags are optionally associated to a label tag. The key
97	// for NumericTags is the name of the LabelTag they are associated
98	// to, or "" for numeric tags not associated to a label tag.
99	NumericTags map[string]TagMap
100}
101
102// FlatValue returns the exclusive value for this node, computing the
103// mean if a divisor is available.
104func (n *Node) FlatValue() int64 {
105	if n.FlatDiv == 0 {
106		return n.Flat
107	}
108	return n.Flat / n.FlatDiv
109}
110
111// CumValue returns the inclusive value for this node, computing the
112// mean if a divisor is available.
113func (n *Node) CumValue() int64 {
114	if n.CumDiv == 0 {
115		return n.Cum
116	}
117	return n.Cum / n.CumDiv
118}
119
120// AddToEdge increases the weight of an edge between two nodes. If
121// there isn't such an edge one is created.
122func (n *Node) AddToEdge(to *Node, v int64, residual, inline bool) {
123	n.AddToEdgeDiv(to, 0, v, residual, inline)
124}
125
126// AddToEdgeDiv increases the weight of an edge between two nodes. If
127// there isn't such an edge one is created.
128func (n *Node) AddToEdgeDiv(to *Node, dv, v int64, residual, inline bool) {
129	if n.Out[to] != to.In[n] {
130		panic(fmt.Errorf("asymmetric edges %v %v", *n, *to))
131	}
132
133	if e := n.Out[to]; e != nil {
134		e.WeightDiv += dv
135		e.Weight += v
136		if residual {
137			e.Residual = true
138		}
139		if !inline {
140			e.Inline = false
141		}
142		return
143	}
144
145	info := &Edge{Src: n, Dest: to, WeightDiv: dv, Weight: v, Residual: residual, Inline: inline}
146	n.Out[to] = info
147	to.In[n] = info
148}
149
150// NodeInfo contains the attributes for a node.
151type NodeInfo struct {
152	Name              string
153	OrigName          string
154	Address           uint64
155	File              string
156	StartLine, Lineno int
157	Columnno          int
158	Objfile           string
159}
160
161// PrintableName calls the Node's Formatter function with a single space separator.
162func (i *NodeInfo) PrintableName() string {
163	return strings.Join(i.NameComponents(), " ")
164}
165
166// NameComponents returns the components of the printable name to be used for a node.
167func (i *NodeInfo) NameComponents() []string {
168	var name []string
169	if i.Address != 0 {
170		name = append(name, fmt.Sprintf("%016x", i.Address))
171	}
172	if fun := i.Name; fun != "" {
173		name = append(name, fun)
174	}
175
176	switch {
177	case i.Lineno != 0:
178		s := fmt.Sprintf("%s:%d", i.File, i.Lineno)
179		if i.Columnno != 0 {
180			s += fmt.Sprintf(":%d", i.Columnno)
181		}
182		// User requested line numbers, provide what we have.
183		name = append(name, s)
184	case i.File != "":
185		// User requested file name, provide it.
186		name = append(name, i.File)
187	case i.Name != "":
188		// User requested function name. It was already included.
189	case i.Objfile != "":
190		// Only binary name is available
191		name = append(name, "["+filepath.Base(i.Objfile)+"]")
192	default:
193		// Do not leave it empty if there is no information at all.
194		name = append(name, "<unknown>")
195	}
196	return name
197}
198
199// NodeMap maps from a node info struct to a node. It is used to merge
200// report entries with the same info.
201type NodeMap map[NodeInfo]*Node
202
203// NodeSet is a collection of node info structs.
204type NodeSet map[NodeInfo]bool
205
206// NodePtrSet is a collection of nodes. Trimming a graph or tree requires a set
207// of objects which uniquely identify the nodes to keep. In a graph, NodeInfo
208// works as a unique identifier; however, in a tree multiple nodes may share
209// identical NodeInfos. A *Node does uniquely identify a node so we can use that
210// instead. Though a *Node also uniquely identifies a node in a graph,
211// currently, during trimming, graphs are rebuilt from scratch using only the
212// NodeSet, so there would not be the required context of the initial graph to
213// allow for the use of *Node.
214type NodePtrSet map[*Node]bool
215
216// FindOrInsertNode takes the info for a node and either returns a matching node
217// from the node map if one exists, or adds one to the map if one does not.
218// If kept is non-nil, nodes are only added if they can be located on it.
219func (nm NodeMap) FindOrInsertNode(info NodeInfo, kept NodeSet) *Node {
220	if kept != nil {
221		if _, ok := kept[info]; !ok {
222			return nil
223		}
224	}
225
226	if n, ok := nm[info]; ok {
227		return n
228	}
229
230	n := &Node{
231		Info:        info,
232		In:          make(EdgeMap),
233		Out:         make(EdgeMap),
234		LabelTags:   make(TagMap),
235		NumericTags: make(map[string]TagMap),
236	}
237	nm[info] = n
238	if info.Address == 0 && info.Lineno == 0 {
239		// This node represents the whole function, so point Function
240		// back to itself.
241		n.Function = n
242		return n
243	}
244	// Find a node that represents the whole function.
245	info.Address = 0
246	info.Lineno = 0
247	info.Columnno = 0
248	n.Function = nm.FindOrInsertNode(info, nil)
249	return n
250}
251
252// EdgeMap is used to represent the incoming/outgoing edges from a node.
253type EdgeMap map[*Node]*Edge
254
255// Edge contains any attributes to be represented about edges in a graph.
256type Edge struct {
257	Src, Dest *Node
258	// The summary weight of the edge
259	Weight, WeightDiv int64
260
261	// residual edges connect nodes that were connected through a
262	// separate node, which has been removed from the report.
263	Residual bool
264	// An inline edge represents a call that was inlined into the caller.
265	Inline bool
266}
267
268// WeightValue returns the weight value for this edge, normalizing if a
269// divisor is available.
270func (e *Edge) WeightValue() int64 {
271	if e.WeightDiv == 0 {
272		return e.Weight
273	}
274	return e.Weight / e.WeightDiv
275}
276
277// Tag represent sample annotations
278type Tag struct {
279	Name          string
280	Unit          string // Describe the value, "" for non-numeric tags
281	Value         int64
282	Flat, FlatDiv int64
283	Cum, CumDiv   int64
284}
285
286// FlatValue returns the exclusive value for this tag, computing the
287// mean if a divisor is available.
288func (t *Tag) FlatValue() int64 {
289	if t.FlatDiv == 0 {
290		return t.Flat
291	}
292	return t.Flat / t.FlatDiv
293}
294
295// CumValue returns the inclusive value for this tag, computing the
296// mean if a divisor is available.
297func (t *Tag) CumValue() int64 {
298	if t.CumDiv == 0 {
299		return t.Cum
300	}
301	return t.Cum / t.CumDiv
302}
303
304// TagMap is a collection of tags, classified by their name.
305type TagMap map[string]*Tag
306
307// SortTags sorts a slice of tags based on their weight.
308func SortTags(t []*Tag, flat bool) []*Tag {
309	ts := tags{t, flat}
310	sort.Sort(ts)
311	return ts.t
312}
313
314// New summarizes performance data from a profile into a graph.
315func New(prof *profile.Profile, o *Options) *Graph {
316	if o.CallTree {
317		return newTree(prof, o)
318	}
319	g, _ := newGraph(prof, o)
320	return g
321}
322
323// newGraph computes a graph from a profile. It returns the graph, and
324// a map from the profile location indices to the corresponding graph
325// nodes.
326func newGraph(prof *profile.Profile, o *Options) (*Graph, map[uint64]Nodes) {
327	nodes, locationMap := CreateNodes(prof, o)
328	seenNode := make(map[*Node]bool)
329	seenEdge := make(map[nodePair]bool)
330	for _, sample := range prof.Sample {
331		var w, dw int64
332		w = o.SampleValue(sample.Value)
333		if o.SampleMeanDivisor != nil {
334			dw = o.SampleMeanDivisor(sample.Value)
335		}
336		if dw == 0 && w == 0 {
337			continue
338		}
339		for k := range seenNode {
340			delete(seenNode, k)
341		}
342		for k := range seenEdge {
343			delete(seenEdge, k)
344		}
345		var parent *Node
346		// A residual edge goes over one or more nodes that were not kept.
347		residual := false
348
349		labels := joinLabels(sample)
350		// Group the sample frames, based on a global map.
351		for i := len(sample.Location) - 1; i >= 0; i-- {
352			l := sample.Location[i]
353			locNodes := locationMap[l.ID]
354			for ni := len(locNodes) - 1; ni >= 0; ni-- {
355				n := locNodes[ni]
356				if n == nil {
357					residual = true
358					continue
359				}
360				// Add cum weight to all nodes in stack, avoiding double counting.
361				if _, ok := seenNode[n]; !ok {
362					seenNode[n] = true
363					n.addSample(dw, w, labels, sample.NumLabel, sample.NumUnit, o.FormatTag, false)
364				}
365				// Update edge weights for all edges in stack, avoiding double counting.
366				if _, ok := seenEdge[nodePair{n, parent}]; !ok && parent != nil && n != parent {
367					seenEdge[nodePair{n, parent}] = true
368					parent.AddToEdgeDiv(n, dw, w, residual, ni != len(locNodes)-1)
369				}
370				parent = n
371				residual = false
372			}
373		}
374		if parent != nil && !residual {
375			// Add flat weight to leaf node.
376			parent.addSample(dw, w, labels, sample.NumLabel, sample.NumUnit, o.FormatTag, true)
377		}
378	}
379
380	return selectNodesForGraph(nodes, o.DropNegative), locationMap
381}
382
383func selectNodesForGraph(nodes Nodes, dropNegative bool) *Graph {
384	// Collect nodes into a graph.
385	gNodes := make(Nodes, 0, len(nodes))
386	for _, n := range nodes {
387		if n == nil {
388			continue
389		}
390		if n.Cum == 0 && n.Flat == 0 {
391			continue
392		}
393		if dropNegative && isNegative(n) {
394			continue
395		}
396		gNodes = append(gNodes, n)
397	}
398	return &Graph{gNodes}
399}
400
401type nodePair struct {
402	src, dest *Node
403}
404
405func newTree(prof *profile.Profile, o *Options) (g *Graph) {
406	parentNodeMap := make(map[*Node]NodeMap, len(prof.Sample))
407	for _, sample := range prof.Sample {
408		var w, dw int64
409		w = o.SampleValue(sample.Value)
410		if o.SampleMeanDivisor != nil {
411			dw = o.SampleMeanDivisor(sample.Value)
412		}
413		if dw == 0 && w == 0 {
414			continue
415		}
416		var parent *Node
417		labels := joinLabels(sample)
418		// Group the sample frames, based on a per-node map.
419		for i := len(sample.Location) - 1; i >= 0; i-- {
420			l := sample.Location[i]
421			lines := l.Line
422			if len(lines) == 0 {
423				lines = []profile.Line{{}} // Create empty line to include location info.
424			}
425			for lidx := len(lines) - 1; lidx >= 0; lidx-- {
426				nodeMap := parentNodeMap[parent]
427				if nodeMap == nil {
428					nodeMap = make(NodeMap)
429					parentNodeMap[parent] = nodeMap
430				}
431				n := nodeMap.findOrInsertLine(l, lines[lidx], o)
432				if n == nil {
433					continue
434				}
435				n.addSample(dw, w, labels, sample.NumLabel, sample.NumUnit, o.FormatTag, false)
436				if parent != nil {
437					parent.AddToEdgeDiv(n, dw, w, false, lidx != len(lines)-1)
438				}
439				parent = n
440			}
441		}
442		if parent != nil {
443			parent.addSample(dw, w, labels, sample.NumLabel, sample.NumUnit, o.FormatTag, true)
444		}
445	}
446
447	nodes := make(Nodes, 0, len(prof.Location))
448	for _, nm := range parentNodeMap {
449		nodes = append(nodes, nm.nodes()...)
450	}
451	return selectNodesForGraph(nodes, o.DropNegative)
452}
453
454// ShortenFunctionName returns a shortened version of a function's name.
455func ShortenFunctionName(f string) string {
456	f = cppAnonymousPrefixRegExp.ReplaceAllString(f, "")
457	f = goVerRegExp.ReplaceAllString(f, `${1}${2}`)
458	for _, re := range []*regexp.Regexp{goRegExp, javaRegExp, cppRegExp} {
459		if matches := re.FindStringSubmatch(f); len(matches) >= 2 {
460			return strings.Join(matches[1:], "")
461		}
462	}
463	return f
464}
465
466// TrimTree trims a Graph in forest form, keeping only the nodes in kept. This
467// will not work correctly if even a single node has multiple parents.
468func (g *Graph) TrimTree(kept NodePtrSet) {
469	// Creates a new list of nodes
470	oldNodes := g.Nodes
471	g.Nodes = make(Nodes, 0, len(kept))
472
473	for _, cur := range oldNodes {
474		// A node may not have multiple parents
475		if len(cur.In) > 1 {
476			panic("TrimTree only works on trees")
477		}
478
479		// If a node should be kept, add it to the new list of nodes
480		if _, ok := kept[cur]; ok {
481			g.Nodes = append(g.Nodes, cur)
482			continue
483		}
484
485		// If a node has no parents, then delete all of the in edges of its
486		// children to make them each roots of their own trees.
487		if len(cur.In) == 0 {
488			for _, outEdge := range cur.Out {
489				delete(outEdge.Dest.In, cur)
490			}
491			continue
492		}
493
494		// Get the parent. This works since at this point cur.In must contain only
495		// one element.
496		if len(cur.In) != 1 {
497			panic("Get parent assertion failed. cur.In expected to be of length 1.")
498		}
499		var parent *Node
500		for _, edge := range cur.In {
501			parent = edge.Src
502		}
503
504		parentEdgeInline := parent.Out[cur].Inline
505
506		// Remove the edge from the parent to this node
507		delete(parent.Out, cur)
508
509		// Reconfigure every edge from the current node to now begin at the parent.
510		for _, outEdge := range cur.Out {
511			child := outEdge.Dest
512
513			delete(child.In, cur)
514			child.In[parent] = outEdge
515			parent.Out[child] = outEdge
516
517			outEdge.Src = parent
518			outEdge.Residual = true
519			// If the edge from the parent to the current node and the edge from the
520			// current node to the child are both inline, then this resulting residual
521			// edge should also be inline
522			outEdge.Inline = parentEdgeInline && outEdge.Inline
523		}
524	}
525	g.RemoveRedundantEdges()
526}
527
528func joinLabels(s *profile.Sample) string {
529	if len(s.Label) == 0 {
530		return ""
531	}
532
533	var labels []string
534	for key, vals := range s.Label {
535		for _, v := range vals {
536			labels = append(labels, key+":"+v)
537		}
538	}
539	sort.Strings(labels)
540	return strings.Join(labels, `\n`)
541}
542
543// isNegative returns true if the node is considered as "negative" for the
544// purposes of drop_negative.
545func isNegative(n *Node) bool {
546	switch {
547	case n.Flat < 0:
548		return true
549	case n.Flat == 0 && n.Cum < 0:
550		return true
551	default:
552		return false
553	}
554}
555
556// CreateNodes creates graph nodes for all locations in a profile. It
557// returns set of all nodes, plus a mapping of each location to the
558// set of corresponding nodes (one per location.Line).
559func CreateNodes(prof *profile.Profile, o *Options) (Nodes, map[uint64]Nodes) {
560	locations := make(map[uint64]Nodes, len(prof.Location))
561	nm := make(NodeMap, len(prof.Location))
562	for _, l := range prof.Location {
563		lines := l.Line
564		if len(lines) == 0 {
565			lines = []profile.Line{{}} // Create empty line to include location info.
566		}
567		nodes := make(Nodes, len(lines))
568		for ln := range lines {
569			nodes[ln] = nm.findOrInsertLine(l, lines[ln], o)
570		}
571		locations[l.ID] = nodes
572	}
573	return nm.nodes(), locations
574}
575
576func (nm NodeMap) nodes() Nodes {
577	nodes := make(Nodes, 0, len(nm))
578	for _, n := range nm {
579		nodes = append(nodes, n)
580	}
581	return nodes
582}
583
584func (nm NodeMap) findOrInsertLine(l *profile.Location, li profile.Line, o *Options) *Node {
585	var objfile string
586	if m := l.Mapping; m != nil && m.File != "" {
587		objfile = m.File
588	}
589
590	if ni := nodeInfo(l, li, objfile, o); ni != nil {
591		return nm.FindOrInsertNode(*ni, o.KeptNodes)
592	}
593	return nil
594}
595
596func nodeInfo(l *profile.Location, line profile.Line, objfile string, o *Options) *NodeInfo {
597	if line.Function == nil {
598		return &NodeInfo{Address: l.Address, Objfile: objfile}
599	}
600	ni := &NodeInfo{
601		Address:  l.Address,
602		Lineno:   int(line.Line),
603		Columnno: int(line.Column),
604		Name:     line.Function.Name,
605	}
606	if fname := line.Function.Filename; fname != "" {
607		ni.File = filepath.Clean(fname)
608	}
609	if o.OrigFnNames {
610		ni.OrigName = line.Function.SystemName
611	}
612	if o.ObjNames || (ni.Name == "" && ni.OrigName == "") {
613		ni.Objfile = objfile
614		ni.StartLine = int(line.Function.StartLine)
615	}
616	return ni
617}
618
619type tags struct {
620	t    []*Tag
621	flat bool
622}
623
624func (t tags) Len() int      { return len(t.t) }
625func (t tags) Swap(i, j int) { t.t[i], t.t[j] = t.t[j], t.t[i] }
626func (t tags) Less(i, j int) bool {
627	if !t.flat {
628		if t.t[i].Cum != t.t[j].Cum {
629			return abs64(t.t[i].Cum) > abs64(t.t[j].Cum)
630		}
631	}
632	if t.t[i].Flat != t.t[j].Flat {
633		return abs64(t.t[i].Flat) > abs64(t.t[j].Flat)
634	}
635	return t.t[i].Name < t.t[j].Name
636}
637
638// Sum adds the flat and cum values of a set of nodes.
639func (ns Nodes) Sum() (flat int64, cum int64) {
640	for _, n := range ns {
641		flat += n.Flat
642		cum += n.Cum
643	}
644	return
645}
646
647func (n *Node) addSample(dw, w int64, labels string, numLabel map[string][]int64, numUnit map[string][]string, format func(int64, string) string, flat bool) {
648	// Update sample value
649	if flat {
650		n.FlatDiv += dw
651		n.Flat += w
652	} else {
653		n.CumDiv += dw
654		n.Cum += w
655	}
656
657	// Add string tags
658	if labels != "" {
659		t := n.LabelTags.findOrAddTag(labels, "", 0)
660		if flat {
661			t.FlatDiv += dw
662			t.Flat += w
663		} else {
664			t.CumDiv += dw
665			t.Cum += w
666		}
667	}
668
669	numericTags := n.NumericTags[labels]
670	if numericTags == nil {
671		numericTags = TagMap{}
672		n.NumericTags[labels] = numericTags
673	}
674	// Add numeric tags
675	if format == nil {
676		format = defaultLabelFormat
677	}
678	for k, nvals := range numLabel {
679		units := numUnit[k]
680		for i, v := range nvals {
681			var t *Tag
682			if len(units) > 0 {
683				t = numericTags.findOrAddTag(format(v, units[i]), units[i], v)
684			} else {
685				t = numericTags.findOrAddTag(format(v, k), k, v)
686			}
687			if flat {
688				t.FlatDiv += dw
689				t.Flat += w
690			} else {
691				t.CumDiv += dw
692				t.Cum += w
693			}
694		}
695	}
696}
697
698func defaultLabelFormat(v int64, key string) string {
699	return strconv.FormatInt(v, 10)
700}
701
702func (m TagMap) findOrAddTag(label, unit string, value int64) *Tag {
703	l := m[label]
704	if l == nil {
705		l = &Tag{
706			Name:  label,
707			Unit:  unit,
708			Value: value,
709		}
710		m[label] = l
711	}
712	return l
713}
714
715// String returns a text representation of a graph, for debugging purposes.
716func (g *Graph) String() string {
717	var s []string
718
719	nodeIndex := make(map[*Node]int, len(g.Nodes))
720
721	for i, n := range g.Nodes {
722		nodeIndex[n] = i + 1
723	}
724
725	for i, n := range g.Nodes {
726		name := n.Info.PrintableName()
727		var in, out []int
728
729		for _, from := range n.In {
730			in = append(in, nodeIndex[from.Src])
731		}
732		for _, to := range n.Out {
733			out = append(out, nodeIndex[to.Dest])
734		}
735		s = append(s, fmt.Sprintf("%d: %s[flat=%d cum=%d] %x -> %v ", i+1, name, n.Flat, n.Cum, in, out))
736	}
737	return strings.Join(s, "\n")
738}
739
740// DiscardLowFrequencyNodes returns a set of the nodes at or over a
741// specific cum value cutoff.
742func (g *Graph) DiscardLowFrequencyNodes(nodeCutoff int64) NodeSet {
743	return makeNodeSet(g.Nodes, nodeCutoff)
744}
745
746// DiscardLowFrequencyNodePtrs returns a NodePtrSet of nodes at or over a
747// specific cum value cutoff.
748func (g *Graph) DiscardLowFrequencyNodePtrs(nodeCutoff int64) NodePtrSet {
749	cutNodes := getNodesAboveCumCutoff(g.Nodes, nodeCutoff)
750	kept := make(NodePtrSet, len(cutNodes))
751	for _, n := range cutNodes {
752		kept[n] = true
753	}
754	return kept
755}
756
757func makeNodeSet(nodes Nodes, nodeCutoff int64) NodeSet {
758	cutNodes := getNodesAboveCumCutoff(nodes, nodeCutoff)
759	kept := make(NodeSet, len(cutNodes))
760	for _, n := range cutNodes {
761		kept[n.Info] = true
762	}
763	return kept
764}
765
766// getNodesAboveCumCutoff returns all the nodes which have a Cum value greater
767// than or equal to cutoff.
768func getNodesAboveCumCutoff(nodes Nodes, nodeCutoff int64) Nodes {
769	cutoffNodes := make(Nodes, 0, len(nodes))
770	for _, n := range nodes {
771		if abs64(n.Cum) < nodeCutoff {
772			continue
773		}
774		cutoffNodes = append(cutoffNodes, n)
775	}
776	return cutoffNodes
777}
778
779// TrimLowFrequencyTags removes tags that have less than
780// the specified weight.
781func (g *Graph) TrimLowFrequencyTags(tagCutoff int64) {
782	// Remove nodes with value <= total*nodeFraction
783	for _, n := range g.Nodes {
784		n.LabelTags = trimLowFreqTags(n.LabelTags, tagCutoff)
785		for s, nt := range n.NumericTags {
786			n.NumericTags[s] = trimLowFreqTags(nt, tagCutoff)
787		}
788	}
789}
790
791func trimLowFreqTags(tags TagMap, minValue int64) TagMap {
792	kept := TagMap{}
793	for s, t := range tags {
794		if abs64(t.Flat) >= minValue || abs64(t.Cum) >= minValue {
795			kept[s] = t
796		}
797	}
798	return kept
799}
800
801// TrimLowFrequencyEdges removes edges that have less than
802// the specified weight. Returns the number of edges removed
803func (g *Graph) TrimLowFrequencyEdges(edgeCutoff int64) int {
804	var droppedEdges int
805	for _, n := range g.Nodes {
806		for src, e := range n.In {
807			if abs64(e.Weight) < edgeCutoff {
808				delete(n.In, src)
809				delete(src.Out, n)
810				droppedEdges++
811			}
812		}
813	}
814	return droppedEdges
815}
816
817// SortNodes sorts the nodes in a graph based on a specific heuristic.
818func (g *Graph) SortNodes(cum bool, visualMode bool) {
819	// Sort nodes based on requested mode
820	switch {
821	case visualMode:
822		// Specialized sort to produce a more visually-interesting graph
823		g.Nodes.Sort(EntropyOrder)
824	case cum:
825		g.Nodes.Sort(CumNameOrder)
826	default:
827		g.Nodes.Sort(FlatNameOrder)
828	}
829}
830
831// SelectTopNodePtrs returns a set of the top maxNodes *Node in a graph.
832func (g *Graph) SelectTopNodePtrs(maxNodes int, visualMode bool) NodePtrSet {
833	set := make(NodePtrSet)
834	for _, node := range g.selectTopNodes(maxNodes, visualMode) {
835		set[node] = true
836	}
837	return set
838}
839
840// SelectTopNodes returns a set of the top maxNodes nodes in a graph.
841func (g *Graph) SelectTopNodes(maxNodes int, visualMode bool) NodeSet {
842	return makeNodeSet(g.selectTopNodes(maxNodes, visualMode), 0)
843}
844
845// selectTopNodes returns a slice of the top maxNodes nodes in a graph.
846func (g *Graph) selectTopNodes(maxNodes int, visualMode bool) Nodes {
847	if maxNodes > 0 {
848		if visualMode {
849			var count int
850			// If generating a visual graph, count tags as nodes. Update
851			// maxNodes to account for them.
852			for i, n := range g.Nodes {
853				tags := countTags(n)
854				if tags > maxNodelets {
855					tags = maxNodelets
856				}
857				if count += tags + 1; count >= maxNodes {
858					maxNodes = i + 1
859					break
860				}
861			}
862		}
863	}
864	if maxNodes > len(g.Nodes) {
865		maxNodes = len(g.Nodes)
866	}
867	return g.Nodes[:maxNodes]
868}
869
870// countTags counts the tags with flat count. This underestimates the
871// number of tags being displayed, but in practice is close enough.
872func countTags(n *Node) int {
873	count := 0
874	for _, e := range n.LabelTags {
875		if e.Flat != 0 {
876			count++
877		}
878	}
879	for _, t := range n.NumericTags {
880		for _, e := range t {
881			if e.Flat != 0 {
882				count++
883			}
884		}
885	}
886	return count
887}
888
889// RemoveRedundantEdges removes residual edges if the destination can
890// be reached through another path. This is done to simplify the graph
891// while preserving connectivity.
892func (g *Graph) RemoveRedundantEdges() {
893	// Walk the nodes and outgoing edges in reverse order to prefer
894	// removing edges with the lowest weight.
895	for i := len(g.Nodes); i > 0; i-- {
896		n := g.Nodes[i-1]
897		in := n.In.Sort()
898		for j := len(in); j > 0; j-- {
899			e := in[j-1]
900			if !e.Residual {
901				// Do not remove edges heavier than a non-residual edge, to
902				// avoid potential confusion.
903				break
904			}
905			if isRedundantEdge(e) {
906				delete(e.Src.Out, e.Dest)
907				delete(e.Dest.In, e.Src)
908			}
909		}
910	}
911}
912
913// isRedundantEdge determines if there is a path that allows e.Src
914// to reach e.Dest after removing e.
915func isRedundantEdge(e *Edge) bool {
916	src, n := e.Src, e.Dest
917	seen := map[*Node]bool{n: true}
918	queue := Nodes{n}
919	for len(queue) > 0 {
920		n := queue[0]
921		queue = queue[1:]
922		for _, ie := range n.In {
923			if e == ie || seen[ie.Src] {
924				continue
925			}
926			if ie.Src == src {
927				return true
928			}
929			seen[ie.Src] = true
930			queue = append(queue, ie.Src)
931		}
932	}
933	return false
934}
935
936// nodeSorter is a mechanism used to allow a report to be sorted
937// in different ways.
938type nodeSorter struct {
939	rs   Nodes
940	less func(l, r *Node) bool
941}
942
943func (s nodeSorter) Len() int           { return len(s.rs) }
944func (s nodeSorter) Swap(i, j int)      { s.rs[i], s.rs[j] = s.rs[j], s.rs[i] }
945func (s nodeSorter) Less(i, j int) bool { return s.less(s.rs[i], s.rs[j]) }
946
947// Sort reorders a slice of nodes based on the specified ordering
948// criteria. The result is sorted in decreasing order for (absolute)
949// numeric quantities, alphabetically for text, and increasing for
950// addresses.
951func (ns Nodes) Sort(o NodeOrder) error {
952	var s nodeSorter
953
954	switch o {
955	case FlatNameOrder:
956		s = nodeSorter{ns,
957			func(l, r *Node) bool {
958				if iv, jv := abs64(l.Flat), abs64(r.Flat); iv != jv {
959					return iv > jv
960				}
961				if iv, jv := l.Info.PrintableName(), r.Info.PrintableName(); iv != jv {
962					return iv < jv
963				}
964				if iv, jv := abs64(l.Cum), abs64(r.Cum); iv != jv {
965					return iv > jv
966				}
967				return compareNodes(l, r)
968			},
969		}
970	case FlatCumNameOrder:
971		s = nodeSorter{ns,
972			func(l, r *Node) bool {
973				if iv, jv := abs64(l.Flat), abs64(r.Flat); iv != jv {
974					return iv > jv
975				}
976				if iv, jv := abs64(l.Cum), abs64(r.Cum); iv != jv {
977					return iv > jv
978				}
979				if iv, jv := l.Info.PrintableName(), r.Info.PrintableName(); iv != jv {
980					return iv < jv
981				}
982				return compareNodes(l, r)
983			},
984		}
985	case NameOrder:
986		s = nodeSorter{ns,
987			func(l, r *Node) bool {
988				if iv, jv := l.Info.Name, r.Info.Name; iv != jv {
989					return iv < jv
990				}
991				return compareNodes(l, r)
992			},
993		}
994	case FileOrder:
995		s = nodeSorter{ns,
996			func(l, r *Node) bool {
997				if iv, jv := l.Info.File, r.Info.File; iv != jv {
998					return iv < jv
999				}
1000				if iv, jv := l.Info.StartLine, r.Info.StartLine; iv != jv {
1001					return iv < jv
1002				}
1003				return compareNodes(l, r)
1004			},
1005		}
1006	case AddressOrder:
1007		s = nodeSorter{ns,
1008			func(l, r *Node) bool {
1009				if iv, jv := l.Info.Address, r.Info.Address; iv != jv {
1010					return iv < jv
1011				}
1012				return compareNodes(l, r)
1013			},
1014		}
1015	case CumNameOrder, EntropyOrder:
1016		// Hold scoring for score-based ordering
1017		var score map[*Node]int64
1018		scoreOrder := func(l, r *Node) bool {
1019			if iv, jv := abs64(score[l]), abs64(score[r]); iv != jv {
1020				return iv > jv
1021			}
1022			if iv, jv := l.Info.PrintableName(), r.Info.PrintableName(); iv != jv {
1023				return iv < jv
1024			}
1025			if iv, jv := abs64(l.Flat), abs64(r.Flat); iv != jv {
1026				return iv > jv
1027			}
1028			return compareNodes(l, r)
1029		}
1030
1031		switch o {
1032		case CumNameOrder:
1033			score = make(map[*Node]int64, len(ns))
1034			for _, n := range ns {
1035				score[n] = n.Cum
1036			}
1037			s = nodeSorter{ns, scoreOrder}
1038		case EntropyOrder:
1039			score = make(map[*Node]int64, len(ns))
1040			for _, n := range ns {
1041				score[n] = entropyScore(n)
1042			}
1043			s = nodeSorter{ns, scoreOrder}
1044		}
1045	default:
1046		return fmt.Errorf("report: unrecognized sort ordering: %d", o)
1047	}
1048	sort.Sort(s)
1049	return nil
1050}
1051
1052// compareNodes compares two nodes to provide a deterministic ordering
1053// between them. Two nodes cannot have the same Node.Info value.
1054func compareNodes(l, r *Node) bool {
1055	return fmt.Sprint(l.Info) < fmt.Sprint(r.Info)
1056}
1057
1058// entropyScore computes a score for a node representing how important
1059// it is to include this node on a graph visualization. It is used to
1060// sort the nodes and select which ones to display if we have more
1061// nodes than desired in the graph. This number is computed by looking
1062// at the flat and cum weights of the node and the incoming/outgoing
1063// edges. The fundamental idea is to penalize nodes that have a simple
1064// fallthrough from their incoming to the outgoing edge.
1065func entropyScore(n *Node) int64 {
1066	score := float64(0)
1067
1068	if len(n.In) == 0 {
1069		score++ // Favor entry nodes
1070	} else {
1071		score += edgeEntropyScore(n, n.In, 0)
1072	}
1073
1074	if len(n.Out) == 0 {
1075		score++ // Favor leaf nodes
1076	} else {
1077		score += edgeEntropyScore(n, n.Out, n.Flat)
1078	}
1079
1080	return int64(score*float64(n.Cum)) + n.Flat
1081}
1082
1083// edgeEntropyScore computes the entropy value for a set of edges
1084// coming in or out of a node. Entropy (as defined in information
1085// theory) refers to the amount of information encoded by the set of
1086// edges. A set of edges that have a more interesting distribution of
1087// samples gets a higher score.
1088func edgeEntropyScore(n *Node, edges EdgeMap, self int64) float64 {
1089	score := float64(0)
1090	total := self
1091	for _, e := range edges {
1092		if e.Weight > 0 {
1093			total += abs64(e.Weight)
1094		}
1095	}
1096	if total != 0 {
1097		for _, e := range edges {
1098			frac := float64(abs64(e.Weight)) / float64(total)
1099			score += -frac * math.Log2(frac)
1100		}
1101		if self > 0 {
1102			frac := float64(abs64(self)) / float64(total)
1103			score += -frac * math.Log2(frac)
1104		}
1105	}
1106	return score
1107}
1108
1109// NodeOrder sets the ordering for a Sort operation
1110type NodeOrder int
1111
1112// Sorting options for node sort.
1113const (
1114	FlatNameOrder NodeOrder = iota
1115	FlatCumNameOrder
1116	CumNameOrder
1117	NameOrder
1118	FileOrder
1119	AddressOrder
1120	EntropyOrder
1121)
1122
1123// Sort returns a slice of the edges in the map, in a consistent
1124// order. The sort order is first based on the edge weight
1125// (higher-to-lower) and then by the node names to avoid flakiness.
1126func (e EdgeMap) Sort() []*Edge {
1127	el := make(edgeList, 0, len(e))
1128	for _, w := range e {
1129		el = append(el, w)
1130	}
1131
1132	sort.Sort(el)
1133	return el
1134}
1135
1136// Sum returns the total weight for a set of nodes.
1137func (e EdgeMap) Sum() int64 {
1138	var ret int64
1139	for _, edge := range e {
1140		ret += edge.Weight
1141	}
1142	return ret
1143}
1144
1145type edgeList []*Edge
1146
1147func (el edgeList) Len() int {
1148	return len(el)
1149}
1150
1151func (el edgeList) Less(i, j int) bool {
1152	if el[i].Weight != el[j].Weight {
1153		return abs64(el[i].Weight) > abs64(el[j].Weight)
1154	}
1155
1156	from1 := el[i].Src.Info.PrintableName()
1157	from2 := el[j].Src.Info.PrintableName()
1158	if from1 != from2 {
1159		return from1 < from2
1160	}
1161
1162	to1 := el[i].Dest.Info.PrintableName()
1163	to2 := el[j].Dest.Info.PrintableName()
1164
1165	return to1 < to2
1166}
1167
1168func (el edgeList) Swap(i, j int) {
1169	el[i], el[j] = el[j], el[i]
1170}
1171
1172func abs64(i int64) int64 {
1173	if i < 0 {
1174		return -i
1175	}
1176	return i
1177}
1178